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Abstract. Many segmentation networks have been proposed for 3D vol-
umetric segmentation of tumors and organs at risk. Hospitals and clinical
institutions seek to accelerate and minimize specialists’ efforts in image
segmentation, but in case of errors generated by these networks, clini-
cians would have to edit the generated segmentation maps manually.
Problem Statement: Given a 3D volume and its putative segmen-
tation map, we propose an approach to identify and measure erroneous
regions in the segmentation map. Our method can estimate error at any
point or node in a 3D mesh generated from a possibly erroneous volu-
metric segmentation map, serving as a Quality Assurance tool.
Method: We propose a graph neural network-based transformer based
on the Nodeformer architecture to measure and classify the segmentation
errors at any point. We have evaluated our network on a high-resolution
uCT dataset of the human inner-ear bony labyrinth structure by sim-
ulating erroneous 3D segmentation maps. Our network incorporates a
convolutional encoder to compute node-centric features from the input
uCT data, the Nodeformer to learn the latent graph embeddings, and
a Multi-Layer Perceptron (MLP) to compute and classify the node-wise
errors.

Results: Our network achieves a mean absolute error of ~ 0.042 over
other Graph Neural Networks (GNN) and an accuracy of 79.53% over
other GNNs in estimating and classifying the node-wise errors, respec-
tively. We also put forth vertex-normal prediction as a custom pretext
task for pre-training the CNN encoder to improve the network’s overall
performance. Qualitative analysis shows the efficiency of our network in
correctly classifying errors and reducing misclassifications.
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1 Introduction

Medical image segmentation is crucial to isolate and analyze specific structures
or regions of interest in a medical image to aid in the diagnosis, treatment
planning, and monitoring of diseases or conditions. Deep learning models have
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evolved in accuracy, versatility, and deployment-readiness for automatic segmen-
tation of various organs across diverse medical imaging modalities [13], [I4], [4].
Still, automated medical image segmentation needs output review, as models are
known to be overconfident, although dealing with natural biological variations
and diversity in pathological presentation. There is a need for an automated
method of predicting and identifying segmentation errors to aid in improving
the segmentation maps in erroneous regions.

Related Works: Many recent works have studied the problem of detecting
segmentation errors. Kronman et al. [I0] proposed a geometrical segmentation er-
ror detection and correction method in which they detect segmentation errors by
casting rays from the interior of the initial segmentation map to its outer surface.
Altman et al. [2] created an automatic contour quality assurance method that
utilizes a knowledge base of historical data. Chen et al. [3] proposed supervised
geometric attribute distribution models to identify contour errors accurately.
The Reverse Classification Accuracy method [12] identifies failed segmentations
to predict the CMRI segmentation metrics, achieving a strong correlation with
the predicted metrics and visual quality control scores. Alba et al. [I] utilized a
random forest classifier with statistical, pattern, and fractal descriptors to detect
segmentation contour failures directly without the need for intermediate regres-
sion of segmentation accuracy metrics. Roy et al. [I5] presented an approach
that directly incorporates a quality measure or prediction confidence within the
segmentation framework. This measure is derived from the same model, elimi-
nating the need for a separate model to evaluate quality. By leveraging model
uncertainty, their approach avoids the requirement of training an independent
classifier for evaluation, which could introduce additional prediction errors.

Graph Neural Networks (GNN) are deep learning algorithms that can
extract features from complex graph structures through message-passing. They
are particularly suited for processing three-dimensional data and extracting ge-
ometric features to capture and analyze the data structure [I8]. Henderson et al.
[9] proposed a quality assurance tool for identifying segmentation errors in 3D
organs-at-risk (OAR) segmentations using a geometric learning method by con-
sidering the parotid gland. Their study focuses on the parotid gland in head-neck
CT scans.

Inspired by this work [9], we propose a novel segmentation error identifica-
tion network to predict and classify segmentation errors in the inner ear human
bony labyrinth using Nodeformer [20], an advanced Transformer based GNN.
We also investigate the effect of pre-training tasks on improving the encoding
of node feature vectors for GNNs. The key contributions of our work are: (1)
We propose a novel 3D segmentation error estimation network based on graph
learning, capable of handling graphs with millions of nodes generated from 3D
segmentation maps. (2) We present VertNormPred, a novel pretext task for pre-
training the encoder of our network. It involves predicting the node-wise vertex
normals to capture the graph’s geometric relationships and surface orientations.
(3) We quantitatively and qualitatively evaluate our network against other GNN
models to estimate and classify node-wise segmentation errors.
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Fig. 1. Simulation of true and perturbed meshes for self-supervised learning of segmen-
tation errors. Each specimen’s SDT was perturbed 100 times to produce 100 different
deformed segmentations and meshes. The mesh simplification process utilized Taubin
smoothing and quadric error decimation techniques to achieve smoother mesh repre-
sentations.
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2 Methods

Formulation: Let S be the input segmentation map of the uCT volume I. Let
T be the true segmentation map of I. There exists a deformation on S which
operates in the voxel grid to transform S to approach T (limited to nearest
neighbors interpolation). The alternative (and finer) domain for mutating S is
the surface mesh, computed through a discrete Marching Cubes algorithm [I1]
f on (per-label) extracted contours.

By defining contours as zero-crossings on a signed Euclidean Distance Trans-
form, we have an additional interim domain of the distance transform, which
though residing on the voxel grid, offers some unique properties. For instance,
take X' = SDT(S) to be the Signed Distance Transform of S, and likewise, for
the true segmentation map, define X = SDT(T'). A dense deformation mapping
S to T is modeled conveniently as an additive distortion of X with a structured
(sparse) ‘noise’ field: X’ = X + N, and recovering T from S becomes estimating
and subtracting the noise in X’. Further, the discrete distance transform domain
can be interpolated to match the resolution of the surface mesh.

Thus, estimating a per-voxel additive correction on X', conditioned on I
would lead to determining the location and magnitude of errors in segmentation.
This is mapped to learning from ground truth segmentations 7' through known
random perturbations applied in the form X’ = SDT(T) + Nsim, leading to a
self-supervised learning problem, as shown below.

X =8DT(T), T=X<0
X' =X+ Nyim, S=X'<0
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Instead of solving this in the SDT domain, we proceed to the mesh domain to
setup a per-mesh-vertex estimation of ' (v) conditioned on I, which is equivalent
to a corrective field in the interpolated SDT space.

Graph learning: The surface mesh of a segmentation map .S, computed
through an operation such as the Discrete Marching Cubes, is representable as
a graph G’ = (V' E’), whose nodes are the mesh vertices, and edges the sides
of the triangular faces.

¢ = (V' E) = [(X) (2)

A vertex v; can be localized in the voxel grid of I to assign an interpolated inten-
sity value. Extending further, a local subvolume in I can be defined around wv;.
Finally, v; is connected to nearby vertices forming a local topological arrange-
ment conditioned on image structure. To capture these relationships jointly in
the mesh and image domain, we propose to use graph neural networks.

The learning task is the prediction of node-wise segmentation errors by pre-
dicting node-wise Signed Distances (SD) and classifying the node-wise SD into
different ranges, given the pCT subvolume centred at each node v, and the entire
mesh G.

The GNN is setup as

N @) :=he(G,I) Y eV (3)

and optimized as

f* = arg min

N = Noim . 8

Modeling: We propose a graph learning network based on NodeFormer [20],
an advanced Transformer based model designed for efficient node classification
on large graphs. NodeFormer incorporates an all-pair message-passing method
on adaptive latent structures, enabling information exchange between all nodes
by effectively capturing the local and global context. To handle larger graphs,
Nodeformer employs the kernelized Gumbel-Softmax operator [20], enabling scal-
ability to millions of nodes.

Our intuition behind the model design was, a CNN encoder can capture con-
textual details from the pCT data, while the GNN effectively utilizes the local
neighborhood of the graph, considering the associated data for each node v. By
leveraging the graph’s local neighborhood based on data, the GNN can analyze
the relationships and connectivity between graph elements, allowing the model
to incorporate both the image contextual information from pCT data and the
geometric structure of the input. This approach enables the model to exploit the
information provided by the local neighborhood of each graph element, enhanc-
ing its ability to analyze and process the input data effectively.

2.1 Architecture

We choose a CNN consisting of two 3D Conv layers, each followed by ReLU
activation functions as a feature extractor to produce node-wise representations
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of a 5 x5 x5 uCT subvolume centered around each node. The extracted node
features are embedded with the perturbed graph’s edge connectivity information
and passed on to the graph transformer network, consisting of three Nodeformer
Conv layers. This takes in the graph-embedded node-wise representations and
performs all pair message-passing, updating each node’s representation. We con-
sider three Nodeformer Conv layers with eight attention heads, and Batch Nor-
malization and a Leaky ReLU activation function followed each layer. Finally, a
Multi-Layer Perceptron (MLP) consisting of three fully connected layers, wherein
each layer was followed by a ReLU activation function, Batch Normalization,
and a Dropout regularization, processes the updated node-wise representations
to produce node-wise SD predictions (using Tanh activation function in the last
layer) or classifications (using Softmax activation function in the last layer).
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Fig. 2. The proposed graph learning-based transformer network for predicting and
classifying node-wise errors. #f represents the number of output channels/nodes. Given
the 5x5 x5 pCT subvolume centred at each node and the edge connectivity information
of the perturbed mesh, the model predicts the errors at each node.

For classification, predicted node-wise SDs are classified into five classes as
shown in Fig. [5| ranging from SDs of —0.16 mm to +0.16 mm. Nodes falling
into the higher end of the range, exceeding +0.16mm, suggest the occurrence
of out-segmentation errors in broad regions. Conversely, nodes with SDs be-
low —0.16mm indicate in-segmentation errors specifically within narrow regions.
These observations highlight the correlation between SDs and the likelihood of
realistic segmentation errors in different regions of interest. Fig. [2| illustrates the
proposed network architecture for node-wise SDs prediction and classification.
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2.2 Pre-training Tasks

Towards improving the prediction of node-wise SDs, we incorporated the pre-
training transfer learning technique by initializing the model with pre-trained
weights obtained from training on different pretext tasks. This approach allows
leveraging the knowledge and representations learned during the pretext task to
tackle the mainstream tasks [21].

We considered the following three pretext tasks: our custom 1) Vertex Nor-
mal Prediction (VertNormPred), 2) uCT volume Reconstruction (ReconCT),
and 3) Masked pCT volume Reconstruction (MaskReconCT) tasks. In the Vert-
NormPred task, we train the CNN model shown in Fig. a) to predict the
node-wise vertex normal X, given the 5 x5 x5 uCT subvolume centred around
a node. While generating the dataset using the marching cubes algorithm, we
also obtained the ground truth node-wise vertex normals for each mesh. This
task enabled the model to capture geometric relationships and surface orienta-
tions. Since neighboring nodes and their orientations influence node-wise SDs [5],
understanding surface properties through vertex normal prediction significantly
improved the accuracy of the SDs predictions.

In the ReconCT task, we train an encoder-decoder network illustrated in
Fig. [3(b) to reconstruct 5 x 5 x 5 uCT subvolumes. This task allowed the CNN
encoder to extract essential features from the node-wise pCT data.

In the MaskReconCT [8] task, we focus on reconstructing pixel-wise ran-
domly masked 5 x 5 x 5 puCT subvolumes using an encoder-decoder network
shown in Fig. b). We train the model to infer missing regions in the data. By
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Fig. 3. a)Vertex Normal Prediction (VertNormPred) network predicts the node-wise
vertex normals given the 5 x 5 x 5 uCT subvolume centred at each node. b) (i) CT
volume Reconstruction (ReconCT) network and (ii) Masked CT volume Reconstruction
(MaskReconCT) network reconstructs the 5x5x5 uCT subvolume given uCT or pixel-
wise randomly masked pCT subvolume centred at each node, respectively.
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learning to fill these gaps, the model becomes more adept at estimating SDs,
especially when parts of the uCT are incomplete.

We initialized the CNN encoder of our model with the pre-trained weights
obtained from the CNN encoder of the models shown in Fig. [3]from these pretext
tasks to facilitate node-feature extraction. The pretext tasks: VertNormPred,
ReconCT, and MaskReconCT, improved the model in capturing the pCT bony
labyrinth structure for the mainstream task of prediction/classification of node-
wise SD.

3 Dataset Description

We use the publicly available OpenAIRE’s human bony labyrinth dataset [I9]
to evaluate the method. The dataset consists of clinical Computed Tomography
(CT) volumes, co-registered high-resolution micro-CT (uCT) volumes, segmen-
tation maps, and surface models of 23 human bony labyrinths. We used 22
specimens of pCT volumes and their corresponding segmentation maps.

3.1 Generation of Training Data

We generate the perturbed segmentation maps by perturbing the SDT by ad-
dition of noise of the true segmentation map 100 times, ensuring the Hausdorff
distances of the perturbed segmentation maps are in the range of (7 —65). Fig.
illustrates the simulation of a perturbed segmentation map obtained from a per-
turbed SDT.

. . I
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Fig. 4. One of the slices of (a) true segmentation map, (b) distance transform, (c)

perturbed distance transform after addition of noise to distance transform and (d)
perturbed segmentation map obtained from the perturbed distance transform (c)

We use the marching cubes algorithm to obtain the triangular mesh manifolds
of the perturbed segmentation maps. The complex geometry of the human bony
labyrinth led to generating a mesh with numerous triangles, resulting in a graph
with nodes in the order of 10°. We use Taubin smoothing [16] and quadratic error
decimation techniques to smoothen the mesh. We consider the mesh vertices as
nodes (V) of the graph and the sides of the triangular faces of the mesh as edges
(E). The simulation of true and deformed mesh is shown in Fig.
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To calculate the node-wise SD, we perform bi-linear interpolation between
the nodes of the perturbed mesh and the voxels of the ground truth SDT. Note
that the generated node-wise errors correspond to the node-wise SDs of the true
segmentation. For classification, we split these node-wise SDs into five classes
ranging from -0.16mm to +0.16mm.

4 Experiments and Results

Towards fine-grained prediction of node-wise SDs, we trained and evaluated our
model for regression of node-wise SDs. To also identify the errors in different
ranges, we trained and evaluated our model for classification to classify the
predicted node-wise SDs into different classes.

For all the experiments, we considered 1400 perturbed structures for training,
200 for validation, and 600 for testing.

We have quantitatively and qualitatively evaluated our model against Spline
Conv [7] and GAT [I7] based GNN models for regression and classification of
node-wise SDs. We have also evaluated the models using pre-trained weights

. <-0.16mm

-0.1mm to 0.1mm
-0.16mm to -0.1mm

0.1mm to 0.16mm

. >0.16mm

(@) (b)

Fig. 5. Visualization of the true, perturbed meshes, and the node-wise SD classes. (a)
At the top, the true mesh (in blue) is overlaid with the perturbed mesh (in green). At
the bottom, the perturbed mesh (in green) is overlaid with the true mesh (in blue).
The overlapping region between the true and perturbed meshes reveals where internal
and external segmentation errors occur. (b) The node-wise SDs in the perturbed mesh
are distributed into five classes indicated by colours varying from red to blue, and the
class ranges are shown above.
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Table 1. Comparison of Nodeformer with different pre-trained weights against other
models for regression of node-wise SDs.

GNN Pretraining MAE | MSE |
Spline ReconCT 0.06994 0.00986
GAT - 0.06946 0.00913
GAT VertNormPred 0.0694 0.00968
Spline MaskReconCT 0.06783 0.00802
GAT ReconCT 0.06755 0.00884
GAT MaskReconCT  0.06705 0.00903
Spline - 0.06032 0.00762
Spline VertNormPred 0.05728 0.00757
Nodeformer - 0.04536 0.00475

Nodeformer MaskReconCT 0.04397 0.00451
Nodeformer ReconCT 0.04254 0.00444
Nodeformer VertNormPred 0.04182 0.00429

from the three pretext tasks. We also performed ablation studies to understand
the contribution of each block in our proposed model.

4.1 Implementation details

We train the network in Fig. a) for the VertNormPred task, where we minimize
the Cosine Similarity loss between the predicted and ground truth node-wise
vertex normals. We train the network in Fig. 3{(b) for ReconCT and MaskReconCT
tasks, where we minimize the L1 loss between the generated and original 5x5x5
1CT node-wise subvolumes.

For regression of node-wise SDs, we train the models to minimize the Smooth
L1 loss between the predicted node-wise SDs and the node-wise SDs obtained
using interpolation (GT SDs). We used the Mean Absolute Error (MAE) and
Mean Square Error (MSE) metrics to quantify the performance of the models
trained for regression. For the classification of node-wise SDs, we train the models
to minimize the Cross Entropy loss between the predicted and GT SD classes.
We used the F1 score, Precision, Recall, and Accuracy metrics to quantify the
performance of the models trained for classification. We trained all the networks
for 100 epochs, using a learning rate of le™® and a cosine annealing scheduler
with a weight decay of le 2. Both the regression and classification models utilized
the AdamW optimizer, while the pre-training networks employed the Adadelta
optimizer. Models are implemented using PyTorch and PyG [6], and the training
process was carried out in a workstation using an i5-1035G4 CPU and NVIDIA
24G' B RTX 3090 GPU.

4.2 Results and Discussion

In Table[I} it can be observed that our model built upon Nodeformer can predict
node-wise SDs efficiently, and additionally, using pre-trained weights improved
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the prediction. Among the evaluated models, our model with a CNN encoder
initialized with VertNormPred pre-trained weights yielded the lowest MAE score
of 0.04182. This signifies a substantial improvement of ~ 30.6% compared to
Spline Conv GNN without any pre-trained weights.

Table 2. Comparison of Nodeformer with different pre-trained weights against other
models for classification of node-wise SD classes.

GNN Pretraining f1 Score 1 Precision 1 Recall 1 Accuracy(%) 1
Spline MaskReconCT 0.4872 0.5445 0.5124 66.3
GAT VertNormPred 0.5186 0.605 0.5398 69.03
GAT MaskReconCT 0.5024 0.5649 0.5425 71.22
Spline VertNormPred 0.5367 0.612 0.5487 71.76
GAT ReconCT 0.5746 0.6289 0.5927 72.17
Spline ReconCT 0.5871 0.6136 0.614 72.28
GAT - 0.5623 0.6487 0.567 72.4
Spline - 0.5582 0.6181 0.5779 71.53
Nodeformer MaskReconCT 0.5986 0.6693 0.589 74.55
Nodeformer ReconCT 0.6695 0.72 0.7131 76.57
Nodeformer - 0.6899 0.7343 0.6693 78.82
Nodeformer VertNormPred 0.6943 0.7384 0.6835 79.53

In Table[2] our model, initialized with pre-trained encoder weights of the Vert-
NormPred task, gave an overall accuracy of 79.53%. This signifies a substantial
improvement of ~ 8% in accuracy compared to the Spline Conv GNN without
any pre-training task, indicating a significant improvement in the model’s ability
to identify different ranges of segmentation errors.

Tables [I] and [2 show that our model has benefited from using the pre-trained
weights of the VertNormPred task, indicating that the prediction of the node-
wise vertex normals during pre-training has helped the encoder of our model
in capturing the intricate surface orientations and geometric inter-node rela-
tionships in the bony labyrinth structure. This has helped further improve the
prediction of node-wise SDs.

From Fig. [6] it is evident that our model, using Nodeformer, outperforms
the other models in the classification of node-wise SDs. Our model qualitatively
exhibits improved classification of node-wise SD classes, with significantly fewer
black-colored nodes representing incorrect predictions than those obtained using
Spline Conv and GAT models. This highlights our model’s superior performance
and effectiveness in accurately classifying the node classes in the given graph.

In our experiments, we observed that incorporating pre-trained weights from
the pretext tasks positively impacted the performance of the models in the regres-
sion of node-wise SDs. However, using pre-trained weights for the classification
task did not result in much significant improvement.
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(ii)

Fig. 6. Visual illustration of the classification of node-wise SDs by all the models.
(i) The actual node-wise SD classes in the perturbed mesh. (ii) Two distinct regions
within the graph to showcase the predicted node classes compared to the ground truth
node classes. The first and second rows show the zoomed-in regions in the pink and
yellow boxes in the perturbed mesh (i). (a) GT perturbed node-wise SD classes, (b)-
(d) predicted node-wise SD classes by Spline Conv, GAT, and our model, respectively.
The black-coloured nodes denote incorrect predictions. The yellow boxes in (ii) (a)-(d)
show how well our model can classify the node-wise SD classes with respect to the GT
node-wise SD classes with the least number of black nodes.

4.3 Ablation Study

To evaluate the extent to which Nodeformer effectively learns meaningful in-
formation from the geometric structure of the segmentation, we performed an
ablation study for the classification task that involved removing the GNN com-
ponent entirely and directly passing on the node-wise representations from the
encoder to the MLP decoder. Also, to evaluate the importance of node feature
extraction using the CNN encoder and pre-trained weights, we experimented by
passing the pCT subvolumes through a linear layer as node feature representa-
tions to the Nodeformer instead of passing them through the CNN encoder.

Fig. [§] demonstrates the significance of incorporating geometrical structure
learning using Nodeformer and the CNN encoder to extract node features in
identifying segmentation errors by comparing their performance in classifica-
tion. Upon removing Nodeformer from our model (CNN-MLP), the classifica-
tion performance for error identification is notably poor. This emphasizes the
importance of Nodeformer in capturing the geometrical information required for
error analysis.

Furthermore, using a linear layer to extract node features from pCT subvol-
umes instead of the CNN encoder also resulted in poor performance, as shown
in Fig. [8] This highlights the importance of Conv layers in effectively capturing
the node-centred pCT information necessary for accurate error classification.
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Fig. 7. Confusion Matrices of (a) CNN-MLP: Node features from the CNN encoder
are directly given to the MLP for classification, (b) GNN-MLP: Node feature vectors
are obtained from a linear layer instead of the CNN encoder are passed on to the
Nodeformer and MLP for classification, (c) our complete model, and (d) our model with
the CNN encoder initialized with the VertNormPred pre-trained weights. Labels A: (<-
0.16mm), B: (-0.16mm to -0.1mm), C: (-0.1mm to 0.1mm), D: (0.1mm to 0.16mm), E:
(>0.16mm)

Regarding using pre-trained weights, our model with the CNN encoder ini-
tialized with pre-trained weights from the VertNormPred task gave the best
classification performance regarding accuracy, precision, recall, and F1 score, as
shown in Figs. [7] and
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Comparison of Classification Scores for Different Models
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Fig. 8. Comparison of Classification Scores between the different blocks of our model,
described in section [£-3] The plot provides a visual representation of the distribution
and relative performance of the models based on their classification scores.

By comparing Fig. [7[a) and Figs. [7|b)-(d), it can be observed that removing
the GNN component (Nodeformer) led to a notable decrease in the model’s per-
formance in classifying errors in different ranges. Specifically, it fails to identify
internal errors (recall score of 7.6%). Fig. [f[b) shows that the Linear-Nodeformer-
MLP (GNN-MLP) model can identify internal and external errors but fail to
identify the intermediate ones. From Fig.[fj(c) and (d), it is clear that the mod-
els using Nodeformer for geometrical structure learning with a CNN encoder for
node feature extraction were capable of identifying errors in all ranges and using
pre-trained weights reduced misclassification in some classes and significantly
improved the recall score.

5 Conclusion

Our work introduced a Nodeformer-based graph learning network as a Qual-
ity Assurance (QA) tool to evaluate errors in the automatic segmentation of
medical images. To our knowledge, this is the first work that addresses segmen-
tation errors in the 3D data of the human inner-ear bony labyrinth structure.
The complexity of the inner-ear human bony labyrinth structure gave rise to
graphs with nodes in the order of 10°. Our network, built upon Nodeformer, can
scale up to millions of nodes and easily handle human inner-ear bony labyrinth
graphs. To boost the performance of our network, we also proposed a custom
Vertex Normal Prediction pretext task for pre-training the CNN encoder of our
network. We have evaluated our network against other GNN models with pre-
trained weights from different pretext tasks for regression and classification of
node-wise segmentation errors. We have qualitatively shown how well our model
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can correctly classify segmentation errors and reduce misclassifications. We have
also conducted an ablation study to show the strengths of individual modules of
our network, along with loading the pre-trained weights from the Vertex Normal
Prediction pretext task, for classification. This study motivates further research
into developing and advancing QA techniques and tools for measuring, classify-
ing, and correcting segmentation errors.
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