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Abstract. Multi-party business processes rely on the collaboration of various players
in a decentralized setting. Blockchain technology can facilitate the automation of these
processes, even in cases where trust among participants is limited. Transactions are
stored in a ledger, a replica of which is retained by every node of the blockchain
network. The operations saved thereby are thus publicly accessible. While this en-
hances transparency, reliability, and persistence, it hinders the utilization of public
blockchains for process automation as it violates typical confidentiality requirements
in corporate settings. In this paper, we propose MARTSIA: A Multi-Authority Approach
to Transaction Systems for Interoperating Applications. MARTSIA enables precise
control over process data at the level of message parts. Based on Multi-Authority
Attribute-Based Encryption (MA-ABE), MARTSIA realizes a number of desirable
properties, including confidentiality, transparency, and auditability. We implemented
our approach in proof-of-concept prototypes, with which we conduct a case study in the
area of supply chain management. Also, we show the integration of MARTSIA with
a state-of-the-art blockchain-based process execution engine to secure the data flow.

Keywords: Multi-Authority Attribute Based Encryption · Distributed Ledger Tech-
nology · InterPlanetary File System

1 Introduction

Enterprise applications of blockchain technology are gaining popularity because it enables the
design and implementation of business processes involving many parties with little mutual
trust, among other benefits [40,36]. Standard blockchains yield the capability of enabling
cooperation between potentially untrusting actors through transparency: relevant data is made
available to all participants of a blockchain network, and hence can be verified by anyone,
thereby removing the need for trust [42]. In combination with the high-integrity permanence
of data and non-repudiability of transactions offered by the technology, blockchains can be
used to realize trustworthy protocols.

However, in multi-party business settings with scarce mutual trust, the involved parties
typically have a strong need to keep certain data hidden from some of the business partners, and
even more so from most other participants in a blockchain network. In fact, fulfilling security
and privacy requirements is a key obstacle when it comes to the adoption and implementation
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of blockchain technology in general [43,14]. Corradini et al. [10] confirm the importance of
security and privacy considerations for the specific case of process execution on blockchain.

Simple cryptographic solutions face severe downsides, as discussed in the following.
First, the authors of [10] note that simply encrypting the contents of messages (payload), as
previously proposed in the literature, does not guarantee the confidentiality of the information.
Using synchronous encryption requires sharing a decryption key among process participants,
and thus does not allow the sender of the data to selectively control access to different parts of
a single message. Using asynchronous encryption and encrypting a message with the public
key of the recipient requires the sender to create multiple copies of each message (one for
each intended reader), which means that the sender can send different pieces of information
to each participant – i.e., integrity is lost. Other proposed solutions address the issue via
perimeter security: read access to the (relevant parts of) a blockchain is limited, e.g., by using
channels on Hyperledger Fabric or similar [42, Ch. 2], or using private blockchains. However,
this approach suffers from the same downsides as the use of synchronous encryption above.
Also, permissioned platforms require the presence of trusted actors with the privileged role of
managing information exchange and the right to be part of the network. In summary, most of
the previous approaches offer “all-or-nothing” access: either all participants in some set can
access the information in a message, or they receive only private messages and integrity of the
data sent to multiple recipients is lost. In previous work [24], we introduced an early approach
to control data access at a fine-granular level. However, the architecture relied on a central
node for forging and managing access keys, thus leading to easily foreseeable security issues
in case this single component were to be compromised or byzantine. Also, its integration with
process management systems was yet to be verified. With the objective of overcoming these
limitations, we have revised the entire approach from its foundations and devised the new
solution we present here.

In this paper, we propose a Multi-Authority Approach to Transaction Systems for Interop-
erating Applications (MARTSIA). In MARTSIA, encrypted data is persisted in decentralized
storage, which is connected to a public permissionless blockchain system supporting pro-
cess execution. Data owners define access policies to regulate which users are able to view
specific parts of the information. No central authority can generate decryption keys alone.
The encryption and decryption of messages are left to the individual nodes. To attain the
desired characteristics, this approach employs hybrid encryption in combination with the
Ciphertext-Policy variant of Multi-Authority Attribute-Based Encryption (henceforth, MA-
ABE for the sake of conciseness), smart contracts, and InterPlanetary File System (IPFS). In
our evaluation, we show the integration of our implemented prototype with Caterpillar [22], a
state-of-the-art process execution engine, to demonstrate how our approach can complement
a business process management system to secure its data flow.

In the following, Sect. 2 presents a running example, to which we will refer throughout the
paper, and illustrates the problem we tackle. Section 3 outlines the fundamental notions that our
solution is based upon. In Sect. 4, we describe our approach in detail. In Sect. 5, we present our
proof-of-concept implementation and the results of the experiments we conducted therewith.
Section 6 reviews related work before Sect. 7 concludes the paper and outlines future works.
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Fig. 1: A multi-party process for the assembly of special car parts.

2 Example, problem illustration, and requirements

Figure 1 shows a Business Process Model and Notation (BPMN) collaboration diagram
illustrating a supply chain in the automotive area: the production of a special car for a person
with paraplegia. The two base components for that car are a joystick (to turn, accelerate,
brake) and a wheelchair ramp to let the person get into the vehicle.

A new process instance is initiated when a customer places an order for a modified car
from a manufacturer. The manufacturer then checks the availability of joystick parts and
wheelchair ramps in the warehouse, to order the missing ones from a local joystick supplier
and an international wheelchair ramp supplier, respectively. Once all ordered parts have been
collected, the suppliers prepare the packages with the products for delivery. The international
customs verifies the document of the international supplier and issues custom clearance once
the compliance verification is completed successfully. The carrier of the international supplier
checks the documents and delivers the package to the manufacturer with an international
shipment procedure. Upon receipt of the parts, the manufacturer proceeds with the assembly
process. After informing the customer about the progress of the production process, the
manufacturer sends an invoice and requests a carrier to deliver the package. The process is
completed with the delivery of the ordered product.

Throughout the paper, we will refer to this scenario as a running example. In particular,
we will focus on the information artifacts in Table 1 (marked with a gray background color
in Fig. 1), namely: (1) the purchase order of the manufacturer, (2) the export document
of the international supplier, and (3) the national customs clearance. The export document
encloses multiple records, namely (2.a) the international shipment order, (2.b) the Corporate
Sustainability Due Diligence Directive (CSDD), (2.c) the reference to the order, and (2.d)
the invoice. These records are meant to be accessed by different players. The shipment order
should only be accessible by the international carrier and the two customs bodies, the CSDD
can only by read by the customs authorities, the order reference is for the manufacturer, and
the invoice is for the manufacturer and the customs bodies. Differently from the purchase
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Table 1: An excerpt of the information artifacts exchanged in Fig. 1
Message Sender Data Recipients

Supply purchase order (ramp) Manufacturer

Company_name : Alpha
Address: 38, Alpha street
E-mail: cpny. alpha@mail .com
Price: $5000

International supplier

Manufacturer_company : Beta
Delivery_address : 82, Beta street
E-mail: mnfctr. beta@mail.com
Ramp run: 3
Kickplate: 12
Handrail: 7
Baluster: 30
Guardrail: 25
Amount_paid : $5000

Manufacturer
National customs

International customs
International carrier

Export document International supplier

Fundamental_workers_rights : Ok
Human_rights : Ok
Protection_biodiversity_and_ecosystems : Ok
Protection_water_and_air : Ok
Combatting_climate_change : Ok

National customs
International customs

Manufacturer_company : Beta
Address: 78, Beta street
Order_reference : 26487

Manufacturer

Invoice_ID : 101711
Billing_address : 34, Gamma street
Gross_total : $5000
Company_VAT : U12345678
Issue_date : 2022 -05 -12

Manufacturer
National customs

International customs

Customs clearance National customs

Tax_payment : confirmed
Conformity_check : passed
Date: 2022 -05 -10
Sender: Beta
Receiver: Alpha

Manufacturer
International customs

Table 2: Requirements and corresponding actions in the approach

Requirement CAKE [24] MARTSIA See

R1 Access to parts of messages should be controllable in a fine-grained
way (attribute level), while integrity is ensured

✓ ✓ Sections 4.2 and 5

R2 Information artifacts should be written in a permanent, tamper-proof
and non-repudiable way

✓ ✓ Sections 4.1 and 5

R3 The system should be independently auditable with low overhead ✓ ✓ Sections 4.1 and 5

R4 The decryption key should only be known to the user who requested it ˆ ✓ Sections 4.1 and 5

R5 The decryption key should not be generated by a single trusted entity ˆ ✓ Sections 4.1 and 5

R6 The approach should integrate with control-flow management systems ˆ ✓ Sections 4.2 and 5

order and the customs clearance (messages 1 and 3), the four above entries (2.a to 2.d) are
joined in a single document for security reasons: separate messages could be intercepted and
altered, replaced or forged individually. Once they are all part of a single entity, every involved
actor can validate all the pieces of information. Ideally, in a distributed fashion every node in
the network could be summoned to attest to the integrity of that document. However, the need
for separation of indicated recipients demands that only a selected group of readers be able to
interpret the parts that are specifically meant for them (see the rightmost column of Table 1).
In other words, though visible for validation, the data artifact should not be interpretable by
everyone. The other actors should attest to data encrypted as in Table 3. This aspect gives
rise to one of the requirements we discuss next.

Requirements. In recent years, there has been a surge in research on blockchain-based
control-flow automation and decision support for processes (see [36] for an overview). Typi-
cally, information shared by actors in a collaborative process is commercial-in-confidence, i.e.,
shared only with the parties that need access to it, and who are in turn expected to not pass
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the information on. Our research complements this work by focusing on secure information
exchange among multiple parties in a collaborative though partially untrusted scenario.

Table 2 lists the requirements stemming from the motivating use case that drives our
approach and a research project in which two authors of this paper are involved.3 The table
highlights the limitations of our past work [24] that we overcome and indicates the sections
in which we discuss the action taken to meet them. Different parties should be granted
access to different sections of a confidential information source (R1, as in the case of the
export document in our motivating scenario). The information source should remain available,
immutable, and accountability should be granted for subsequent validations and verifications
(R2, as for the check of the invoice by customs and, more in general, for process mining and
auditing [17]), without major overheads (R3) for practical feasibility. In a distributed scenario
such as that of the process in Sect. 4, where multiple authorities and actors are involved, it is
necessary to secure the infrastructure by avoiding that any party can acquire (R4) or forge (R5)
decryption keys alone. Finally, our approach should complement existing process execution
engines to intercept and secure the data flow that characterized multi-party collaborations
(R6). Next, we discuss the background knowledge that our approach is based on.

3 Background

Distributed Ledger Technologies (DLTs), and specifically programmable blockchain plat-
forms, serve as the foundation for our work together with Multi-Authority Attribute-Based En-
cryption (MA-ABE). Here, we explain the basic principles underneath these building blocks.
Distributed Ledger Technologies. DLTs are protocols that allow for the storage, processing,
and validation of transactions among a network of peers without the need for a central authority
or intermediary. These transactions are timestamped and signed cryptographically, relying on
asymmetric or public key cryptography with a pair of a private and a public key. In DLTs, every
user has an account with a unique address, associated with such a key pair. The shared transac-
tion list forms a ledger that is accessible to all participants in the network. A blockchain is a
specific type of DLT in which transactions are strictly ordered, grouped into blocks, and linked
together to form a chain. DLTs, including blockchains, are resistant to tampering due to the use
of cryptographic techniques such as hashing (for the backward linkage of blocks to the previ-
ous one), and the distributed validation of transactions. These measures ensure the integrity and
security of the ledger. Blockchain platforms come endowed with consensus algorithms that
allow the distributed networks to reach eventual consistency on the content of the ledger [27].
Public blockchains like Ethereum [41] charge fees for the inclusion and processing of transac-
tions. Ethereum supports expressive smart contracts, which are user-defined programs. They
are deployed and invoked through transactions, i.e., their code is stored on chain and executed
by many nodes in the network. Outcomes of contract invocations are part of the blockchain
consensus, thus verified by the blockchain system and fully traceable. The execution of smart
contract code, like transactions, incurs costs measured as gas in the Ethereum platform. Gas
cost is based on the complexity of the computation and the amount of data exchanged and
stored. To lower the costs of invoking smart contracts, external Peer-to-peer (P2P) systems
are often utilized to store large amounts of data [42]. One of the enabling technologies is

3Cyber 4.0 project BRIE: https://brie.moveax.it/en. Accessed: 09 June 2023.

https://brie.moveax.it/en


6 Marangone, Di Ciccio, Friolo, Nemmi, Venturi, Weber

InterPlanetary File System (IPFS),4 a distributed system for storing and accessing files that
utilizes a Distributed Hash Table (DHT) to scatter the stored files across multiple nodes. Like
DLTs, there is no central authority or trusted organization that retains control of all data. IPFS
uses content-addressing to uniquely identify each file on the network. Data stored on IPFS
is linked to a resource locator through a hash, which–in a typical blockchain integration–is
then sent to a smart contract to be stored permanently on the blockchain [21]. In a multi-party
collaboration setting like the one presented in Sect. 2, the blockchain provides an auditable no-
tarization infrastructure that certifies transactions among the participants (e.g., purchase orders
or customs clearances). Smart contracts ensure that the workflow is carried out as agreed upon,
as described in [12,25,40]. Documents like purchase orders, transportation orders, and customs
clearances can be stored on IPFS and linked to transactions that report on their submission.
However, data is accessible to all peers on the blockchain. To take advantage of the security
and traceability of the blockchain while also controlling access to the stored information, it
is necessary to encrypt the data and manage read and write permissions for specific users.
Attribute-Based Encryption (ABE). ABE is a form of public key encryption in which the
ciphertext (i.e., an encrypted version of a plaintext message) and the corresponding decryption
key are connected through attributes [35,6]. In particular, Ciphertext-Policy Attribute-Based
Encryption (CP-ABE) [4,20] associates each potential user with a set of attributes. Policies
are expressed over these attributes using propositional literals that are evaluated based on
whether a user possesses a particular property. In the following, we shall use the teletype
font to format attributes and policies. For example, user 0xB0. . .1AA1 is associated with the
attributes Supplier, to denote their role, and 43175279, to specify the process instance
number they are involved in (the case id). For the sake of brevity, we omit from the attribute
name that the former is a role and the latter a process instance identifier (e.g., Supplier in
place of RoleIsSupplier or 43175279 instead of InvolvedInCase43175279) as we
assume it is understandable from the context. Policies are associated with ciphertexts and
expressed as propositional formulae on the attributes (the literals) to determine whether a user
is granted access (e.g., Carrier or Manufacturer).
As argued in the introduction, one goal of this work is to move away from a single source of
trust (or failure); thus, we consider multi-authority methods. To decrypt and access the infor-
mation in a ciphertext, a user requires a dedicated key. With Multi-Authority Attribute-Based
Encryption (MA-ABE), every authority creates a part of that key, henceforth decryption key
(dk). A dk is a string generated via MA-ABE on the basis of (i) the user attributes, and
(ii) a secret key of the authority. To generate the secret key (coupled with a public key),
the authority requires public parameters composed of a sequence of pairing elements that
are derived from a pairing group via Elliptic Curve Cryptography (ECC). Due to space
restrictions, we cannot delve deeper into the notions of pairing groups and pairing elements.
We refer to [6,26] for further details. Once the user has obtained a dk from every required
authority, it merges them obtaining the final decryption key (fdk) to decrypt the message.
In the Cypertext-Policy variant of MA-ABE, a ciphertext for a given message is generated
from the public parameters, the public keys of all the authorities, and a policy. In our context,
users are process participants, messages are the data artefacts exchanged during process
execution, ciphertexts are encrypted versions of these artefacts, policies determine which
artefacts can be accessed by which users, and keys are the tools granted to process parties

4 ipfs.tech. Accessed: 09 June 2023.

https://ipfs.tech/
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Fig. 2: The key components and their interactions in the MARTSIA approach

to try to access the artefacts. In the following sections, we describe how we combine the
use of blockchain and the Cypertext-Policy variant of MA-ABE to create an access control
architecture for data exchanges on the blockchain that meets the requirements listed in Table 2.

4 The MARTSIA approach

In this section, we describe our approach, named Multi-Authority Approach to Transaction
System for Interoperating Applications (MARTSIA). We begin by examining the collabora-
tion among its core software components, and then illustrate the data structures they handle.

4.1 Workflow

Figure 2 illustrates the main components of our architecture and their interactions. The
involved parties are: the Attribute Certifier specifying the attributes characterizing the
potential readers of the information artifacts; we assume the Attribute Certifiers to hold a
blockchain account; different Attribute Certifiers may attest to different pieces of information
about potential readers; the Data Owner encrypting the information artifacts (henceforth also
collectively referred to as plaintext) with a specific access policy (e.g., the manufacturer who
wants to restrict access to the purchase orders to the sole intended parties, i.e., the suppliers);
we assume the Data Owner to hold a blockchain account and a Rivest–Shamir–Adleman
(RSA) [33] secret/public-key pair; Readers interested in some of the information artifacts
(e.g., the manufacturer, the joystick supplier, and· the wheelchair ramp supplier); we assume
the Readers to hold a blockchain account, a RSA secret-key/public-key pair, and a global iden-
tifier (GID) that uniquely identifies them; the Authorities that calculate their part of the secret
key for the Reader; the Data Store, a P2P repository based on IPFS. IPFS saves all exchanged
pieces of information in a permanent, tamper-proof manner creating a unique content-based
hash as resource locator for each of them; the Smart Contracts used to safely store and make
available the resource locators to the ciphertext saved on the Data Store (Message Contract),
the information about potential readers (Attribute Certifier Contract), and the data needed
by the authorities to generate the public parameters (Authority Contract).

We divide our approach in three main phases, which we discuss in detail next: initializa-
tion (Fig. 3(a)), key management (Fig. 3(b)), and data exchange (Fig. 4). In the following,
the numbering scheme corresponds to the labels in Figs. 2 to 4.
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0: Initialization. Here we focus on the network of authorities, as depicted in Fig. 3(a). The
initialization phase consists of the following five steps. (0.1) First, each authority creates
a separate file with the metadata of all the authorities involved in the process.5 Authorities
are responsible for the setting of public parameters that are crucial to all the algorithms of
MA-ABE. Therefore, we have redesigned the public parameter generation program as a
Multi-party Computation (MPC) protocol [8,9] to guarantee full decentralization. More specif-
ically, we adapt a commit-then-open coin-tossing protocol [5] as follows to generate a random
pairing element, that is, the core piece of data described in [34] for MA-ABE implementation.
(0.2) Each authority posts on the blockchain the hash of a locally generated random pairing
element by invoking the Authority Contract. (0.3) After all the hashes are publicly stored,
each authority posts the opening, namely the previously hashed pairing element in-clear,
completing the commit-then-open coin-tossing protocol introduced before. (0.4) Then, every
authority (i) verifies that all the hashes of the pairing elements match the respective openings,
(ii) independently combines all posted openings via bitwise XOR, and (iii) uses the output
of this operation (the final shared pairing element) to calculate the set of public parameters
as illustrated in [34]. (0.5) Each authority generates its own public-key/secret-key pair by
using the authority key generation algorithm of MA-ABE. To enable full decentralization and
notarization, we resort to the Data Store to save the output of all actions (0.1 to 0.5) and the
Authority Contract to keep track of the corresponding resource locators.
1: Key Management. The key management phase is comprised of the following steps, as
illustrated in Fig. 3(b): (1.1) The Attribute Certifiers save the attributes and the identifying
blockchain account addresses of the Readers on the Data Store and (1.2) the corresponding
resource locator on the Attribute Certifier Contract so as to make them publicly verifiable
on chain. To this end, every Attribute Certifier operates as a push-inbound oracle [2], storing
on chain the attributes that determine the role of the Reader and, optionally, the list of process
instances in which they are involved. For example, an Attribute Certifier stores on chain that
0x82. . .1332 is the address of a user that holds the Manufacturer role and participates in

5 Notice that metadata are known to all the authorities and all the actors involved in the process.
Therefore, non-malicious authorities are expected to create an identical file. The (same) hash is thus at
the basis of the resource locator. As a consequence, anyone can verify whether the authorities behave
properly in this step by checking that the resource locators are equal, with no need to load the file from
the Data Store.
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the process identified by 43175279. Another Attribute Certifier registers that 0xB0. . .1AA1
and 0x9E. . .C885 are Readers both endowed with the Supplier and 43175279 attributes,
though the former is National and the latter International. Readers’ attributes are
stored on a public blockchain for verifiability. However, notice that Readers are referred to
by their public addresses, thus keeping pseudonimity. Also, the attribute names are strings
that we keep intuitively understandable for the sake of readability in this paper, yet only serve
as propositional symbols for the encoding of policies. Obfuscation techniques can thus be
seamlessly applied though their discussion goes beyond the scope of this paper. Whenever
a Reader (e.g., the international customs) wants to access the data of a message (e.g., the
sections of interest in the Document), they operate as follows: (1.3) They request a key to
all the authorities, passing the identifying GID as input (we enter the detail of this passage
later); (1.4) Each authority seeks the Reader data (the blockchain address and attributes),
and obtains them from the Attribute Certifier Contract; (1.5) Equipped with these pieces of
information alongside the public parameters, the secret key, and the user’s GID, each authority
produces a MA-ABE decryption key (dk) for the Reader, and (1.6) sends it back. Once all
dks are gathered from the authorities, (1.7) the Reader can merge them to assemble their own
fdk . Notice that none of the Authorities can create the fdk alone (unless specified as such),
thus meeting R5; no user other than the intended Reader can obtain the key (R4). The key
management phase can be interleaved with the Data Exchange phase (below).
A note on the security of key requests. Maliciously obtaining the fdk of another Reader is a
high security threat. We decompose this issue in two challenges. First, we want to avoid that
information exchanged between a Reader and an Authority is intercepted by other parties. To
this end, we convey every communication in step 1.3 through a separate client-server Secure
Sockets Layer (SSL) connection between the Reader and each of the authorities. To avoid any
false self-identification as a Reader through their GID, we include a handshake preliminary
phase in the protocol. It starts with every Authority (server) sending a random value (or
challenge) to the Reader (client). The latter responds with that value signed with their own RSA
private key, so as to let the invoked components verify their identity with the caller’s public key.
2: Data Exchange. Figure 4 presents the operations carried out for information storage
and access. As a preliminary operation, the Data Owner verifies that the hash links of the
files with metadata and public parameters posted by all the authorities are equal to one
another to ascertain their authenticity.5 Then, data is transferred from the Data Owner to the
Readers through the following steps. (2.1) The Data Owner retrieves the authorities’ public
keys and public parameters from the blockchain. (2.2) Then, they write a policy. Notice
that standard MA-ABE sets a maximum length for the input files. In a business process
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Table 3: Example of messages stored by MARTSIA upon encryption
Message Metadata Header Body (slices)

Supply
purchase

order
(ramp)

sender: 0x82 [...]1332
process_instance_id : 43175279
message_id : 22063028

EncryptedKey : eJytm1 [...] eaXV2u
Fields: {CV8 =[...]6w==, p84W [...] aw==,

avNL [...] lw==, AOo =[...] mQ ==}

CV8 =[...]6w==: Ruk /[...] QQ==
p84W [...] aw ==: 1UTk [...] mA==
avNL [...] lw ==: VT+D[...] JQ==
AOo =[...] mQ ==: ZUE /[...]6w==

SliceId: 62618638
EncryptedKey : eJytWU [...] Bmn4k=
Fields: {u7o =[...] iw==, TacL [...] IQ==,

EhrB [...] lw==, Tiba [...] Wg==,
xJ +6[...] SQ==, RPn7 [...] Zz==,
T3Wq [...] eK==, QXjN [...] LS==,
Jmk8 [...] fL ==}

u7o =[...] iw ==: py8l [...] mA==
TacL [...] IQ ==: MKNH [...] uQ==
EhrB [...] lw ==: 5bz0 [...] bg==
Tiba [...] Wg ==: JahD [...]5Q==
xJ +6[...] SQ ==: 3aIm [...] kg==
RPn7 [...] Zz ==: nRNh [...] GA==
T3Wq [...] eK ==: PxRk [...]0g==
QXjN [...] LS ==: Lfhk [...] Ug==
Jmk8 [...] fL ==: Gj43 [...] yg==

Export
document

sender: 0x9E [...] C885
process_instance_id : 43175279
message_id : 15469010

SliceId: 19756540
EncryptedKey : eJytm0 [...] wtYFo=
Fields: {ZOSH [...]9B==, BZ8l [...] KY==,

QeUy [...] WT==, rtdZ [...] hf==,
8kuG [...] Ts ==}

ZOSH [...]9B==: sctC [...] nQ==
BZ8l [...] KY ==: 5Gln [...] Pg==
QeUy [...] WT ==: k49 +[...] kA==
rtdZ [...] hf ==: lRLd [...] tm==
8kuG [...] Ts ==: 25E0 [...] uc==

SliceId: 12191034
EncryptedKey : eJytWU [...] sGlU4=
Fields: {t8gr [...] QQ==, yuwd [...] vg==,

1K1d [...] zQ ==}

t8gr [...] QQ ==: ZJ1v [...]5A==
yuwd [...] vg ==: 7XpN [...]4A==
1K1d [...] zQ ==: +QbM [...] Cw==

SliceId: 98546521
EncryptedKey : eJytk9 [...] oIJS6=
Fields: {rjY =[...] KQ==, ZdWC [...] xg==,

6aLB [...] iw==, VD2h [...]6w==,
8UmX [...] MQ ==}

rjY =[...] KQ ==: JPAv [...] LA==
ZdWC [...] xg ==: w05J [...] Hg==
6aLB [...] iw ==: 0wWu [...] vA==
VD2h [...]6w==: eZu7 [...] QQ==
8UmX [...] MQ ==: sXaB [...] kQ==

National
customs
clearance

sender: 0x5F [...] FFE1
process_instance_id : 43175279
message_id : 64083548

EncryptedKey : eJytWU [...] gGl2Y=
Fields: {fdoT [...] kA==, 2AkH [...] Rw==,

0bTn [...]6A==, RZVJ [...] rQ==,
4TXI [...] zw ==}

fdoT [...] kA ==: fUSZ [...] Bg==
2AkH [...] Rw ==: dGp2 [...] zA==
0bTn [...]6A==: TuR9 [...] bA==
RZVJ [...] rQ ==: Pq8U [...] dQ==
4TXI [...] zw ==: OIzx [...] Mw==

context, this limitation would undermine practical adoption. To cater for the encryption of
arbitrary-size plaintexts, we thus resort to a two-staged hybrid encryption strategy [11]. First,
the Data Owner encrypts via MA-ABE a randomly generated symmetric key (of limited size,
e.g., b’3:go+s. . .x2g=’) with the authorities’ public keys and the policy (obtaining, e.g.,
eJytm1. . .eaXV2u). Afterwards, it encrypts the actual information artifact (of any size) via
symmetric key encryption scheme [28] using that symmetric key. In our example scenario,
then, the manufacturer does not encrypt via MA-ABE the supply purchase order, but the
key through which that document is encrypted (and decryptable). (2.3) Thereupon, the Data
Owner (e.g., the manufacturer) saves the encrypted symmetric key and information artifact
(plus additional metadata we omit here for the sake of clarity and detail in Sect. 4.2) in one
file on the Data Store, (2.4) sends the file’s resource locator to the Message Contract, and
(2.5) transmits the unique message ID (e.g., 22063028) assigned to the file to the Reader
(e.g., the supplier). As the information artifact is on the Data Store and its resource locator
saved on chain, it is written in a permanent, tamper-proof and non-repudiable way, thus
meeting requirement R2. Equipped with their own fdk , the Reader can begin the message
decryption procedure. (2.6) At first, the Reader retrieves the resource locator of the message
from the Message Contract. (2.7) Then, once the Reader obtains the ciphertext from the Data
Store, they pass it as input alongside the public parameters (see step 0.4 above) and the fdk to
the MA-ABE decryption algorithm running locally. (2.8) Mirroring the operations explained
in step 2.1, MA-ABE decrypts the symmetric key from the retrieved ciphertext. Only with
the symmetric key, the Reader can obtain the original information artifact.

4.2 Data Structures

After the analysis of the software components and tasks employed in our approach, we focus
on its core data structures: messages and policies.
Messages. Table 1 illustrates the messages we described in our running example in Sect. 2
along with a generated symmetric key for each message. Table 3 shows the messages as saved
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Table 4: Message policy examples
Message Slice Policy

Supply purchase
order (ramp) 43175279 @2+ and ( Manufacturer@1 + or ( Supplier@1 + and International@1 +))

a Customs@A or (43175279 @2+ and (( Supplier@1 + and International@1 +) or
Manufacturer@1 + or ( Carrier@1+ and International@1 +)))

Export b Customs@A or (43175279 @2+ and ( Supplier@1 + and International@1 +))

document c 43175279 @2+ and (( Supplier@2 + and International@1 +) or Manufacturer@1 +)

d Customs@A or (43175279 @2+ and (( Supplier@1 + and International@1 +) or Manufacturer@1 +))
National customs

clearance Customs@A or (43175279 @2+ and Manufacturer@1 +)

on the Data Store by the Data Owner after the encryption process explained in Sect. 4.1 (phase
2). Each file stored on the Data Store consists of one or more sections to be accessed by dif-
ferent actors (henceforth, slices). Every slice is divided in three parts. The metadata contain
the message sender (e.g., 0x82. . .1332 in Table 3), the case id (e.g., 43175279), and the
message id that uniquely identifies the message (e.g., 22063028). The body is the encrypted
information saved as key/value entries (fields) for ease of indexation. For security, notice that
neither the keys nor the values are in clear. The header consists of the encrypted symmetric
key generated at step 2.1, and the list of field keys that the body contains. In case two or more
slices form the message (as in the case of the export document), each is marked with a unique
slice id (e.g., 62618638). We recall that a message is stored on the Data Store and retrievable
through a hash, content-based resource locator. The resource locator can thus be attached to
process execution data for monitoring and auditability purposes, in compliance with R6.
Policies. We use MA-ABE policies to specify read grants to message slices, thus enabling
fine-grained access control as per R1. For example, the export document written by the
international supplier of process instance 43175279 is partitioned in four slices as illustrated
in Table 1. Table 4 shows the encoding of the policies that restrict access to specific classes
of Readers, based on the attributes the Attribute Certifiers attested to in step 1.1.

Henceforth, we will use the following notation to encode a policy P . We shall use
Attr@X as a shorthand notation for a policy indicating that an authority Auth (if X is Auth)
or at least ně1 authorities (if X is n+) generate the key based on the verification of attribute
Attr. Compound policies can be formed by joining Attr@X propositions with or and
and logical operators. For instance, (Customs@A or Supplier@1+) declares that only
authority A can authorize customs, whereas any authority can generate the dk for suppliers,
and that only customs or suppliers can read a message. To sum up, we will henceforth use
the following grammar for policies P :

P ::“Attr@X | P and P 1 | P or P 1 where Attr is an attribute;

X ::“Auth | n+ where Auth is an authority and n a positive integer.

Notice that we enable the selection of a specific dk forger for backward compatibility
towards single-authority frameworks. The downsides are that (i) no key is generated if that au-
thority is down (if A crashed, e.g., a user cannot be recognized as a customs body), and (ii) a
corrupted authority could take over the generation of an fdk if only one attestation is necessary
(theirs). Therefore, special attention must be paid in the writing of policies. 43175279@2+ re-
quires that at least two authorities attest to the participation of a user in case 43175279. A user
that is not authorized by all the required authorities cannot have the final decryption key as per
the policy. Also, whenever multiple authorities are involved in the generation of the fdk by con-
tributing to a part of it (the dk), only the user can compose the fdk and decrypt the ciphertext.
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2

Ethereum encoded argument 1: 6777
Purchase order number: 26487 

Ethereum encoded argument 2: 404d4152545349413a ... 4450637a3646374a64
Purchase order: @MARTSIA :QmIwskx8q12DDKO2H9ESgsmjLJGAL53ironWKDPcz6F7Jd

3

 CATERPILLAR back-end 

Information artifacts

 CATERPILLAR front-end

Resource
locator

MARTSIA

Data
to be

encrypted

Data
in-clear

Transaction

Caterpillar
execution engine Resource

locator

Data
to be

encrypted
MARTSIA

plug-in

Encrypted data

…

AttributeDict({'hash': HexBytes('0xb1e07390c9d545e57927ecdd7d62c7ebe08afafc7167999e
61e9789C80208b28'), 'nonce': 7, 'blockHash': HexBytes('0x262dd736b9abeb5e7a3617a5ca
0dabfa99f2d046c48e1c5cd1a4aa9e5e984585'), 'blockNumber': 14, 'transactionIndex': 0,
'from': '0xa5a6F8AcD1879bB75C4D648B96e18F8899cDd1B0', 'to': '0x4E54403e477CE580B683
354fbFEBb5853f289Dc9', 'value': 0, 'gas': 4700000, 'gasPrice': 1, 'input': '0x5c7ea
53700000000000000000000000000000000000000000000000000000000000000006777000000000000
0000000000060000000000000000000000000000000000000404d4152545349413a516d564641647031
335a6e4a4a4774374735384848556b784b4c7a5a3466554757547144367972367647656638510000000
00000000000'})

{ "Company_name": "Alpha", "Address": "38, Alpha street",
  "E-mail": "cpny.alpha@mail.com", "Price": "$5000" }

…

1

4

2

4

3

Fig. 5: A run of our integration of MARTSIA with Caterpillar [22]

In our example, the international shipment order is the first slice of the export document.
It should be readable by the national and international customs, and by specific actors
involved in the process instance: the sender (i.e., the international supplier), the manufacturer,
and the international carrier. Additionally, we exert constraints on the authorities providing
the dk : Customs are given the dk by Authority A, and at least two Authorities must
declare that a Reader is involved in the given process instance. The other attributes can
be attested to by any Authority. This composite rule translates to the following expression:
Customs@3+ or (43175279@2+ and ((Supplier@1+ and International@1+) or
Manufacturer@1+ or (Carrier@1+ and International@1+))).

Thus far we have described the architecture of MARTSIA, along with its operations,
employed techniques and data structures. Next, we focus on its realization and testing.

5 Implementation and evaluation

MARTSIA is an approach aimed at securing the access to information at a fine-grained level in
a distributed fashion. We have hitherto shown its security guarantees by design, using a multi-
party process execution as a motivating scenario. In this section, we experimentally evaluate
whether MARTSIA can deliver its guarantees and properties in a process context, and at what
cost. The code of our prototype alongside the detailed results of our experiments can be found
at github.com/apwbs/MARTSIA-Ethereum. We implemented the three contracts described in
Sect. 4.1 as a single instance in Solidity, a programming language for the Ethereum Virtual Ma-
chine (EVM). We deployed the instance on the Sepolia (Ethereum), Mumbai (Polygon), and
Fuji (Avalanche) testnets.6 We created an IPFS local node4 to realize the Data Store, and used
Python to encode the off-chain modules including the client-server communication channels.

First, to demonstrate the adoption of MARTSIA as a secure data-flow management layer
for process execution (thus meeting requirement R6), we created an integration module

6Goerli: sepolia.etherscan.io; Mumbai: mumbai.polygonscan.com; Avalanche: testnet.snowtrace.io.
Accessed: 09 June 2023.

https://github.com/apwbs/MARTSIA-Ethereum
https://sepolia.etherscan.io/
https://mumbai.polygonscan.com/
https://testnet.snowtrace.io/
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connecting our tool with a state-of-the-art blockchain-based process execution engine tool, i.e.,
Caterpillar [22]. For our experiments, we used Caterpillar v.1.0.7 The code to replicate and
extend our test is publicly available in our repository.8 As shown in Fig. 5, we insert a plug-in
in the architecture of Caterpillar to use MARTSIA as an intermediate data layer manager,
replacing the built-in data store for information securing. We illustrate our experiment with
a simplified fragment of the running example (see Sect. 2) focusing on the purchase order
sent from the manufacturer to the international supplier. The exchanged data artifact consists
of a purchase order number, to be publicly stored on chain, and the confidential purchase
order entries listed in the top row of Table 1. The user passes both the entries as input through
the Caterpillar panel (see mark ➀ in Fig. 5), specifying the data they want to be secured by
MARTSIA with a special prefix (“@MARTSIA:”). Our integration module captures the input
and encrypts the indicated entry as explained in Sect. 4 so that only the supplier can read
and interpret those pieces of information as per R1 (➁). Once the encryption is concluded,
MARTSIA invokes the Caterpillar Smart Contract passing the first argument (the purchase
order number) as is, and replaces the second argument with a marked IPFS link in place of
the original data (➂). The resource locator for the stored information is thus saved on the
ledger by the process execution engine for future audits (➃), yet not publicly readable (R2).
Thereupon, the recipient of the confidential information (or the auditor, later on) can retrieve
and decode the information with their secret key (R4) provided by the authority network (R5).

Aside from empirically showing the suitability of MARTSIA as a secure data-flow
manager in an ensemble with a process execution engine, we remark that the cost overhead in
terms of transaction fees required by MARTSIA is negligible with respect to the main process
execution management. For example, the method running the activity Order parts of the
BPMN in Fig. 1 on Caterpillar incurs 114494 gas units for execution with our inputs. The on-
chain component of MARTSIA, detached from Caterpillar, requires 89772 gas units to store
the IPFS link. As we use the second string input field of the Caterpillar’s smart contract to save
that resource locator, the separate gas consumption for MARTSIA is unnecessary and can be
directly included in the overall process execution costs. Notice that the same activity execution
saving the purchase order as plaintext (thus renouncing to the fine-grained confidentiality
guarantees of MARTSIA) would have entailed a larger cost because the textual content is
a longer string than an IPFS link: 116798 gas units. Auditability on process execution and
secure message exchanges are thus guaranteed with low overhead, as stated in R3.

To gauge the gas expenditure and execution time of our system’s on-chain components,
we called the methods of the deployed Smart Contract daily on Sepolia, Fuji and Mumbai for
14 days (from 16 to 29 May 2023). All the experiment’s transactions and gas measurements
are available in our code repository.9 The data we used to run the tests are taken from our
running example (see Sect. 2). Table 5 illustrates the results. We divide the measurement
in four different phases: (i) the deployment of the Smart Contract; (ii) the initialization of
the Authorities (steps 0.1 to 0.5); (iii) the Reader certification (step 1.2); (iv) the storage of
a message by a Data Owner to save a message (step 2.4). For all the above phases, the table
shows the average gas consumed for execution (ranging from 67533 units for step 1.2 to
1692955 units for the Smart Contract deployment) and the cost converted in Gwei (i.e., 10´9

7github.com/orlenyslp/Caterpillar. Accessed: 10 June 2023.
8github.com/apwbs/MARTSIA-Ethereum/tree/main/caterpillar-interaction
9github.com/apwbs/MARTSIA-Ethereum/tree/main/tests. Accessed: 10 June 2023.

https://github.com/orlenyslp/Caterpillar
https://github.com/apwbs/MARTSIA-Ethereum/tree/main/caterpillar-interaction
https://github.com/apwbs/MARTSIA-Ethereum/tree/main/tests


14 Marangone, Di Ciccio, Friolo, Nemmi, Venturi, Weber

Table 5: Execution cost and timing of the steps that require an interaction with the blockchain

Execution cost
“

Gwei“ETHˆ10´9
‰

Contract deployment Steps 0.1 to 0.5 Step 1.2 Step 2.4

Platform (1692955 gas units) (476547 gas units) (67533 gas units) (89772 gas units) Avg. latency [ms]

Sepolia (ETH) 2539432.514 714820.504 101299.501 134658.001 9288.574

Fuji (AVAX) 340498.771 95873.485 13586.538 18060.662 4278.099

Mumbai (MATIC) 1283.163 354.691 50.311 66.012 4944.807

Off-chain execution time [ms]

0.000 2582.471 38.280 158.447

Ether). Along with the analysis of costs, we measured the time needed to perform the steps
of our approach. Each step involves sending a transaction to the blockchain. Therefore, we
separate the execution time between the off-chain data elaboration and the latency induced
by the blockchain infrastructure. The average time required to store a transaction in a block
ranges from approximately 4.3 sec (Fuji) to 9.3 sec (Sepolia). The off-chain passages require
a lower time, from about 0.038 sec for the Reader certification (Step 1.2) to the circa 2.6 sec
needed for the cooperative work carried out by the Authorities during the initilization phase
(steps 0.1 to 0.5). More in-depth comparative analyses and a stress test of the architecture pave
the path for future endeavors, as we discuss in Sect. 7 after a summary of the state of the art.

6 Related work

In recent years, numerous approaches have been proposed to automate collaborative processes
using blockchain technology [12] beyond the aforementioned Caterpillar [22]. Previous stud-
ies in the area have shown the effectiveness of blockchain-based solutions to add a layer of
trust among actors in multi-party collaborations [40] even in adversarial settings [23], improve
verifiability of workflows with model-driven approaches [22,37], allow for monitoring [13],
mining [17], and auditing [10]. Interestingly, a more recent release of Caterpillar [21] enables
the dynamic allocation of actors based on a language for policy bindings. MARTSIA has
the capability to adjust roles dynamically as well, as access keys are created based on actors’
attributes verified at runtime. These studies enhance the integration of blockchain technology
with process management, unlocking security and traceability benefits. However, they pri-
marily focus on the control-flow perspective and lack mechanisms for secure access control
to data stored on public platforms. In contrast, our work focuses specifically on this aspect
in the context of collaborative business processes and, as we demonstrated in Sect. 5, can
complement existing blockchain-based process execution engines.

Another area of research related to our investigation is the protection of privacy and
integrity of data stored on the blockchain. Several papers in the literature explore the use
of encryption for this purpose. Next, we provide an overview of techniques. Hawk [18] is
a decentralized system that utilizes user-defined private Smart Contracts to automatically
implement cryptographic methods. Our approach does not require the encoding of custom
smart contracts, as it is based on policies stored on chain to encrypt messages. Bin Li et al. [19]
introduce RZKPB, a privacy protection system for shared economy based on blockchain
technology. Similarly to MARTSIA, this approach does not involve third parties and resorts to
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external data stores. Differently from their approach, we link data on chain with the data stores
so as to permanently store the resource locators. Henry et al. [16] employ smart contracts
that handle payment tokens. Banks operate as trustworthy intermediaries to preserve privacy.
MARTSIA pursues confidentiality of exchanged information too, although it does not resort
to central authorities (the banks) to this end. Rahulamathavan et al. [32] propose a new
blockchain architecture for IoT applications that preserves privacy through the use of ABE.
We also utilize ABE in our approach, but MARTSIA integrates with existing technologies,
whilst their model aims to change the blockchain protocol. Benhamouda et al. [3] introduce
a solution that enables a public blockchain to serve as a storage place for confidential data.
As in our approach, they utilize shared secrets among components. However, their approach
discloses the secret when determined conditions are fulfilled, whereas MARTSIA does not
reveal secret data on the blockchain. In the healthcare domain, Wang et al. [39] create a secure
electronic health records system that combines Attribute-Based Encryption, Identity-Based
Encryption, and Identity-Based Signature with blockchain technology. Their architecture is
different from ours as the hospital has control over the patient’s data and sets the policies,
whereas solely the data owners manage data in MARTSIA. Tran et al. [38] and Pournaghi et
al. [31] propose approaches for decentralized storage and sharing based on private blockchains.
We operate in the context of public blockchains to leverage the higher degree of security given
by the general validation of transactions. Athanere et al. [1] present an approach where the
data owner encrypts the file, and then a hashed version of it is stored on a cloud server. The
data owner encrypts the data with the public key of the message reader, and the necessary
public parameters are generated by an administrator. MARTSIA differs from this solution
because it uses MA-ABE and symmetric key encryption to encrypt the data instead of a
public key. Pham et al. [30] propose an idea for a decentralized storage system named B-Box,
based on IPFS, MA-ABE and blockchains. Though we resort to those building blocks too, we
include mechanisms for secure initialization of the authority network, allow for fine-grained
access control on message parts, and impede by design any actor from accessing keys.

7 Conclusion and future remarks

In this work, we introduce MARTSIA, a technique that merges blockchain technology with
Multi-Authority Attribute-Based Encryption (MA-ABE) to regulate data access in the scenario
of multi-party business operations. Additionally, our method employs IPFS for preserving
information artifacts, access regulations, and metadata. We utilize smart contracts to keep the
user attributes, establish the access grants to the process participants, and save the connection to
IPFS files. MARTSIA allows for a detailed specification of access permissions, ensuring data
reliability, persistence, and irrefutability, thus enabling auditability with minimal added costs.

Our approach exhibits limitations we aim to overcome in future work. If a Data Owner
wants to revoke access to data for a particular Reader, e.g., they can change the policy and
encrypt the messages again. However, the old data on IPFS would still be accessible. There-
fore, we are considering the usage of InterPlanetary Name System (IPNS), as it allows for the
replacement of existing files. With it, a message can be replaced with a new encryption thereof
that impedes Readers whose grant was revoked to access it. More generally, the life-cycle of
data artifacts, policies and smart contracts constitutes a management aspect worth investigat-
ing. From a technological perspective, we are working on the implementation of MARTSIA
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on other public blockchain platforms such as Algorand10 [7] to analyze the benefits and chal-
lenges stemming from different DLTs, including costs. Also, we are developing an alternative
key request protocol for readers that adopts the blockchain as a communication layer so as to
avoid direct channels between readers and authorities. In light of the considerable impact that a
correct expression of policies has on the overall approach, we envision automated verification
and simulation of policies for future work to properly assist the users in their policy specifica-
tion task. Future endeavors also include the integration of Zero Knowledge Proofs [15] with
ABE to yield better confidentiality and privacy guarantees, and of decentralized identifiers [29]
and oracles [2] to verify data ownership. We plan to conduct a formal threat analysis to prove
the security of our approach, and run field tests for the empirical evaluation of its robustness.
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