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Abstract. Different from the current node-level anomaly detection task,
the goal of graph-level anomaly detection is to find abnormal graphs
that significantly differ from others in a graph set. Due to the scarcity
of research on the work of graph-level anomaly detection, the detailed
description of graph-level anomaly is insufficient. Furthermore, existing
works focus on capturing anomalous graph information to learn better
graph representations, but they ignore the importance of an effective
anomaly score function for evaluating abnormal graphs. Thus, in this
work, we first define anomalous graph information including node and
graph property anomalies in a graph set and adopt node-level and graph-
level information differences to identify them, respectively. Then, we in-
troduce a discriminative graph-level anomaly detection framework with
dual-students-teacher model, where the teacher model with a heuristic
loss are trained to make graph representations more divergent. Then, two
competing student models trained by normal and abnormal graphs re-
spectively fit graph representations of the teacher model in terms of node-
level and graph-level representation perspectives. Finally, we combine
representation errors between two student models to discriminatively dis-
tinguish anomalous graphs. Extensive experiment analysis demonstrates
that our method 3 is effective for the graph-level anomaly detection task
on graph datasets in the real world.

Keywords: graph anomaly detection · graph neural networks · dual-
students-teacher model

1 Introduction

Graph anomaly detection investigation has already become a hot topic in aca-
demic and industry communities in the past few years. Researchers aim to design
a more effective anomaly detection method to detect existing anomalous infor-
mation on graph datasets [19, 25]. Besides, they also actively explore practical
application scenarios based on graph anomaly detection task, such as abnor-
mal account detection on financial transaction platforms [26], fake information

3 The source code is at https://github.com/whb605/GLADST.git

http://arxiv.org/abs/2308.01947v1
 https://github.com/whb605/GLADST.git
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monitor on social websites [8, 22] and intrusion detection in cyber security [30].
However, most of the current research pays more attention to analyzing abnor-
mal nodes from a graph, i.e., node-level anomaly detection. For example, DOM-
INANT [3], ComGA [16] and DAGAD [12] models utilize deep graph neural
networks (GNNs) [24] to capture various node anomalies including local, global
and community structure anomalies in the single graph. Even though these meth-
ods have achieved great success, a new problem involving how to detect existing
anomalous graphs within a set of graphs is worth further exploration, and it also
has the huge practical value, such as distinguishing abnormal molecule graphs
for molecule property prediction.

Due to the obvious difference between node-level anomaly detection and
graph-level anomaly detection, the previous approaches are not appropriate for
graph-level anomaly work. Thus, we initially need to explore the key problem,
this being which form does an abnormal graph take compared with other normal
graphs. According to the intuitive analysis, an abnormal graph will represent a
significant difference in node and graph properties. Specifically, a certain node
may contain anomalous attribute information and have an abnormal connection
with neighbors. For example, when we monitor bank account transactions in a
certain region, abnormal accounts will show the account identity information
anomaly and many abnormal transaction connections with others. Furthermore,
the graph property anomaly more shows the difference of the whole graph struc-
ture information. For example, the molecule graph with two benzene rings is ab-
normal compared with other molecule graphs that only have a benzene ring on
a molecule graph set. Thus, two key anomaly definitions above are conducive to
find out anomalous graphs within a graph set. Another key problem is to design
an effective anomaly score function to judge which graph is abnormal. Besides,
the score function has the power to discriminatively distinguish normal and ab-
normal graphs without the influence of graph data types. It is worth mentioning
that there is a limited quantity of research about the graph-level anomaly de-
tection problem, such as GLocalKD [18], GLADC [17], and iGAD [27] methods.
But these methods either ignore two types of graph anomaly form mentioned
or they do not consider a discriminative anomaly score function for anomalous
graph detection.

Based on the aforementioned discussion, in this article, we design a dis-
criminative Graph Level Anomaly Detection framework by building a compet-
itive dual-Students-Teacher model named GLADST. The proposed GLADST
framework consists of one teacher model, two student models and an anomaly
score function, where the backbone of these models are GNNs. Specifically, we
first train the teacher model with a heuristic loss to make learned graph rep-
resentations more divergent, which can help better capture complex graph in-
formation pattern. Then we train student model A with normal graphs to fit
the graph representation distribution of the teacher model from node-level and
graph-level representation perspectives. Similarly, student model B is trained by
abnormal graphs according to the way above. The key idea of the design is that
two competing student models can effectively learn normal and abnormal graph
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representation patterns, respectively and node-level and graph-level representa-
tion errors achieve node and graph properties anomaly detection, respectively.
Thus, given a test graph, if the graph is normal, graph representations of stu-
dent model A will better match graph representations of the teacher model, and
student model B will keep away. In other words, node-level and graph-level rep-
resentation errors of student model A and the teacher model will be smaller,
but for student model B, these will be larger. Besides, to discriminatively dis-
tinguish abnormal graphs and normal graphs, we design a competitive anomaly
score function based on the representation error value of two student models,
which makes the anomaly score of the real abnormal graph larger than the nor-
mal graph. Thus, our work has the following three key contributions:

– We explore the graph-level anomaly detection problem and define existing
anomalous graph information including node and graph property anomalies.
Furthermore, we jointly utilize node-level representation and graph-level rep-
resentation errors to detect these anomalies.

– We introduce a discriminative graph-level anomaly detection framework re-
lying on dual-students-teacher model. Specifically, the special training way
is beneficial to better learning normal and abnormal graph representation
patterns. And the anomaly score function relies on the representation error
value of two student models, it can optimize the effectiveness of abnormal
graph detection.

– We conduct performance comparison experiments with baselines and model
analysis experiments to illustrate the efficiency of GLADST.

2 Related Work

Benefiting from advanced deep learning techniques, graph anomaly detection
research based on GNNs has attracted considerable interest recently. In light
of the difference between anomalous objects, graph anomaly detection can be
categorized into the two types below:

Node-level Anomaly Detection (NLAD) is to discover abnormal nodes
which are different from other nodes in structure and attribute information. And
NLAD is used to identify abnormal nodes by inputting a graph. DOMINANT
[3] first employed GNNs for the NLAD task. It utilizes GNNs to learn graph
representations and then constructs the reconstruction errors of graph structure
and node attribute to capture abnormal nodes. Afterwards, many methods based
on GNNs [4,10,12,16] focus on analyzing different types of node anomalies, such
as local, global, and community structure anomalies in graphs. In addition, some
NLAD methods based on graph contrastive learning are proposed [2, 7, 15, 29]
and they built different contrast pairs of node and subgraph to better exploit
rich graph information for anomalous node detection.

Graph-level Anomaly Detection (GLAD) detects abnormal graphs that
have the obvious difference with other graphs in a graph set. Besides, GLAD
is clearly different from NLAD and the aforementioned methods are unsuitable
for the GLAD task. Thus, several research works have explored this issue. For
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example, GLocalKD [18] utilized the predictor network to learn normal graph
representations of the random network by global and local graph representation
distillation and abnormal graphs will show obvious graph representation errors in
the framework. But the method easily fails these graph data that abnormal graph
representation pattern is not very obvious within the graph set. GLADC [17]
used disturbed features to construct contrastive instances to improve the perfor-
mance of GLAD. iGAD [27] designed a new graph neural network to investigate
anomalous attributes and substructures to learn graph representations. Other
two methods [11, 14] focus more on the out-of-distribution problem of graph
data. Although these methods achieve great performance in GLAD task, they
lack an effective anomaly score function to keep competitive performance on dif-
ferent types of abnormal graph data. Thus, we propose a discriminative GLAD
framework, where two competing student models learn normal and abnormal
graph representation patterns respectively by a trained teacher model. Then
the representation error value between two student models can be significantly
distinguished abnormal and normal graphs.

In addition to the advancements in graph neural networks for anomaly detec-
tion, there are several notable developments in graph processing techniques that
contribute to the field. For example, Hooi, B. et al. proposed a method [5] to an-
alyze the real-world graphs on fraud attacks. DenseAlert and DenseStream [21]
can focus on detecting dense subtensors to discover the anomalies. Spade [6] is
another method that proposed three fundamental peeling sequence reordering
techniques. It can effectively detect fraudulent communities.

3 Definition and Problem Statement

Definition 1 (Graph) G = (VG,XG, EG,AG) represents a graph, where VG =
{v1, v2, ..., vn} denotes the node set and xi ∈ XG is the attribute feature of node
vi ∈ VG. XG is the attribute feature matrix. We call the graph G plain graph if
it doesn’t have the attribute information, otherwise, it is called attributed graph.
eij ∈ EG is the edge between vi and vj . AG is the adjacency matrix, AG(i, j) = 1
denotes that nodes vi and vj have an edge between them; and AG(i, j) = 0
otherwise.

Definition 2 (Graph-level Anomaly) Given a graph dataset G = {G1, G2, ..., Gm}
with each graph G ∈ G denoted by G = (VG,XG, EG,AG). Node property

anomaly is where the node of given graph G has anomalous attributes and
abnormal connections with neighbors compared with normal graphs. Graph

property anomaly is when the structure construction of graphG is inconsistent
with others in G from the global view.

We aim to learn an anomaly evaluation function f : G → R with parameter
Θ on the graph set G, and the return value of function f(Ĝi;Θ) > f(Ĝj ;Θ)

when the input graph Ĝi is more like an anomaly graph than Ĝj .
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4 Framework of GLADST

To capture normal and abnormal graph representation patterns respectively and
learn an effective anomaly score function, we propose a discriminative graph-level
anomaly detection framework. As shown in Figure 1, the framework is composed
of a dual-students-teacher model and a discriminative anomaly score function,
and the detailed operation is introduced as follows:

4.1 Dual-students-teacher Model

As GLocalKD framework [18] used a predictor network to capture normal graph
representation pattern of the random network by the knowledge distillation
method, but this way easily gets suboptimal performance when abnormal graph
pattern is difficult to be distinguished. We consider to design a dual-students-
teacher model to overcome the above problem.

Trained Teacher Model. The teacher model is a graph convolutional network
(GCN) [9] that aggregates node’s neighbors feature information to update itself
feature, to learn graph representations. The teacher model takes matrix AG and
XG as input and then uses GCN to map each node vi ∈ VG into the representation
space. We define hl

i as the hidden representation of node vi at the lth layer :

hl
i = ReLU

(

D̃
−1/2
G ÃGD̃

−1/2
G hl−1

i Θl−1

)

, (1)

where the (l − 1)
th

layer’s weight parameters are Θl−1 and the node represen-
tation is hl−1

i . ÃG = AG + IG and IG denotes the identity matrix. |G| is the

Fig. 1. The framework of the proposed GLADST. We first train the teacher model
with a heuristic loss to learn node-level and graph-level representations on a given
graph dataset. Then, we train the student model A to obtain normal node-level and
graph-level representation patterns respectively by the teacher model under node-level
and graph-level representation error loss optimization. Similarly, the student model
B is trained to obtain abnormal node-level and graph-level representation patterns.
And the backbone of these models are GNNs. Finally, the value of representation error
between student A and student B is as the anomaly score to identify anomalous graphs.



6 Fu Lin et al.

number of nodes and D̃G is the corresponding diagonal degree matrix:

D̃G (i, i) =

|G|
∑

j=1

ÃG (i, j) , (2)

where the feature vector in XG is used as the initialized input of node represen-
tations, i.e, the 0th layer’s h0

i = XG(i, :). The plain graph G does not have the
parameter XG, following [18,28], so we construct a simple XG by using the node
degree information.

The hi of the last layer is the model’s output of node-level representations.
We use the max-pooling operation for all node representations on d dimension
space, and learn graph-level representations hG :

hG = [
n

max
i=1

hi,1,
n

max
i=1

hi,2, ...,
n

max
i=1

hi,d]. (3)

We utilize a dataset comprising graphs G to train the teacher model and
initialize the model weights Θ randomly. Specifically, we develop a heuristic loss
to form the teacher model and the training purpose is to make learned graph
representations more divergent, which can help student models better capture
normal and abnormal graph patterns. The training losses are as:

Lteacher =
1

(Lgraph + Lnode)
, (4)

Lgraph =
1

|G|

∑

G∈G

Std (hG) , (5)

Lnode =
1

|G|

∑

G∈G

(

1

|G|

∑

vi∈VG

Std (hi)

)

, (6)

where Std (.) is the standard deviation function where a high standard deviation
suggests that the values are spread out. When the loss Lteacher is minimized,
Lgraph and Lnode become larger, i.e, graph-level representations hG and node-
level representations hi are spread out over a wider range.

Double Student Models. To capture normal and abnormal graph represen-
tation patterns respectively based on the trained teacher model, we design two
competing student models that are indispensable in the training process and
their backbones are GCN model [9] with exactly the same structure as the teacher
model. Then, we will describe the work flow of two student models.

1. We initially input the normal graph dataset Ĝ ∈ G into the trained teacher
model above to acquire node-level representations hi and graph-level repre-
sentations hG. Then, we also train the student model A based on graph set
Ĝ to learn node-level representations ĥi and graph-level representations ĥG.
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2. We construct node-level representation error loss L̂node and graph-level rep-
resentation error loss L̂graph with the trained teacher model, which aims to
catch normal node-level and graph-level representation patterns. The two
losses as:

L̂graph =
1

|G|

∑

G∈G

fd

(

hG, ĥG

)

, (7)

L̂node =
1

|G|

∑

G∈G

(

1

|G|

∑

vi∈VG

fd

(

hi, ĥi

)

)

, (8)

where fd(·, ·) is the function to calculate the difference between two graph
representations. Here, we can choose mean square error (MSE) function.

3. We can learn a final normal graph representation pattern by the following
loss as:

L̂ = L̂graph + L̂node. (9)

4. Finally, we use abnormal graph dataset Ǧ ∈ G to train the student model
B, and the training process of student B is the same as that of model A as
described above. And we also can learn a final abnormal graph representation
pattern Ľ.

4.2 Discriminative Anomaly Score Function

In our framework, we consider node-level representation error and graph-level
representation error to detect two categories of graph anomaly respectively: node
property anomaly and graph property anomaly. Specifically, we propose a dual-
students-teacher model above to capture normal and abnormal graph represen-
tation patterns. Thus, when we input a test graph sample G, the discriminative
anomaly score function is designed as follows:

ScoreG =

(

∥

∥

∥
hG − ĥG

∥

∥

∥

2

+
1

|G|

∑

vi∈VG

∥

∥

∥
hi − ĥi

∥

∥

∥

2

)

−

(

∥

∥hG − ȟG

∥

∥

2

+
1

|G|

∑

vi∈VG

∥

∥hi − ȟi

∥

∥

2

)

.

(10)

If the value of ScoreG is larger, the probability that graph G is an abnormal
graph is greater.

4.3 Theoretical Analysis

We use model φ to represent the teacher model, model φ̂ to represent student
model A and model φ̌ to represent student model B. Given a test graph sample
G ∈ G, φ∗

G denotes the representations outputs of the teacher model, φ̂∗
G and
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φ̌∗
G denote the representation outputs of these two student models, respectively.

The score of anomaly is simplified as follows:

ScoreG = ŜG − ŠG =
∥

∥

∥
φ∗
G − φ̂∗

G

∥

∥

∥

2

−
∥

∥φ∗
G − φ̌∗

G

∥

∥

2

. (11)

At the training stage, we first use G to train the teacher model φ with a
heuristic loss. Then we use normal graphs Ĝ to train student model φ̂ and use
abnormal graphs Ǧ to train student model φ̌. We want node-level representations
and graph-level representations of two student models on each training sample
to be as close as possible to the corresponding representations of the teacher
model, respectively. Thus, other training graphs with similar patterns will have
small prediction errors between them in the student model A. The situation is
similar for the student model B. Specifically, given a normal graph sample G, its
patterns are similar to many other training graphs of normal graph set Ĝ, and the
loss error ŜG is small, by contrast, ŠG is large because its patterns are dissimilar
to many other training graphs of abnormal graph set Ǧ. Thus, if G is normal,
ŜG is small and ŠG is large, after normalization, ScoreG = ŜG − ŠG < 0 under
ideal conditions. Otherwise, if G is abnormal, ŜG is large and ŠG is small, after
normalization, the anomaly score ScoreG = ŜG− ŠG > 0 under ideal conditions.
Obviously, the anomaly score above can be significantly distinguished normal
and abnormal graphs compared with current baselines whose anomaly scores
only rely on simple graph representation errors.

5 Experiments

5.1 Datasets

We perform experiments to showcase the efficiency and adaptability of the model
we proposed on diverse datasets. Therefore, we choose twelve public and available
real-world datasets and their statistics are given in Table 1. HSE, MMP, p53,

Table 1. The information of experimental datasets.

Datasets Graphs Avg-nodes Avg-edges

HSE 8,417 16.89 17.23
MMP 7,558 17.62 17.98
P53 8,903 17.92 18.34

PPAR 8,451 17.38 17.72

AIDS 2,000 15.69 16.20
BZR 405 35.75 38.36

COX2 467 41.22 43.45
DHFR 756 42.43 44.54
NCI1 4,110 29.87 32.30

ENZYMES 600 32.63 62.14
PROTEINS 1,113 39.06 72.82

COLLAB 5,000 74.49 2,457.78
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Table 2. Anomaly detection performance measured mean value of AUC (%) and stan-
dard deviation (%) when graph data of label 0 is graph anomaly.

Datasets FGSD-IF FGSD-LOF FGSD-OCSVM GLocalKD GOOD-D GLADST

HSE 39.38±1.35 43.44±2.49 42.24±4.43 59.25±1.09 69.39±1.05 54.76±2.12

MMP 67.78±0.90 57.00±1.98 52.14±2.97 32.43±0.81 69.76±8.10 68.50±0.72

P53 66.94±3.67 56.55±3.55 48.63±2.76 33.35±3.34 62.51±1.85 68.86±3.51

PPAR 34.49±4.03 46.41±4.81 50.45±3.86 65.46±4.05 66.65±1.47 61.75±3.12

AIDS 99.38±0.89 87.73±4.89 86.20±4.22 96.61±0.53 92.58±1.36 97.65±0.98

BZR 44.51±6.06 49.56±8.73 41.15±6.44 67.12±8.71 74.84±5.40 81.60±2.80

COX2 56.49±3.45 56.71±4.85 54.23±5.81 52.13±7.24 61.17±7.49 63.35±7.44

DHFR 51.62±5.25 49.20±5.94 55.89±4.45 63.11±3.38 61.17±4.82 76.67±2.63

NCI1 33.19±1.59 53.93±2.18 50.18±2.58 68.32±1.47 60.32±2.39 68.44±0.81

ENZYMES 48.51±5.96 38.98±6.57 42.80±8.79 55.27±1.40 63.10±4.29 71.77±5.84

PROTEINS 75.40±2.79 59.79±3.64 33.63±1.64 68.55±5.31 72.18±3.96 79.60±3.93

COLLAB 45.42±1.49 61.47±1.27 37.55±1.26 51.95±1.36 70.55±2.15 52.76±1.52

PPAR are real graph anomalies. They are chemical compounds with complex and
different structures in toxicology studies and the unique structure may make the
compound activity different in certain conditions. Furthermore, these datasets
have been categorized into test and training sets in original setting and here
we mix them up and redivide them in our experiment. AIDS, BZR, COX2,
DHFR and NCI1 are molecule datasets, where every node symbolizes an atom
in the molecule, and every edge symbolizes a chemical bond. ENZYMES and
PROTEINS are protein datasets. The difference is that nodes here mean amino
acids, and edges indicate that the connected nodes are relatively close. COLLAB
is a social network dataset. The nodes are individuals, and the connections are
edges. Thus, the coverage of experimental datasets is wide enough to examine
the capability of our model. Besides, the degree information of the node is chosen
as the node attribute feature for these plain graph data, according to [18, 28].
It is worth noting that all these datasets including real graph anomaly and
classification graph data are bifurcated into two categories and the label setting
is 0 and 1. Thus, we select label 0 and 1 as graph anomaly label respectively to
evaluate the performance of GLADST.

5.2 Baselines

In the field of graph-level anomaly detection, few effective methods are put into
use. Therefore, we perform the experiment with representatives from both the
recent methods and the traditional methods. Firstly, we choose GLocalKD [18]
as one of the baselines, which is a new deep learning method to detect graph-level
anomaly. GLocalKD is capable of devising graph representations and is able to
detect both local-anomaly and global-anomaly graphs better, owing to the usage
of joint random distillation. In addition, some traditional methods are chosen
for comparison. We select FGSD [23] as the model for graph representation
learning. Then, it is used to drive the certain anomaly detection algorithm for
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Table 3. Anomaly detection performance measured mean value of AUC (%) and stan-
dard deviation (%) when graph data of label 1 is graph anomaly.

Datasets FGSD-IF FGSD-LOF FGSD-OCSVM GLocalKD GOOD-D GLADST

HSE 60.62±1.35 56.56±2.49 57.76±4.43 40.92±0.98 54.83±3.32 55.47±3.23

MMP 32.22±0.90 43.00±1.94 47.86±2.97 68.11±0.80 52.38±4.72 68.55±1.80

P53 33.06±3.67 43.45±3.55 51.37±2.76 66.98±3.32 59.13±4.82 69.61±3.61

PPAR 65.51±4.03 53.59±4.81 49.55±3.86 34.69±4.06 57.03±2.87 61.32±2.88

AIDS 0.62±0.89 12.27±4.89 13.80±4.22 95.10±1.87 14.28±7.77 97.67±0.81

BZR 55.49±6.06 50.44±8.73 58.85±6.44 62.57±7.32 29.92±9.58 81.02±3.00

COX2 43.51±3.45 43.29±4.85 45.77±5.81 62.21±5.35 42.13±1.45 63.05±9.59

DHFR 48.38±5.25 50.80±5.94 44.11±4.45 55.05±3.58 61.61±4.84 77.36±3.49

NCI1 66.81±1.59 46.07±2.18 49.81±2.58 31.77±1.53 34.26±2.36 68.12±1.60

ENZYMES 47.98±3.20 45.21±5.50 56.05±7.08 47.91±6.17 54.22±4.96 69.43±9.14

PROTEINS 24.60±2.79 40.21±3.64 66.36±1.64 56.17±3.46 72.35±3.34 78.91±3.28

COLLAB 65.28±1.50 45.17±1.68 75.51±1.48 67.42±2.06 50.46±2.84 77.65±6.33

GLAD, including isolation forest (IF) [13], local outlier factor (LOF) [1] and
one-class support vector machine (OCSVM) [20], hence the FGSD-IF, FGSD-
LOF, and FGSD-OCSVM are included in our baselines. Furthermore, we choose
a unique and recently published model, GOOD-D [14], which is an unsupervised
graph out-of-distribution detection method based on contrastive learning.

5.3 Parameter Settings

Three models are used in the GLADST experiments, one teacher model and two
student models. The identical graph encoder is applied, which is made up of dou-
ble GCN layers, whose dimensions are d-512-256, where d denotes the attribute
features’ dimension size in the datasets for training. For GLocalKD, we choose
the recommended default parameters. We use different algorithms (IF, LOF and
OCSVM) to drive FGSD while choosing the same default parameters. The paper
which proposes GOOD-D provides unique parameters for each dataset, and we
use them in the experiment.

5.4 Anomaly Detection Performance

To prove that our model performs well in many cases, we evaluate the perfor-
mance of our model through comparing it with the baselines on all the afore-
mentioned datasets. We employ 5-fold cross-validation to train these approaches
and record the average AUC results along with their standard deviation. The
evaluation metric then becomes the criteria by which we judge the models’ ef-
fectiveness according to the previous graph anomaly detection works [16, 18].
Furthermore, to determine the influence of the selection of abnormal labels, we
use different signs of graph anomaly to examine the models. In a word, we set
graph data of label 0 as abnormal graphs, and graph data of label 1 is normal
graphs, otherwise.
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The AUC scores of GLADST and baselines are shown in Table 2 and Table
3, respectively. We use label 1 or 0 as a sign of graph anomaly to observe the
degree of its influence on all models. Based on experimental results presented in
Table 2, it is obvious that the AUC results of GLADST are much better than
those of the baselines most of the time, except for several datasets. Our model
only obtains lower scores on HSE, MMP, PPAR, AIDS and COLLAB, and the
gap between our model and the highest-scoring model is small. From the Table
3, GLADST outperforms all baselines apart from HSE and PPAR. Besides, the
improvement of anomaly detection performance is obvious on p53, BZR, DHFR,
ENZYMES and COLLAB.

In addition, it is obvious that our model is less susceptible to interference
from the selection of graph anomaly label. This is due to the symmetry of our
model, which means that we have one student model trained with normal graphs
and another trained with abnormal graphs. In contrast, the influence is much
greater for the baselines, especially FGSD.

5.5 Ablation Study

We also perform an ablation experiment on GLADST, focusing on the impor-
tance of the teacher model, node-level representation error loss (Lnode), and
graph-level representation error loss (Lgraph). Therefore, we remove each part
separately to observe their effect. Firstly, we train the student models with an
untrained teacher model; then, we remove the node-level loss and graph-level
loss of GLADST respectively. During the experiment, we record all the average
scores and standard deviations of these models. To arrive at a high-confidence
conclusion, we choose six datasets (BZE, COX2, DHFR, PROTEINS, MMP,
and p53) for examination, and the sign of graph anomaly is label 0. To show our
results more clearly, we present a series of graphs in Figure 2 showing the rating
scores and standard deviations for reference.

From Figure 2, the GLADST model shows a significant improvement when
compared to the model with an untrained teacher on most of the datasets.Furthermore,
when we remove the graph-level loss in the model, the scores on most datasets
decrease dramatically. But the model without node-level loss seems to be only a
little affected. Overall, our model makes progress in terms of performance. The

Fig. 2. The AUC results of model variants. The lines represent the AUC values of each
model, and the shadows show the standard division.
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results demonstrate that the design of the node-level and graph-level losses are
effective to achieve node property and graph property anomaly detection. The
results also show that significant improvement is made due to the trained teacher
which contributes to making a more obvious distinction between the feature from
the teacher and the feature from the student model without training.

5.6 Efficiency Analysis

In this section, we mainly explore the impact of varying the number of abnormal
samples in both the test and training sets. To begin with, we choose label 0 as
the sign of graph anomaly and the same datasets in our ablation study. We next
divide each dataset into a test set and a training set using the ratio of four to
one. Then, we separate the anomalies from both sets. After this, we add 10%
of the anomalies into the training set each time to train the model and do the
same thing with the test set. Our results are shown in Figure 3.

Figure 3 illustrates that with an increase in anomalies in the training set, the
AUC results fluctuate and improve to a certain extent when the anomalies in the
testing set stay the same. With an increase in abnormal samples in the test set,
the results of AUC decrease sharply when the training set is invariant. The overall
AUC results change to be within a stable and acceptable range. Furthermore, it
is obvious that even when the quantity of anomalies in the training set or test
set is not large, GLADST remains valid.

(a) BZR (b) COX2 (c) DHFR

(d) PROTEINS (e) MMP (f) p53

Fig. 3. The AUC results of GLADST under a different number of anomalies in the test
set and training set. α represents the proportion of the anomalies to the original total
anomalies of the test set. Similarly, β represents this in the training set.
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5.7 Visualization Analysis

For an anomalous graph, we consider node property and graph property anoma-
lies in the graph and apply node-level representation and graph-level representa-
tion error losses to achieve anomaly detection in the GLAD task. To intuitively
represent the effect of the proposed GLADST for anomalous graph detection, we
first train our method based on the dual-students-teacher model on the training
set for the DHFR dataset and then give the test graphs to evaluate its efficiency.
We visualize the experiment results in Figure 4. Thus, we can see that when we
input the normal graphs S = 0 into student A and student B, respectively, the
feature representation of student A is closer to the feature representation of the
teacher model than student B. That is to say, the joint error loss ŜG of student A
is smaller and the ŠG of student B is larger, so the difference between them as an
anomaly score will be less than 0, which is judged as a normal graph. Similarly,
for the abnormal graphs S = 1, the anomaly score will be greater than 0, which
is judged as an abnormal graph. The practical analysis above demonstrates the
effectiveness of utilizing node-level and graph-level representation error losses to

S

S

Student A Student B 

Student B Student A 

Fig. 4. A visualization of GLADST performance on the DHFR dataset, where red
denotes the graph feature representations of the trained teacher model, and green and
blue denote the graph feature representations for student A with normal graphs training
and student B with abnormal graphs training, respectively. S = 0 and S = 1 denote
the inputs of models with normal graphs and abnormal graphs, respectively.
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perform anomalous graph detection and designing a dual-students-teacher model
to train the GLAD framework.

6 Conclusion

We explore the key problem that node property and graph property anomalies
are very important to anomalous graph detection. To design a powerful evalu-
ation mechanism to distinguish anomalous graphs, we introduce a discrimina-
tive graph-level anomaly detection framework via dual-students-teacher model.
Through the optimization of node-level and graph-level representation error
losses between two student models and a trained teacher model, respectively, the
value of representation error between two student models as the score function
can be effectively detected anomalous graphs. The outstanding performance of
GLADST compared with five baselines on twelve real-life datasets demonstrates
the effectiveness of our method. Furthermore, the ablation study, the efficiency
analysis, and the visualization experiments also verify that our model design
considerably improves the graph-level anomaly detection performance.
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