
One Microservice per Developer: Is This the
Trend in OSS?

Dario Amoroso d’Aragona*1, Xiaozhou Li*2, Tomas Cerny3, Andrea Janes4,
Valentina Lenarduzzi2, Davide Taibi12

1 Tampere University, Finland dario.amorosodaragona@tuni.fi,
2 University of Oulu,Finland

xiaozhou.li;valentina.lenarduzzi;davide.taibi@oulu.fi,
3 University of Arizona, USA tcerny@arizona.edu,

4 Vorarlberg University of Applied Sciences, Austria andrea.janes@fhv.at

Abstract. When developing and managing microservice systems, prac-
titioners suggest that each microservice should be owned by a particular
team. In effect, there is only one team with the responsibility to man-
age a given service. Consequently, one developer should belong to only
one team. This practice of "one-microservice-per-developer" is especially
prevalent in large projects with an extensive development team.
Based on the bazaar-style software development model of Open Source
Projects, in which different programmers, like vendors at a bazaar, of-
fer to help out developing different parts of the system, this article in-
vestigates whether we can observe the "one-microservice-per-developer"
behavior, a strategy we assume anticipated within microservice based
Open Source Projects.
We conducted an empirical study among 38 microservice-based OS projects.
Our findings indicate that the strategy is rarely respected by open-source
developers except for projects that have dedicated DevOps teams.

1 Introduction

Microservices are increasing their diffusion both in industry and in Open Source
Software (OSS) projects [4].

Microservices are small and autonomous services deployed independently,
with a single and clearly defined purpose [11,24]. Because of their independent
deployment, each microservice can scale independently from others. Some au-
thors see microservices not primarily as a technological benefit but also as a way
to scale up the number of development teams: "microservices are not necessarily
required to manage huge software, but rather to manage a huge number of people
working on them [29]." The rationale is that since microservices decouple soft-
ware components, less communication is necessary to develop them, and larger
teams become possible.

Practitioners suggest that a microservice should be owned and managed by a
single team [4,3,1,30,27,29,36]. The supportive argument sources from “Conway’s
law” [9] states that “organizations which design systems (in the broad sense) are

ar
X

iv
:2

30
8.

02
84

3v
1 

 [
cs

.S
E

] 
 5

 A
ug

 2
02

3



constrained to produce designs which are copies of the communication structures
of these organizations.” Following this law, it would be ineffective or detrimen-
tal to have two separate teams working on one microservice. Working on one
microservice requires communication within the team, and if these communica-
tion structures are not present, the work on a joint microservice becomes hard.
Therefore, it is suggested that each team is responsible for one or more business
functions [1,30]. While some authors (and Conway himself [9]) clearly foresee
that each team can own more than one microservice/subsystem [8,30,36], others
suggest that "a team should have exactly one service unless there is a proven
need to have multiple services", to not exceed the cognitive capacity of a team
[30]. Particularly if business functions are large (e.g., "customer management"
or "order management"), practitioners suggest that one team is fully dedicated
to one microservice [27].

Therefore, following the practitioners’ recommendations [9,30,27,36,8], a de-
veloper must belong only to one team, and each team must contribute only to
one microservice. Consequently, we can deduct that each team member, and
therefore each developer, must contribute to only one microservice. Based on
these assumptions, it would be interesting to investigate the ”one-microservice-
per-developer” strategy to verify to which extent it is considered in practice.

The goal of this paper is to investigate to which degree it is correct to assume
that in microservice OSS projects, the one-microservice-per-developer strategy
is respected.

Particularly, teams developing OSS projects using a bazaar-style software de-
velopment model (as described in Eric Raymond’s seminal essay "The Cathedral
and the Bazaar," in which different programmers, like vendors at a bazaar, offer
to help out developing different parts of the system [28]), require a decoupled
software architecture, which—what we assume—would manifest in a decoupled
collaboration structure. Within OSS projects adopting a microservice architec-
ture, we hypothesize, we observe that developers, during a given time window,
commit only to one microservice at a time.

For these aims, we designed and conducted an empirical study among 38
microservice-based OSS projects selected from the dataset created by Baresi et
al. [4]. Using code repositories of these projects and analyzing the history of
commits, we calculated the average number of microservices developed by each
developer determining how well is the one-microservice-per-developer strategy
employed. In addition, we further investigated the potential developer profiles
using Exploratory Factor Analysis (EFA) to detect the patterns of developer
behaviors in the core contributor groups of these projects.

Paper structure: Section 3 describes the empirical study design, while Sec-
tion 4 reports the obtained results. Section 5 discusses the results, and Section
6 highlights the limitation of this work. Section 2 presents the related work, and
Section 7 concludes.

2



2 Related Work

Developer interaction analysis has been approached from different perspectives
in OSS communities. Given the large quantities of produced communication
artifacts throughout the developer interaction in the development process, var-
ious automated approaches have been proposed. Common sources of input for
such analysis include version control systems (performing mining source code
repositories) [16,15], mailing lists, and issue trackers [26,5], or developer online
surveys [22]. Prior to the era of microservices, Bird et al. [5] considered social net-
work communities and system modularity. They researched code artifact changes
across modules and analyzed email archives to derive social networks and assess
community alignment with modularity. The conclusions and research questions
of Bird et al. [5] in the scope of microservices drive new perspectives. Microser-
vices are self-contained, and with regard to Conway’s law, we can consider well-
defined teams assigned to particular microservice development. In addition, the
remaining challenge related to crosscutting concerns cannot be simply negated
in microservices.

With regards to microservices and well-defined separation boundaries by code
repositories (or at least repository modules). It can thus be assumed that code
artifacts modified by developers within the same community are placed in a
related repository location.

Throughout OSS software development, it can be expected that developer
assignments to subsystems remain stable (i.e., given expertise alignments, sub-
system assignment, etc.). Ashraf and Panichella [2] analyzed a set of OSS projects
to examine developer communities from the perspective of their subsystem as-
signment and interaction highlighting that emerging communities change con-
siderably across a project’s lifetime and do align with each other.

The microservices perspective, as suggested by Lenarduzzi et al. [21], en-
ables teams to work independently, reducing cross-team communication. At the
same time, upon microservice integration, issues are reported across teams, as
suggested by Bogner et al. [7] who report on ripple effects. There are other un-
derlying issues behind this relevant to system evolution, such as missing system-
centered perspective and lack of tools to analyze coherence across microservices,
perform modification trade-off analysis, or evaluate the conformance of the as-
built and as-documented architectures.

Besides interaction analysis to understand communities, other interesting
research directions took place. For instance, Marco et al. [25] analyzed GitHub
commit comments regarding emotions and feelings expression showing that “one-
commit” developers are more active and polite when posting comments as op-
posed to “multi-commit” developers, that are less active in posting comments,
and when commenting, they are less polite.

In a timely thesis, Shi [31] looked into establishing contributor roles within
software repositories by mining architectural information. In a case study on
Apache Tomcat, they used the metric to deduce these roles and validate them
with particular roles listed on the project website. Such a research direction
aligns with the perspective of microservices with established separation of duty.

3



Furthermore, the classification of experts responsible for re-engineering or man-
agement can lead to better insights into the applicability of Conway’s law across
microservice developers.

It is also important to take into account that enterprise companies like Red
Hat manage OSS projects [33] rather than projects based on volunteer con-
tribution. This can influence role identification, contributor duty spread across
modules, and also the community network. Spinellis et al. [33] considered the
detection of OSS projects that are supported by enterprises. Such projects can
serve as better benchmarks for practical case studies.

With respect to inter-project dependency identification, Blincoe et al. [6]
considered reference coupling. The reference coupling method often identifies
technical dependencies between projects that are untracked by developers. Un-
derstanding inter-project dependency is important for change impact analysis
and coordination. In their study, they manually analyzed identified dependencies
and categorized and compared them to dependencies specified by the develop-
ment team. They also assessed how the ecosystem structure compares with the
social behavior of project contributors and owners. As a result, of socio-technical
alignment analysis within the GitHub ecosystems, they found that the project
owners’ social behavior aligns well with the technical dependencies within the
ecosystem. Still, the project contributors’ social behavior does not align with
these dependencies. In microservices, this could possibly translate into system
architects aware of consequences and microservice developers who operate in iso-
lation as suggested by Lenarduzzi et al. [21] and unaware of such as inter-project
dependency.

In a similar perspective, Scaliante Wiese et al. [34] researched co-change
prediction. They use issues, developers’ communication, and commit metadata
to analyze change patterns for prediction models. They demonstrate that such
models based on contextual information from software changes are accurate and
can support software maintenance and evolution, warning developers when they
miss relevant artifacts while performing a software change.

3 The Empirical Study

In this section, we describe our empirical study reporting the goal and research
questions, context, data collection, and data analysis following the guideline
defined by Wohlin et al. [35].

Our goal is to evaluate to what extent the one-microservice-per-developer
strategy, recommended by practitioners [4,3,1,30,27] is respected in OSS projects.
To allow verifiability and replicability, we published the raw data in the replica-
tion package5.

Then, we formulated two Research Questions (RQs).
RQ1. How well is the one-microservice-per-developer strategy respected in

OSS projects following a microservice architecture?

5https://figshare.com/s/6ba4e0063ab04d03d6d6

4

https://figshare.com/s/6ba4e0063ab04d03d6d6


RQ2. Which developer roles better respect the one-microservice-per-developer
strategy?

With RQ1, we investigated if developers are actually responsible, and there-
fore committing, only to a single microservice. In RQ2, we aimed to understand
if specific roles are respecting the aforementioned strategy differently. We expect
that some roles (e.g. DevOps) can be involved in multiple microservices, while
other roles (e.g. coders) are involved only in a single microservice.

3.1 The Selected Projects

We considered the manually validated dataset including 145 microservice-based
projects, proposed by Baresi et al. [4]. The authors developed, validated, and
released a tool to recognize the architecture (e.g., the microservices, the exter-
nal services, and the databases used) in a given microservices-based project. In
addition, the authors provided a list of 145 projects that have been manually
validated as non-toy projects regularly using microservices, for which they also
reported the list of built-in microservices in the form of relative paths and some
other set-up information not used in our case. In particular, for our analysis, we
leveraged the list of projects and the related list of microservices identified by
a list of sub-project folders. The dataset consists of projects whose source code
is accessible on GitHub6 and is complemented with further data, including the
microservice list.

In order to select a set of relevant projects for our study, we defined the
following inclusion criteria:

– Project with at least 2 microservices. With this threshold, we aim to exclude
non-microservices projects.

– Projects with at least 2 microservices committed in the last 12 months. To
analyze projects that are still maintained.

By requiring a minimum number of microservices and activities in the last
non-representative outliers for our study can be excluded. It is important to note
that we did not exclude projects based on their programming languages.

As a result, we included 38 microservice-based projects with a total of 379
microservices (10 microservices per project on average).

3.2 Data Collection

To collect statistics about the development process, we browsed every project
commit. We gathered the timestamp, the author’s name, and the precise change
locations for each commit. With the latter, a modification is connected to a
microservice. We specifically created a heuristic that matches if the path of the
modified file is contained in the project’s list of microservices. If so, we updated
the list of microservice changes in the aforementioned author’s commit.
6https://github.com

5

https://github.com


3.3 Data Analysis

To answer RQ1, the goal is to investigate the microservice coverage by the de-
velopers on average by examining their commits on the microservices. Here, we
considered only the commits involving source code files and excluded all the
commits regarding documentation and setup files. We analyzed the distribution
of commits over developers and microservices to understand 1) how many mi-
croservices have developers in common, and 2) how many developers work on
more than one single microservice.

However, the threat, in this case, is the situation where a developer finishes
work on a microservice and gets started to work on another microservice, or for
some reason, he/she is just moved to another team of developers. From our point
of view, this situation does not lead to a real violation of the one-microservice-
per-developer strategy. For this reason, we have defined a metric for counting
how many times a developer recommits to a microservice after starting work on
another microservice; in other words, if a developer D1 commits to microservice
m1, switches the team, and starts committing to a m2 microservice, then the
result of our metric will be 0 because the developer never goes back to the
previous microservice; otherwise, if after a while the developer commits back
to m1, our metric results will give 1, because the developer goes back to the
previous microservice (m1).

To answer RQ2, we need to understand how to identify the role of each con-
tributor in OSS microservice projects. Different from industrial projects, within
OSS projects on GitHub, contributors, are neither assigned roles by "project
managers" or "product owners" nor obliged to focus on the tasks assigned to
them in the corresponding areas. Therefore, we shall only be able to understand
the roles based on the domains each contributor has been contributing to.

To identify the roles of the project contributors, we adopted the approach
proposed by Montandon et al. [23] combined with the Exploratory Factor Anal-
ysis (EFA).

Montandon et al. [23] proposed a machine-learning-based approach based on
the extensions of the committed files. They used more than 100k developers’
data from GitHub together with Stack Overflow data and studied five critical
roles: Backend, Frontend, Data scientist, DevOps, and Mobile. Herein, we initially
adopt the same settings.

The Exploratory Factor Analysis (EFA) [13] aims to discover not only the
number of factors but also what measurable variables together influence which
individual factors [10]. With EFA, we can reduce the complexity of the data,
and also are able to explain the observations with a smaller set of latent factors.
Importantly, by doing so we can also discover the relations among the variables.

Herein, we follow these steps to conduct EFA on our commit dataset and
determine the profile of each developer:

1. Preprocessing. Firstly, we group the obtained developer behavior data.
2. Data Verification. Secondly, we verify its sampling adequacy and statis-

tical significance. For example, we can use Bartlett’s Test of Sphericity [32]
and Kaiser-Meyer-Olkin (KMO) Test [18] for such a purpose.

6



3. Determining Factor Number. Thirdly, we find the number of factors us-
ing parallel analysis (PA) [14]. Herein, we employ the Monte Carlo simulation
technique to simulate random samples consisting of uncorrelated variables.
Then, We extract the eigenvalues of the correlation matrix of the simulated
data and compare the extracted eigenvalues that are ordered by magnitude
to the average simulated eigenvalues. Significant factors are the ones with
ob.served eigenvalues higher than the corresponding simulated eigenvalues

4. Factor Extraction and Interpretation. With the number of factors de-
termined, we conduct the EFA on the dataset. To simplify the interpretation
of the factor analysis result, we employ the varimax rotation technique [17]
to maximize the variance of each factor loading.

5. Determining Individual Developer Role Allocation. To apply the
factor-variable relation to individual contributors, we shall calculate the sim-
ilarity between the developers’ contributions in terms of the languages and
each detected factor. By comparing the contributor’s similarity to each role
factor, we shall understand more intuitively which role(s) he/she leans to.
Such results can be visualized in a radar chart.

For this study, as a result of the EFA, we shall have a set of factors, each of
which is closely related to a set of latent variables, i.e., programming languages.
To be noted, due to the fact that the original data are collected from projects
of different programming languages, it is likely that contributors working on
different languages lean toward similar roles. For example, contributors working
on CSS and VUE can both be Frontend contributors. Therefore, we shall observe
the loadings of the EFA and manually merge factors related to only closely-
connected languages into the unified roles.

Particularly, the contributor’s similarity to each role-factor can be calculated
using the Kumar-Hassebrook (KH) similarity, which incorporates also the inner
product of the assigned values of the variables [20]. Moreover, using the KH
similarity, we can evaluate each contributor’s effort level in each pre-detected
role-factor, respectively.

4 Results

In this Section, we report the obtained results to answer our Research Questions
(RQs).

RQ1 How well is the one-microservice-per-developer strategy
respected in OSS projects following a microservice architecture?

To answer RQ1, we investigated the single developer, assuming that a single
developer does not belong to more than one team at the same time. Figure 1
compares the number of microservices with shared developers (MSs with Shared
Dev) with the number of microservices where all developers committed only to
the same microservice (MSs without Shared Dev).

7



Unexpectedly, only 2 projects always respected the one-microservice-per-
developer strategy, while the remaining projects shared among services.

Since the vast majority of the projects (Figure 3) a developer works on more
than one microservice, we continue our analysis to understand if developers are
simply switching teams, or are working on more microservices at the same time.

Figure 2 shows the result of the number of times developers commit back on a
microservice after moving to another one among the projects. In two projects out
of 38, developers never commit back to the previous microservice. In most of the
projects (53%), the median is 0, in 34% of the projects the median is between
1 and 10, and finally in the 13% of the projects is more than 10. However,
analyzing the figure, we can see that the boxplots are very stretched, thus in the
same project there are some developers that do not return back after changing
microservice (or never change microservice) and some developers that instead,
commit to the previous microservice.

MSs with Shared Dev MSs without Shared Dev

0

1

10

Nu
m

be
r o

f M
icr

os
er

vi
ce

s

Fig. 1: # microservices with shared and
not shared developers (RQ1)

Projects

0

1

10

100

1000

Nu
m

be
r o

f T
im

es
 D

ev
 R

et
ur

ne
d 

Ba
ck

 O
n 

M
S

Fig. 2: Frequency that developers have
committed back (RQ1)

¤ As a result, we conclude that in an OSS context, the one-microservice-
per-developer strategy is not respected as in most cases, developers work on
more than one microservice in parallel.

RQ2 Which developer roles better respect the one-microservice-per-
developer strategy?

To tackle RQ2, we first investigated the strategies of different contributor-microservice
effort allocations. Figure 4 shows the distribution of the “microservices per devel-
oper" of each of the selected projects. To be noted, the light-example-4j, which
contains 155 different microservices, is not shown in Figure 4. Because one out-
lier in this project reaches 154 microservices, showing this project in the chart

8



Fig. 3: MS Per Developer sorted by
#Developer (RQ1)

Fig. 4: MS Per developer sorted by #Mi-
croservice (RQ2)

will make the details of all other projects invisible. Nonetheless, this project was
certainly included in the analysis process.

From Figure 4, we can easily find that for all the projects, the one-microservice-
per-developer strategy has not been respected. For the selected projects, the ma-
jority of the medians range from one to seven. For all projects, there are always
some developers committing across multiple microservices.

On the contrary, many projects that contain various numbers of microser-
vices have one individual contributor who contributes to all the microservices.
We name such a strategy One-Dev-ALL-MS. For example, in project geoserver-
cloud, contributor gabriel.roldan committed in all the 11 microservices, and
in project eShopOnContainers, contributor mvelosop covers all the 17 microser-
vices. Furthermore, many projects even have multiple contributors that cover
all the microservices. We name such a strategy Multi-Dev-All-MS. For example,
in project loopback4-microservice-catalog, there are eight contributors covering
all 18 microservices; and in project DeathStarBench six contributors cover all
three microservices. It is likely that such a phenomenon is irrelevant to either
the microservice number or a number of contributors.

Based on this phenomenon, we can intuitively categorize the projects as
follows.

– One-Dev-ALL-MS projects: Projects where only one individual contributor
covers all microservices while all the others cover part of them (16 out of 38)

– Multi-Dev-ALL-MS projects: Projects with multiple contributors covering
all microservices (10 out of 38)

– Multi-Dev-SOME-MS projects: Any projects with no contributors covering
all microservices; nor do they adopt “One-microservice-per-developer” strat-
egy (12 out of 38)

– One-MS-per-developer projects: Any projects with each contributor/team
working only on one microservice

To further investigate the potential roles of the contributors that cover all
microservices and the other common contributors, we used EFA to detect the
latent factors.

1. Preprocessing. Firstly, for the preprocessing, we grouped the original
dataset by the contributors. For each contributor, we synthesized his/her con-
tribution in every language by checking the extensions of the committed files.

9



We crawl each project’s languages using GitHub API. By grouping the data,
we obtained the 1 536 contributors’ dataset with their contribution to the 33
languages. And we further normalized the dataset into values between zero and
one.

2. Data Verification. Herein, the KMO score for this dataset is 0.585. It
shows that the sampling is adequate and applying factor analysis is useful for
this dataset. When applying PA to the dataset, we detected 13 factors as there
are 13 out of 33 observed eigenvalues greater than 1.0. The corresponding factor
loadings are shown in the replication package5.

3. Determining Factor Number. Based on the result of the parallel anal-
ysis (PA), the turning point can be found easily by examining the differences be-
tween observed eigenvalues and simulated eigenvalues. Since the simulated eigen-
value becomes greater than the observed eigenvalue in the 14th factor (1.00049
and 0.90517, respectively), the first 13 factors are retained. The number of factors
is therefore 13. According to Guadagnoli and Velicer [12], scores greater than 0.4
are considered stable, especially when all variables are not cross-loaded heavily.

4. Factor Extraction and Interpretation. The initially detected factors
and the correlated variables are reported in the replication package5. Herein, we
adapted Montandon et al.’s role-language relevance results [23] as the reference to
analyze the interpretation of each factor. To be noted, we added several languages
that are not listed in Montandon et al’s study based on common knowledge and
experts’ opinions.

Meanwhile, we also considered the other contributors that are not related to
any specific roles above as Others. By calculating the KH similarity between the
role factors in the factor table obtained previously and the reference table [23].
Here we assigned the role with the highest similarity score to each factor.

Furthermore, we combined the factors with the same roles and obtained the
final role-factor reference model.

5. Determining Individual Developer Role Allocation. By using this
role-factor relevance model, we simply calculated the factor similarities of any
contributor, given his/her contribution allocation in terms of the 33 languages.
Furthermore, we investigated the difference in terms of the contributor roles of
the project strategies mentioned above.

Figure 5 shows the average behavior patterns of the different types of contrib-
utors in terms of the technical roles. From Figure 5, we can easily observe that
the individual contributors who cover all microservices (i.e., One-Dev-ALL-MS)
of the projects contribute largely as Documentation+. And they are also heavily
involved in Frontend, when slightly less in Backend and DevOps roles. To be
noted, they also contribute as Fullstack but are nearly non-existent in the other
aspects. In addition, the One-Dev-ALL-MS also contributes as the Data Scien-
tist role more than the others. On the other hand, for the multiple contributors
that cover all the microservices (i.e., Multi-Dev-ALL-Ms), these contributors, on
average, contribute less than the One-Dev-ALL-MS mentioned above. However,
they contribute slightly more as Frontend than the other roles. They cover the
Fullstack role a little less but surprisingly at a similar level compared to One-

10



Others

DataScientist+

Documentation+

DevOpsFrontend

Backend

FullStack

One-Dev-ALL-MS

Multi-Dev-ALL-MS

Multi-Dev-SOME-MS

Fig. 5: Average Role-Factor Distribution of Each Strategy (RQ2)

Dev-ALL-MS. Furthermore, they contribute more in other languages that are
not role-related than that from the One-Dev-ALL-MS. The Multi-Dev-ALL-MS
also contributes to Backend, Documentation, and Data Scientist, but much less
than the other aspects. Regarding all the Multi-Dev-SOME-MS contributors,
they contribute much less in terms of all working roles than the One-Dev-ALL-
Ms and Multi-Dev-ALL-Ms.

¤ The majority of the microservice projects have one or multiple contrib-
utors who commit to all microservices. The single contributor who covers all
microservices (One-Dev-ALL-MS) contributes much more than the multiple
contributors covering all microservices (Multi-Dev-ALL-MS) in all roles, ex-
cept that Multi-Dev-ALL-MS contribute more in non-role-related languages.
Multi-Dev-SOME-MS contribute much less in all roles.

5 Discussion

Using a large established 145-microservice project dataset [4] we selected 38
projects with a sufficient number of contributors and commits as a represen-
tative OSS sample. This project sample did not adopt the same strategy sug-
gested for proprietary (closed-source) software projects. In the analyzed sample
we identified that developers typically work on multiple microservices, and focus
on various features, often in parallel. These conclusions are also confirmed by
the vast majority of the projects when considering different developer roles.

One of the explanations might be the dynamics of OSS projects. In OSS
projects, developers commit their time voluntarily at random, non-fixed hours
and schedules, oftentimes driven by feature priority requests or error reports. In
particular, none of the selected projects is directly sponsored by a company that
allocates developers to the project. Therefore, developers commonly select a set
of issues to be implemented (either new features or bug fixing) and work on them
independently rather than adopting the specific microservice that they maintain.

11



Another explanation might be that, despite the decentralized nature of OSS
and the microservice architecture, OSS projects might not have yet assimilated
this strategy. Another reason might be the lack of clear teams in OSS projects
(i.e. each developer does not belong to a specific team), and therefore the “one-
microservice-per-developer” strategy might not be perceived as an issue.

It must also be recognized that additional effort and overhead are related to
the “one-microservice-per-developer” strategy. However, this might not be the
proper fit for the OSS environment and context. OSS projects are often driven
by small development teams or individuals who stand behind the entire project,
occasionally OSS projects have professional teams behind them (i.e., Red Hat);
however, we did not include these projects in the study.

Microservice architecture is the mainstream architecture for cloud-native sys-
tems. However, not necessarily all microservice systems are cloud-native. In a
similar parallel, the decentralized development model connected with cloud-
native systems might collide with the OSS development model. Perhaps the
main driver for the microservice architecture in these OSS projects is scalability
and the decentralized development aspect goes away with the OSS model.

As practitioners often suggest [4,3,1,30,27], if the development team is too
small to be split into multiple teams, and there are multiple microservices, to
respect the one-microservice-per-developer strategy, the system should rather
remain monolithic. The reasons for OSS might be prioritized system scalability
for the price of this strategy violation. Perhaps some projects might have decided
to split their systems into multiple microservices for maintainability reasons,
to increase the separation of concerns, or to better identify different business
domains, independently from the team that is working on the same services.

Another explanation might be given by Mariusz, who investigated whether
Conway’s Law applies to OSS projects [19] and concludes that teams "organize
themselves spontaneously around tasks, and since those tasks concern software
modules, teams naturally follow Conway’s law".

The result of this study will serve the practitioners’ community to under-
stand how OSS microservice projects are being developed. Moreover, it will help
researchers to further investigate the one-microservice-per-developer strategy.

6 Threats to Validity

Construct Validity. Replying to RQ1 we tried to understand if the one-microservice-
per-developer strategy is adopted. But we measure how well this strategy is
adopted in an OSS context by analyzing individual developer behavior and as-
suming that a single developer belongs to one team at a time. We recognized
that this assumption could lead to some threats. We planned to expand our
work in the future by adding information (such as developer communications,
and issue/pull request comments) to extract teams to fine-grain our analysis.

Internal Validity. The dataset used is one of the most recent in the context of
microservices and open-source projects. However, the dataset is very heteroge-
neous (for the number of microservices, the age of the projects, and the number

12



of developers), and we could only analyze a subset of the projects. We want to
extend the dataset to get a better picture of the real state of the art.

External Validity. The findings of this paper can be simply extended when
more microservice projects are taken into account. It is reasonable that all
the currently included projects shall also inevitably evolve when the proposed
method should be replicated with the results updated. Especially for RQ2, the
findings can also be generalized to projects that are not specifically microservice-
based if we use modules or features to functionally separate the projects instead
of using microservices. In this way, such extended findings shall provide insights
into the collective contributor profiles for any given OSS project scope. In ad-
dition, when the language-role relations can be further defined (e.g., new roles
defined, new languages assigned to different roles, etc.), the findings can also be
updated accordingly with the changes conducted in the reference table.

Reliability. Using the dataset we provided in the replication package5 with
the same approach, the practitioners and scholars can easily obtain the same
results as described above. Only when any changes are introduced in the data
itself or when the interpretation of the obtained factors varies based on different
expertise, the findings shall differ accordingly.

7 Conclusion

Based on the suggestion of practitioners that "a developer should have exactly
one service unless there is a proven need to have multiple services" and the as-
sumption that developers developing open source software using a bazaar-style
software development model would encourage a "one microservice per devel-
oper" strategy, we learned in this study that OSS projects do not comply with
this strategy. Oftentimes, we could identify projects with a greater number of
microservices than project contributors, and the OSS development model with
a few main contributors dominated the proprietary software strategy. Still, we
must assume that the contributor dedication to OSS has a very different dynam-
ics than fully-funded organization projects that can afford multiple developers
with regular commitments to contribution. One might question if Conway’s law
collides with the OSS development model, and the results of this study add
weight to the doubts. In this work, we showed that OSS microservice projects
rarely follow the “one-microservice-per-developer” strategy.

We have demonstrated this by analyzing the OSS project source code repos-
itories of an established microservices project dataset. We further supported
this result by analyzing the different developers’ roles in contributing to these
projects.

As future work, we aim at further study if “one-microservice per developer"
holds in OSS projects trying to observe emerging or stable developer-like collab-
orations between developers. To do so, we plan to analyze the commits of source
code repositories of microservice projects, also parsing the actual code modifica-
tions to understand if a collaboration took place. Also, following the suggestion
by Mariusz[19] projects, which states that “developers organize themselves spon-

13



taneously around tasks,” we plan to study issue-tracking systems in combination
with source code repositories to investigate if we are able to detect such sponta-
neous developers acting on single microservices. Moreover, we aim to investigate
the developers’ team composition to classify the developers who contribute to
the same code.

References

1. Amazon: Service per team pattern. https://docs.aws.amazon.com/
prescriptive-guidance/latest/modernization-decomposing-monoliths/
service-per-team.html (Jan 2023)

2. Ashraf, U., Mayr-Dorn, C., Mashkoor, A., Egyed, A., Panichella, S.: Do Communi-
ties in Developer Interaction Networks align with Subsystem Developer Teams? An
Empirical Study of Open Source Systems. In: Int. Conf. on Software and System
Processes. pp. 61–71 (2021)

3. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices Architecture Enables
DevOps: Migration to a Cloud-Native Architecture. IEEE Software 33(3), 42–52
(2016). https://doi.org/10.1109/MS.2016.64

4. Baresi, L., Quattrocchi, G., Tamburri, D.A.: Microservice Architecture Prac-
tices and Experience: a Focused Look on Docker Configuration Files
(2022). https://doi.org/10.48550/ARXIV.2212.03107, https://arxiv.org/abs/
2212.03107

5. Bird, C., Pattison, D., D’Souza, R., Filkov, V., Devanbu, P.: Latent Social Struc-
ture in Open Source Projects. In: Int. Symposium on Foundations of Software
Engineering. p. 24–35 (2008)

6. Blincoe, K., Harrison, F., Kaur, N., Damian, D.: Reference Coupling: An explo-
ration of inter-project technical dependencies and their characteristics within large
software ecosystems. Information and Software Technology 110, 174–189 (2019)

7. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Industry Practices and Chal-
lenges for the Evolvability Assurance of Microservices: An Interview Study and
Systematic Grey Literature Review. Empirical Softw. Engg. 26(5) (2021)

8. Carneiro, C., Schmelmer, T.: Microservices From Day One: Build robust and scal-
able software from the start. Apress (2016)

9. Conway, M.E.: How Do Committees Invent? Datamation (April 1968)
10. DeCoster, J.: Overview of factor analysis (1998)
11. Fowler, M.: CodeSmell. https://martinfowler.com/bliki/CodeSmell.html (Feb

2006)
12. Guadagnoli, E., Velicer, W.F.: Relation of sample size to the stability of component

patterns. Psychological bulletin 103(2), 265 (1988)
13. Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E., Tatham, R.L., et al.: Multi-

variate data analysis (Vol. 6) (2006)
14. Horn, J.L.: A rationale and test for the number of factors in factor analysis. Psy-

chometrika 30(2), 179–185 (1965)
15. Jermakovics, A., Sillitti, A., Succi, G.: Mining and Visualizing Developer Networks

from Version Control Systems. In: Int. Workshop on Cooperative and Human As-
pects of Software Engineering (2011)

16. Joblin, M., Mauerer, W., Apel, S., Siegmund, J., Riehle, D.: From Developer Net-
works to Verified Communities: A Fine-Grained Approach. In: Int. Conf. on Soft-
ware Engineering. p. 563–573 (2015)

14

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-monoliths/service-per-team.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-monoliths/service-per-team.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-monoliths/service-per-team.html
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.48550/ARXIV.2212.03107
https://arxiv.org/abs/2212.03107
https://arxiv.org/abs/2212.03107
https://martinfowler.com/bliki/CodeSmell.html


17. Kaiser, H.F.: The varimax criterion for analytic rotation in factor analysis. Psy-
chometrika 23(3), 187–200 (1958)

18. Kaiser, H.F.: An index of factorial simplicity. Psychometrika 39(1), 31–36 (1974)
19. Kamola, M.: How to Verify Conway’s Law for Open Source Projects. IEEE Access

7, 38469–38480 (2019). https://doi.org/10.1109/ACCESS.2019.2905671
20. Kumar, B.V., Hassebrook, L.: Performance measures for correlation filters. Applied

optics 29(20), 2997–3006 (1990)
21. Lenarduzzi, V., Sievi-Korte, O.: On the Negative Impact of Team Independence in

Microservices Software Development. In: XP Conference (2018)
22. Meneely, A., Williams, L.: Socio-Technical Developer Networks: Should We Trust

Our Measurements? In: Int. Conf. on Software Engineering. p. 281–290 (2011)
23. Montandon, J.E., Valente, M.T., Silva, L.L.: Mining the technical roles of GitHub

users. Information and Software Technology 131, 106485 (2021)
24. Newman, S.: Building Microservices. O’Reilly Media, Inc., 1st edn. (2015)
25. Ortu, M., Hall, T., Marchesi, M., Tonelli, R., Bowes, D., Destefanis, G.: Mining

Communication Patterns in Software Development: A GitHub Analysis. In: Int.
Conf. on Predictive Models and Data Analytics in Software Engineering. p. 70–79.
PROMISE’18 (2018)

26. Panichella, S., Bavota, G., Penta, M.D., Canfora, G., Antoniol, G.: How Develop-
ers’ Collaborations Identified from Different Sources Tell Us about Code Changes.
In: Int. Conf. on Software Maintenance and Evolution. pp. 251–260 (2014)

27. Qcon2022: Dark Energy, Dark Matter and the Microservices Patterns?! https:
//shorturl.at/etHM5 (November 2022)

28. Raymond, E.S., O’Reilly, T.: The Cathedral and the Bazaar. O’Reilly & Associates,
Inc., USA, 1st edn. (1999)

29. Reinfurt, M.: The horror of microservices in small teams — and why you shouldn’t
build them. https://shorturl.at/bgHKR (Apr 2021)

30. Richardson, C.: A pattern language for microservices. https://shorturl.at/
bGS34 (Jan 2021)

31. Shi, K.: Establishing contributor roles within software repositories by mining ar-
chitectural information. https://fse.studenttheses.ub.rug.nl/25608/1/bCS_
2021_ShiK.pdf (2021)

32. Snedecor, G.W., Cochran, W.G.: Statistical methods, 8thEdn. Ames: Iowa State
Univ. Press Iowa 54, 71–82 (1989)

33. Spinellis, D., Kotti, Z., Kravvaritis, K., Theodorou, G., Louridas, P.: A Dataset
of Enterprise-Driven Open Source Software. In: Int. Conf. on Mining Software
Repositories. p. 533–537 (2020)

34. Wiese, I.S., Ré, R., Steinmacher, I., Kuroda, R.T., Oliva, G.A., Treude, C., Gerosa,
M.A.: Using contextual information to predict co-changes. Journal of Systems and
Software 128, 220–235 (2017)

35. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Ex-
perimentation in software engineering. Springer Science & Business Media (2012)

36. Wolff, E.: Microservices Primer: A Short Overview. Leanpub (2021)

15

https://doi.org/10.1109/ACCESS.2019.2905671
https://shorturl.at/etHM5
https://shorturl.at/etHM5
https://shorturl.at/bgHKR
https://shorturl.at/bGS34
https://shorturl.at/bGS34
https://fse.studenttheses.ub.rug.nl/25608/1/bCS_2021_ShiK.pdf
https://fse.studenttheses.ub.rug.nl/25608/1/bCS_2021_ShiK.pdf

	One Microservice per Developer: Is This the Trend in OSS? 

