
Decoupled Fitness Criteria for Reactive Systems

Derek Egolf and Stavros Tripakis

Northeastern University, Boston, MA, USA
{egolf.d, stavros}@northeastern.edu

Abstract. The correctness problem for reactive systems has been thor-
oughly explored and is well understood. Meanwhile, the efficiency prob-
lem for reactive systems has not received the same attention. Indeed, one
correct system may be less fit than another correct system and determin-
ing this manually is challenging and often done ad hoc. We (1) propose
a novel and general framework which automatically assigns comparable
fitness scores to reactive systems using interpretable parameters that are
decoupled from the system being evaluated, (2) state the computational
problem of evaluating this fitness score and reduce this problem to a ma-
trix analysis problem, (3) discuss symbolic and numerical methods for
solving this matrix analysis problem, and (4) illustrate our approach by
evaluating the fitness of nine systems across three case studies, including
the Alternating Bit Protocol and Two Phase Commit.

Keywords: Formal methods · Verification · Reactive systems.

1 Introduction

Correctness guarantees help us avoid irritating, costly, and, in some cases, deadly
implementation bugs. However, two systems that both satisfy a correctness spec-
ification may differ with respect to efficiency. Inefficient systems delay content
delivery, use excess energy, and waste clock cycles better spent elsewhere. Any
of these consequences could reduce the sustainability of an institution employing
an inefficient system.

Much like reasoning about correctness, reasoning about efficiency is cogni-
tively demanding, prone to errors, and requires expert insight. The framework
proposed in this paper strives to eliminate this human burden, mitigate these
errors, and capture the expert’s insight and intentions in the parameters of the
framework.

The proposed framework accomplishes these goals by assigning a comparable
fitness score to every system, such that we can decide between two systems on
the basis of their score. Consider the following example.

Example 1. Consider the finite labeled transition systems (LTSs) depicted in
Fig. 1. Labels s, a, t represent send, acknowledge (ack), and timeout respectively.
The symbols !, ? (output, input) denote rendezvous communication in which a
? transition can only be taken in one LTS if the corresponding ! transition is
taken in another LTS. Transitions with neither ?, nor ! can be taken freely.
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LTS E represents a sender in the environment. LTSs G and B are ‘good’ and
‘bad’ receivers, respectively. B is ‘bad’ in the sense that it waits for two send
actions before replying with an acknowledgement, whereas G replies right away.
The synchronous products of the sender E with receivers G and B, denoted E||G
and E||B, are LTSs M and M ′, respectively. Both M and M ′ are correct, in the
sense that they satisfy the specification every s is eventually followed by an a
(given some fairness assumptions that prevent a from being ignored indefinitely).
Because they both satisfy this specification, M and M ′ are indistinguishable
from the perspective of traditional verification and synthesis. However, M is
intuitively preferable to M ′ because G is a better receiver than B. As we will
show in Section 5, our framework assigns fitness scores 0.25 and 0.14 to M and
M ′, respectively, and thus distinguishes M as a better system. ⊓⊔
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(a) The sender E
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(b) A “good” receiver G

b0 b1 b2

s? s?

a!

s?

(c) A “bad” receiver B
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(d) The product system M := E||G
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(e) The product system M ′ := E||B

Fig. 1: A simple communication protocol modeled with finite LTSs.

The exact nature of the fitness score depends on the application domain. Our
framework decouples the description of the system (e.g., the LTSs of Fig. 1) from
a set of domain-specific parameters which capture user preferences.

By assigning fitness scores to systems, as in the example above, our frame-
work can be used for performance evaluation. Our framework is additionally
motivated by recent work in the synthesis of distributed protocols [5]. Unlike
humans, synthesis tools typically ignore efficiency considerations. In some cases,
these tools generate systems that are, strictly speaking, correct (i.e., they sat-
isfy their logical specification), yet clearly unorthodox or even inefficient [6]. In
such cases, we can use our framework to rank automatically generated systems
according to their fitness score. In other cases, we may want to generate all
correct systems [23], potentially with the aim of doing fitness-optimal synthesis
(c.f. Appendix A.2.).

In summary, the contributions of this paper are as follows: (1) We propose
a novel and general framework for automatically assigning a comparable fitness
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score to a system; this framework uses interpretable parameters that are decou-
pled from the system being evaluated. (2) We provide an automated method for
computing fitness scores; our method ultimately reduces the fitness-score com-
putation problem to a matrix analysis problem. (3) We discuss symbolic and
numerical methods for solving this matrix analysis problem. (4) We present an
implementation and evaluation of our framework: our prototype tool allows, in
a matter of seconds, to automatically compute the fitness of nine automatically
synthesized systems.

We organize the rest of the paper as follows. Section 2 formalizes prelimi-
nary concepts. Section 3 presents our framework, both in its full (semantical)
generality and also as a finitely representable instance that can be treated algo-
rithmically. Section 4 presents a method to compute fitness scores for an instance
of our framework. Section 5 illustrates our approach on the communication pro-
tocol of Example 1, Two Phase Commit, and the Alternating Bit Protocol taken
from [6]. Section 6 discusses related work. Section 7 concludes the paper.

2 Preliminaries

N, Q, R, R≥0, and B denote the sets of naturals, rationals, reals, non-negative

reals, and booleans, respectively. A function h : Nd → Qd′
is a scalar arith-

metic function if h can be written in terms of basic scalar arithmetic operations
+,−,×, /, applied to its natural number arguments.

We often formalize the semantics of a system, M , and its specifications, φ as
subsets of Σω. When verifying that M satisfies φ, i.e., M ⊆ φ, we do not usually
consider the relative abundance of traces produced by the operational definition
of M . We need only show that τ ∈ M implies that τ ∈ φ. In that paradigm, we
disregard that there may be many ways to generate τ using M .

Our framework for measuring performance does not disregard the relative
abundance of traces. All else equal, if a system is capable of producing the same
‘unfit’ trace by executing any one of many distinct runs, then that system is
worse than a system that can produce the unfit trace in just one particular way.
Also, we might consider aggregates like average, mode, sum, standard deviation,
etc. and these all depend on the multiplicity of elements. Toward preserving
multiplicity, we define our notation for multisets. We also define a denotational
formulation of systems that does not abstract away the relative abundance of
traces.

Multisets A multiset X over domain D is a function X : D → N, where X(x)
represents the multiplicity of element x, i.e., how many times x occurs in X.
M(D) denotes the class of all multisets over D, i.e., the set of all functions
X : D → N. If X(x) = m, then we write x ∈m X (possibly, m = 0). The
cardinality of X, denoted |X|, is the sum of the multiplicities of all members of
the domain D. We write multisets as {{...}} to differentiate them from sets.

Example 2. We denote by X = {{0, 0, 1, 1, 1}} the multiset where 0 ∈2 X and
1 ∈3 X. Then: |X| = 2 + 3 = 5. ⊓⊔
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If A ⊆ D and X : D → N is a multiset, then X restricted to A is a new
multiset, denoted X|A: D → N and defined as follows. If x /∈ A, X|A (x) = 0 and
otherwise if x ∈ A, then X|A (x) = X(x). Let X : D → N be a multiset and let
f : D → D′ be a function. Then intuitively, the image of X by f is a multiset
denoted f ⊙X obtained by applying f to the members of X. E.g. if f(x) = x2,
then f ⊙{{2,−2, 3, 3, 3}} = {{4, 4, 9, 9, 9}}. Formally, we define f ⊙X : D′ → N as
follows. (f⊙X)(y) := |(X|Dy

)|, whereDy := {x ∈ D | f(x) = y}. We may treat a
set as a multiset with all multiplicities as 0 or 1 and take its image by f to obtain
a multiset. If X ∈ M(Nd) and 1 ⩽ i ⩽ d, then sum(X, i) =

∑
x∈cX

cxi, where xi

is the ith component of x ∈ Nd. E.g. sum({{(1, 2), (1, 2), (3, 4)}}, 2) = 2 + 2 + 4.

Systems As mentioned, the semantic formulation of systems as subsets ab-
stracts away structure that our framework needs. Namely, for a system M and
a finite trace π ∈ Σn, there may be many partial runs through system M which
produce π. Our framework requires this structure, so we give an alternate se-
mantic formulation of systems.

Definition 1 (Abstract Denotation). We characterize a system M by an
infinite family of multisets, (Mn)n∈N. For all i ∈ N, Mi ∈ M(Σi)—i.e. the
multiset indexed by i assigns a multiplicity to all finite traces of length i. ⊓⊔

This characterization of systems abstracts away the notion of states while
maintaining the multiplicity of finite prefixes. However, there are restrictions on
which families of multisets characterize well-defined systems; those restrictions
follow.

Definition 2. A family of multisets (Mn)n∈N denotes a system if and only if
for all π, π′ ∈ Σ∗ such that π is a prefix of π′, π ∈0 M|π| =⇒ π′ ∈0 M|π′| ⊓⊔

This restriction enforces the following intuition: for a partial run to produce
π′, there must be at least one partial run for each prefix of π′. No further re-
strictions are necessary. A partial run that produces a prefix of π′ may either
have zero or many continuations which produce π′.

Example 3 (Two Systems). We now define two systems M (1) and M (2), each as
a family of multisets of finite prefixes over alphabet Σ = {0, $}. The user may
interpret these traces as follows: $’s are money that we receive, and 0’s are lapses
in this income. Intuitively, we prefer behaviors that maximize the rate at which
we receive $’s.

All partial runs of M (1) produce just one finite trace and this finite trace has

multiplicity 1. In particular, $n ∈1 M
(1)
n and if w ̸= $n, then w ∈0 M

(1)
n . In other

words, M (1) is the system that generates prefixes of $ω, each with multiplicity

1. We may simply express this system as M
(1)
n := {{$n}}.

Similarly, the partial runs of M (2) also produce just one finite trace each with
multiplicity 1. All such finite traces are alternating $ and 0, i.e. the sole partial
trace of length n is the n-length prefix of ($0)ω. This system may be expressed as

M
(2)
n := {{($0)⌊n/2⌋$(n mod 2)}}, i.e. even length prefixes end in 0 and odd length

prefixes end in $. ⊓⊔



Decoupled Fitness Criteria for Reactive Systems 5

3 Formal Framework

The framework assigns a comparable value called a fitness score to every sys-
tem. In this section, we define this score formally. We first present the general,
semantical framework (Section 3.1). We then instantiate this general framework
and state the main problem solved in this paper (Section 3.2).

3.1 The General Framework

The key idea of our framework is that it decouples the description of the sys-
tem from the following set of domain-specific framework parameters: (1) A
finite alphabet Σ, e.g., {0, $}. (2) A fitness function, f : Σ∗ → Nd. This
function measures finite prefixes of infinite traces. (3) An aggregate function,
@ : M(Nd) → Qd′

. This function takes a multiset of fitness values and compiles
them into a single value. Examples include min, max, average, etc. taken over
arithmetic combinations of natural numbers. The dimensionality of the output,
d′, enables lexicographic aggregates. Given these two functions, the framework
assigns a fitness score to every system. The fitness score is a d′-dimensional
vector, defined formally in Definition 7. In addition, the framework may also
include: (4) A comparison relation, ≼, used to compare the fitness scores of two
different systems (c.f. eq. (1)). We next provide examples of the above concepts.

Fitness Function: The rate function is an example of a fitness function:

Definition 3 (Fitness Function: Rate of $). For Σ = {0, $} define rate$(w) =
(#$(w), |w|), where #$(w) is the number of $’s in w and |w| is the length of w.

⊓⊔

Example 4 (Rate of $ Applied). Recall the systems M
(1)
n = {{$n}} and M

(2)
n =

{{($0)⌊n/2⌋$(n mod 2)}} from Example 3. We apply f := rate$ to the n-length
partial runs of these systems. Taking the image of M (1) and M (2) by f yields:

f ⊙M (1)
n = {{f($n)}} = {{(n, n)}}

f ⊙M (2)
n = {{f(($0)⌊n/2⌋$(n mod 2))}} = {{(⌈n/2⌉, n)}}

⊓⊔

Aggregate Functions: The average rate function is one example of an aggre-
gate function. It treats ordered pairs as fractions and takes the average value:

Definition 4 (Aggregate Function: Average Rate). For X ∈ M(N2), let:

@avg(X) =
1

|X|
∑

(p,q)∈mX

m · p
q

⊓⊔
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Example 5. This example emphasizes the role of multiplicity in aggregates. For
instance, if X := {(1, 3), (1, 3), (2, 3)}, then the (1,3) term is counted twice:

@avg(X) =
1

|X|
∑

(p,q)∈mX

m · p
q

=
1

3
(2 · 1

3
+

2

3
) = 4/9

⊓⊔

Example 6. This example applies @avg to the running example (Example 3).
The average is moot here as there is only one partial trace of each length. Recall

from Example 4 that f ⊙M
(1)
n = {{(n, n)}} and f ⊙M

(2)
n = {{(⌈n/2⌉, n)}}, where

f := rate$. We can apply average rate to these images: @avg(f⊙M
(1)
n ) = n/n = 1

and @avg(f ⊙M
(2)
n ) = ⌈n/2⌉/n. ⊓⊔

Another example of an aggregate function is the maximum rate function:

Definition 5 (Aggregate Function: Maximum Rate). For X ∈ M(N2):

@(X) = max{p/q | (p, q) ∈ X}

⊓⊔

Example 7. For instance, if X := {{(1, 3), (1, 3), (2, 3)}}, then:

@(X) = max{1/3, 1/3, 2/3} = 2/3

⊓⊔

Another example of an aggregate function is the lexicographic function:

Definition 6 (Aggregate Function: Lexicographic). For X ∈ M(N2). Here
is an example where d′ = 2 ̸= 1. Let @1(X) be Average Rate from Definition 4
and let @2(X) be Maximum Rate from Definition 5. Finally define

@(X) = (@1(X),@2(X))

Here, the first component of the aggregate is the average rate and the second
component is the maximum rate. ⊓⊔

Example 8. For X1 = {{(3, 6), (2, 6), (4, 6)}} and X2 = {{(1, 4), (2, 4), (3, 4)}}:

@(X1) = (@1(X1),@2(X1)) = (1/2, 2/3)

@(X2) = (@1(X2),@2(X2)) = (1/2, 3/4)

This sort of lexicographic aggregate (together with a corresponding comparison
relation, see below) can be useful for breaking ties between choices like X1 vs.
X2. That is, we may, for instance, want to maximize the average rate when
possible, but if two distinct choices yield the same average rate, we may want
to make the choice that has the highest potential payoff; in that case, we prefer
X2. ⊓⊔
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Fitness Score: Given the above parameters, our framework assigns a fitness
score to every system M = (Mn)n∈N. It does so as follows:

Definition 7 (Fitness score). The fitness score of system M is

@fM := lim
n→∞

@(f ⊙Mn)

This limit is a value in (R≥0 ∪ {∞,⊥})d′
. Each component of the vector: either

converges to a value v ∈ R≥0, in which case we assign the component the value
v; or increases without bound, in which case we assign the value ∞; or exhibits
some other behavior such as oscillation, in which case we assign the ill-behaved
value ⊥. ⊓⊔

The framework is quite general, so there are systems that have oscillating
fitness scores, i.e., ⊥ (see Example 11 in the Appendix). In what follows, we limit
our attention specifically to the class of systems representable by finite transition
systems. Whether this class contains systems that have ⊥ fitness scores remains
open. However, the system in Example 11 does not belong to this class.

Comparison Relations: A comparison relation ≼ is a subset of

(R≥0 ∪ {∞,⊥})d
′
× (R≥0 ∪ {∞,⊥})d

′
(1)

If (a, b) ∈ ≼, we write a ≼ b. If neither a ≼ b nor b ≼ a, we say that a and b are
incomparable.

Ignoring ∞ and ⊥ for the moment, ≼ could be the relation ⩽ on R when
d′ = 1, or the lexicographic comparator when d′ = 2:

(a1, b1) ≼ (a2, b2) ⇐⇒ (a1 > a2) ∨ (a1 = a2 ∧ b1 ⩾ b2)

This comparator is the sort we would want for Example 8.
Extending the above to ∞ and ⊥ would be up to the user. One choice is to

have these values be incomparable to any other value. We also remark that ≼
needs to compare real (and not just rational) numbers, even though the aggregate
function @ maps to Qd′

, because the fitness score involves taking a limit. The
semantics of a ≼ b are that a is preferrable to b.

Example 9. Concluding our analysis of Example 3, consider an instance of our
framework with fitness function rate$ (Definition 3), aggregate function @avg

(Definition 4), and comparison operator ≼ := ⩾ (since we prefer high rates of
income). We can then compare the two simple systems introduced in Example 3.
Building on what we have presented so far (c.f. Examples 4 and 6), we have:

@fM
(1) = lim

n→∞
@(f ⊙M (1)

n ) = lim
n→∞

1 = 1

@fM
(2) = lim

n→∞
@(f ⊙M (2)

n ) = lim
n→∞

⌈n/2⌉
n

= 1/2

Because @fM
(1) ⩾ @fM

(2), we conclude @fM
(1) ≼ @fM

(2) and therefore we
prefer M (1) to M (2). This result aligns with our intuitions; we would rather
receive a dollar every day than a dollar every other day. ⊓⊔
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Evaluation, Comparison, and Synthesis Problems: Within our frame-
work, we can consider various types of computational problems. A basic problem
is that of evaluating the fitness score of a given system: Given a fitness function
f , an aggregate function @, and a system M , compute @fM . Another prob-
lem is that of comparing two systems: Given a fitness function f , an aggregate
function @, a comparison relation ≼, and two systems M1,M2, check whether
@fM1 ≼ @fM2. We can also consider fitness-optimal synthesis problems like the
one presented in Appendix A.2.

The problems described above are abstract in the sense that our framework
is semantical. In order to define concrete computational problems of this sort, we
need some concrete, syntactic representation of the elements of our framework,
namely, systems, fitness functions, etc. We present one such representation in
Section 3.2 that follows.

3.2 Syntactic Representation of the Framework

We represent systems using finite labeled transition systems:

Definition 8 (Finite Labeled Transition System). A finite labeled transi-
tion system (LTS) is a tuple M = ⟨Σ,Q,Q0, ∆⟩, where

– Σ is a finite set of labels
– Q is a finite set of states
– Q0 ⊆ Q is the set of initial states
– ∆ ⊆ Q×Σ ×Q is a transition relation

⊓⊔

We now define the denotation, (Mn)n∈N, of labeled transition system M . We

first define the path relation of M , ∆̂ ⊆ Q∗ × Σ∗, in terms of its members. Let
q̂ = q0, ..., qk ∈ Q∗ and w = w1w2...wk ∈ Σ∗. Then (q̂, w) ∈ ∆̂ if and only if:
(1) q0 ∈ Q0 and (2) For all i such that 0 ⩽ i < k, (qi, wi+1, q

i+1) ∈ ∆. Note:

(q0, ε) ∈ ∆̂ where q0 ∈ Q0 and ε is the empty sequence of labels.
Then we define (Mn)n∈N by defining each Mn. We define Mn by defining the

multiplicity of each w ∈ Σn. Namely, for a fixed w ∈ Σn, w ∈c Mn if and only if

c = |{q̂ ∈ Q∗ | (q̂, w) ∈ ∆̂}|

We represent fitness functions by deterministic finite state automata (DFA).
Specifically, a fitness function f : Σ∗ → Nd is represented by a d-tuple ⟨f1, ..., fd⟩,
where each fi is a DFA defined as follows:

Definition 9 (DFA). A DFA is a tuple fi = ⟨Σ,Qi, q
0
i , Q

acc
i , δi⟩, where

– Σ is a finite set of labels
– Qi is a finite set of states
– q0i ∈ Qi is the single initial state of the automaton
– Qacc

i ⊆ Qi is the set of accepting states
– δi : Qi ×Σ → Qi is the transition function
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⊓⊔

Now consider an input w ∈ Σ∗. When the DFA fi consumes w, it visits a
sequence of states, q̂ = q0i , q

1
i , ..., q

m
i . Interpreting fi as a function fi : Σ

∗ → N,
we define fi(w) as the number of times an accepting state is visited in q̂. We
then define the fitness function f : Σ∗ → Nd so that f(w) = (f1(w), ..., fd(w)).

f0
2f0

1 f1
1 f0

2f1 := f2 :=

0 $ 0, $

$

0
0, $

Fig. 2: Two examples of DFA representing fitness functions: f1 computes the
number of $’s in a word; f2 computes the length of the word.

Example 10 (Rate). Let f1(w) := the number of $’s in w and f2(w) := the length
of w. We represent these individual components of f = ⟨f1, f2⟩ by the DFA in
Fig. 2. The example is detailed further in Appendix A.3. ⊓⊔

In principle, an aggregate function can be any mathematical function with the
appropriate type (c.f. page 5). But for the sake of computation, we want an aggre-
gate function to be represented as a scalar arithmetic function h(x1, x2, ..., xd).
We say that h : Nd → Qd′

is a faithful representation of @ : M(Nd) → Qd′
if and

only if for all X ∈ M(Nd),@(X) = h(sum(X, 1), ..., sum(X, d)). We will see in
Section 4 that this form of representation and the definitions that follow are key,
as the heart of our method is computing each sum(X, i), where X = f ⊙ Mn.
The importance should be clear by the time we state our primary correctness
result, Theorem 1.

While h might not be a faithful representation of @ for all X, h may be
a faithful representation assuming that X satisfies some condition. The fitness
function may in turn guarantee that X satisfies that condition. Fortunately,
this relationship holds between @avg (Def. 4) and rate$ (Def. 3). The following
definition and lemmas capture this useful situation:

Definition 10 (Conditional Representation and Compatible). Let Ψ be
a predicate over M(Nd), i.e., a mapping Ψ : M(Nd) → B. Additionally, let
@ : M(Nd) → Qd′

be an aggregate function and h : Nd → Qd′
be a scalar

arithmetic function. Then h is a conditional representation of @ subject to Ψ if
and only if for all X ∈ M(Nd), if Ψ(X) holds (i.e., Ψ(X) = 1), then @(X) =
h(sum(X, 1), ..., sum(X, d)).

Let h be a conditional representation of the aggregate function @ subject to Ψ .
Let f be a fitness function. We say that h and f are compatible when Ψ(f⊙Mn)
holds for any LTS M and any n ∈ N. ⊓⊔

Let predicate Ψrate(X) := ‘If (p, q), (p′, q′) ∈ X, then q = q′.’ Then we have
the following two lemmas.
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Lemma 1. Let X ∈ M(N2) and suppose Ψrate(X) holds. Then @avg(X) =
sum(X, 1)/sum(X, 2). Therefore, @avg is conditionally represented by h(x1, x2) =
x1/x2, subject to Ψrate. ⊓⊔

Lemma 2. For all n ∈ N and all LTS M , Ψrate(rate$⊙Mn) holds. Hence, rate$
and h(x1, x2) = x1/x2 are compatible. ⊓⊔

Lemma 1 follows from the fact that the average of a multiset of fractions is
equal to the sum of the numerators divided by the sum of the denominators
when the denominators are all equal. Lemma 2 is immediate: if w ∈ Mn and
rate$(w) = (p, q), then q = n. From Lemma 1 and 2 it follows that @avg and
rate$ are compatible. Therefore, if the fitness function is rate$ we can represent
@avg(X) with the expression sum(X, 1)/sum(X, 2).

Note that fitness functions other than rate$ might not be compatible with
@avg. For instance, let f(w) = (#$(w),#0(w)), which measures the number of
$’s per 0. f does not satisfy Ψrate, but it is a realistic fitness function. In the
case of rate$, time is measured by the observation of any label from Σ. Now for
f , time is measured using only 0. If $ denotes a local action of a server and 0
an interaction between two servers, f captures communication complexity. We
leave handling of such non-compatible fitness functions for future work.

The Fitness Evaluation Problem: We are now ready to state the fitness-
score evaluation problem for systems represented as finite LTSs, fitness functions
represented as DFA, and aggregate functions represented as arithmetic expres-
sions. We provide a solution to this problem in Section 4.

Problem 1 (Fitness Evaluation Problem). Let M = ⟨Σ,Q,Q0, ∆⟩ be a finite
LTS and let f = ⟨f1, ..., fd⟩, where each fi is represented as a DFA. Let @ :
M(Nd) → Qd′

be an aggregate function represented by the scalar arithmetic
function h : Nd → Qd′

. Finally, suppose that h and f are compatible. The
fitness evaluation problem is to compute the fitness score @fM of M , i.e., to
compute limn→∞ @(f ⊙Mn). ⊓⊔

4 Reducing Fitness Evaluation to Matrix Analysis

In this section we propose a method to solve Problem 1 that consists in the
following steps (assuming the same notation and setup as in Problem 1):

1. Compute the product automaton Pi = M ||fi, for each i ∈ {1, ..., d}.
2. For each Pi, compute a matrix-vector pair (ξi,vi) representing a recurrence

relation. We call the matrix ξi the recurrence matrix and the vector vi the
initial condition vector.

3. Solve the following matrix analysis problem:
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Problem 2. Let gi(n) = (ξn+1
i vi)0 for fixed square matrices ξ1, ..., ξd and vectors

v1, ..., vd with non-negative integer entries and where (u)0 denotes the first entry
of vector u. Let h : Nd → Qd′

be a scalar arithmetic function. Compute

lim
n→∞

h(g1(n), g2(n), ..., gd(n))

⊓⊔

The motivation for the above steps follows. In step 1, the product Pi repre-
sented all simultaneous paths through M and fi. I.e., a path through Pi corre-
sponds to taking a path throughM and handing the transition label encountered
at each step to the automaton representing fi. As mentioned, step 2 computes a
recurrence relation, which is reasonable because the number of accepting states
visited across (n+1)-length paths is related to certain quantities computed over
the n-length paths. The exact relationship is explained in detail in Section 4.1.

The correctness of the reduction to Problem 2 (Corollary 1) hinges on the
fact that gi(n) = sum(f ⊙Mn, i), i.e., computing sum(f ⊙Mn, i) (which is then
an input to the aggregate function) reduces to computing the nth term of a
recurrence relation, which in turn reduces to taking a matrix power.

Step 1 of the method (computing automata products) is standard. Therefore,
in the rest of this section, we focus on explaining Steps 2 and 3.

4.1 Step 2: Constructing the Recurrence Relation

We will first explain the recurrence relation construction by example and then
give the general construction.

By example: We skip the first step of the method and assume that we have a
product P1 = M ||f1. In particular, we consider the automaton of Fig. 3.

s0 s1P :=

Fig. 3: A toy product P1 = M ||f1. P1 has two states named s0 and s1. s0 is the
initial state and s1 is the accepting state. The transition labels from Σ are not
needed and hence are omitted.

From the automaton of Fig. 3 we extract the following recurrence relations:

βs0
n+1 = βs0

n + βs1
n , βs0

0 = 1 (2)

βs1
n+1 = βs0

n , βs1
0 = 0 (3)

αs0
n+1 = αs0

n + αs1
n , αs0

0 = 0 (4)

αs1
n+1 = αs0

n + βs0
n , αs1

0 = 0 (5)

αn = αs0
n + αs1

n , α∅ = 0 (6)
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s0 s1 s0 s0 s0 s1 s0

s0 s1 s0 s0 s1

s0 s1 s0

s0 s1

s0

s1

Tree(P )n

0

1

2

3

4

Fig. 4: Partial unfolding of the automaton of Fig. 3 into a tree up to depth 4.
The column labeled n denotes the number of transitions taken.

where:

– βq
n is the total number of n-length paths through P1 ending in state q, e.g.,

βs0
0 = 1, βs1

0 = 0, βs0
3 = 3, βs1

4 = 3. We encourage the reader to refer to
Fig. 4 and convince themselves that these examples hold.

– αq
n is the total number of accepting states visited along all n-length paths

through P1 restricted to paths terminating in state q, e.g., αs0
1 = 0, αs1

1 = 1,
αs0
3 = 2.

– αn is the total number of accepting states visited along all n-length paths
through P1, e.g., α0 = 0, α1 = 1, α2 = 2, α3 = 5, α4 = 10.

– α∅ is a dummy variable representing the initial condition of αn. Notice that
the αn term of the recurrence is unique in that no other term depends on it.

We determine each equation of the example recurrence relation as follows:
Equations (2) capture the number of paths of a certain length ending in state

s0. The initial value β
s0
0 is 1 because s0 is an initial state. Otherwise, notice that

s0 has two predecessors: s0 and s1. To walk an (n+1)-length path ending in s0,
it is necessary and sufficient to walk an n-length path to one of its predessors
and then take one more step. Hence, we compute βs0

n+1 as the sum of βs0
n and

βs1
n . Analogous reasoning yields Equations (3); notice the initial value βs1

0 is 0
since s1 is not an initial state.

Equations (4) capture the number of accepting states visited along all paths
of a certain length ending in state s0. Importantly, s0 is not an accepting state.
Therefore, adding it to an n-length path will not change the number of accepting
states visited along that path. Hence, as with β, we can compute αs0

n+1 as the
sum of αs0

n and αs1
n . The initial value αs0

0 is 0 because s0 is an initial state, but
not an accepting state.

Equations (5) capture the number of accepting states visited along all paths
of a certain length ending in state s1. Unlike s0, the state s1 is an accepting
state. Therefore, the (n+1)th step contributes to the number of accepting states
visited, in particular for each path it will increase the count by one. There are
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βs0
n such paths, hence the inclusion of that term in addition to the α of the

predecessor s0. The initial value αs1
0 is 0 because s1 is an accepting state, but

not an initial state.
Equations (6) capture the accepting states along all paths of a certain length.

The initial value α∅ is irrelevant; we use 0 for simplicity. Otherwise, this equation
merely captures the fact that we can partition the paths of length n based on
which state they end in and take a sum over that partition to compute a value
over all paths.

We can represent these recurrence relation as a matrix-vector pair (ξ1, v1),
where:

v1 =


α∅
αs0
0

αs1
0

βs0
0

βs1
0

 =


0
0
1
0
0

 and ξ1 =


0 1 1 0 0
0 1 1 0 0
0 1 0 1 0
0 0 0 1 1
0 0 0 1 0


E.g. row 1 of ξ1 indicates which terms are required to compute αn.

In general: The key to generalizing the above method is the set of predecessors
for each state and how each term should be computed using the predecessor
terms. Not shown in this example is the case where a state q is both an initial
state and an accepting state. In that case αq

0 is 1. Also there is at most one
transition between two states in this example. In general, there may be multiple
transitions between two states (with different labels). In that case, the equations
will include factors in front of the α and β terms. In particular,

βq′

n+1 =
∑
q∈Q

tq,q′ · βq
n

where tq,q′ is the number of transition labels that transition from q to q′ (Note:
tq,q′ is 0 if q is not a predessor of q′). Likewise:

αq′

n+1 =
∑
q∈Q

(tq,q′ · αq
n) + (t∗q,q′ · βq

n)

where t∗q,q′ is tq,q′ when q′ is an accepting state and 0 otherwise.
Now we explain the recurrence relation extraction algorithm in general. Let

P = M ||f be the synchronous product of some finite LTS M and some DFA f .
We explain how to extract both the recurrence matrix ξ and the initial condition
vector v from P .

In what follows, we assume that P has N states indexed by the set {1, ..., N}.
We first define a matrix that encodes the transition relation of P :

Definition 11. We define the N × N predecessor matrix, denoted D, by its
entries. We denote the entry in the ith row and jth column as Dij. Define Dij

to be the number of transitions from state j to state i in P . ⊓⊔

Next, we define a matrix that encodes the accepting states of P :
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Definition 12. We define the N × N accepting matrix, denoted A, so that
Aij = Dij if state i of P is an accepting state. Otherwise, Aij = 0. ⊓⊔

We are now able to define the recurrence matrix ξ:

Definition 13. The recurrence matrix of P is the (2N + 1)× (2N + 1) matrix

ξ =

0 1̂ 0̂

0̂ D A

0̂ 0 D


where 0̂ and 1̂ are n-dimensional vectors of 0’s and 1’s respectively and where 0
is an n× n matrix of 0’s. ⊓⊔

We now explain how to extract the initial condition vector v from P . We first
introduce some notation. For convenience, we vectorize the αq

n and βq
n terms. Let

α̂n := (α1
n, ..., α

N
n )T and β̂n := (β1

n, ..., β
N
n )T . Then, the two vectors α̂0 and β̂0

capture the initial conditions of terms αi
n and βi

n in the recurrence relation, and

we can construct the 2N +1 dimensional vector v by combining α̂0 and β̂0 along
with α∅ = 0, namely, v := (α∅, α̂0, β̂0)

T .

The vectors α̂0 and β̂0 are extracted from P as follows:
(1) The ith entry of α̂0 is 1 if and only if state i of P is both an accepting

state and an initial state. Otherwise, that entry of α̂0 is 0. (2) The ith entry of

β̂0 is 1 if and only if state i of P is an initial state. Otherwise, that entry of β̂0

is 0.
The following two statements (proven in Appendix A.4) capture the correct-

ness of our reduction.

Theorem 1. Let α and β be the recurrence relation terms for the product M ||fi,

as constructed above. Then for all n ⩾ 0, ξn+1
i vi =

 αn

α̂n+1

β̂n+1

. And hence (ξn+1
i vi)0 =

αn = sum(f ⊙Mn, i). ⊓⊔

Corollary 1. Let ξi and vi be the recurrence matrices and initial condition vec-
tors for the products M ||fi, for i = 1, ..., d, as constructed above. Then

@f (M) = lim
n→∞

h((ξn+1
1 v1)0, (ξ

n+1
2 v2)0, ..., (ξ

n+1
d vd)0)

⊓⊔

4.2 Step 3: Matrix Analysis

Next we will discuss two methods for solving the matrix analysis problem. One
of these methods is symbolic and the other numerical. We illustrate them by
continuing with the example of Fig. 3. We have constructed g1(n) = (ξn+1

1 v1)0.
For sake of example, let us assume that ξ1 = ξ2 and that v2 = ξ1v1, so g2(n) =
g1(n+ 1). Let us also assume that h(g1(n), g2(n)) = g1(n)/g2(n).
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Symbolic Method: The first step of the symbolic method is to compute closed-
form expressions for each gi. Tools such as Mathematica can do this using Jordan
decomposition [30]. We omit the details. The result is:

g1(n) =
1

25 · 2(1+n)

(
4
√
5kn

1 − 4
√
5cn1 − 5kn

1 n+ 5
√
5kn

1 n− 5cn1n− 5
√
5cn1n

)
where c1 := 1 +

√
5 and k1 := 1−

√
5. As mentioned, g2(n) = g1(n+ 1).

Once we have the closed-form expressions, we can ask Mathematica to solve
the limit; it does so easily: limn→∞ g1(n)/g2(n) = 2/(1 +

√
5). This value may

be readily familiar to some as the reciprocal of the golden ratio. Tools such as
Mathematica can solve a broad class of limits using, e.g., Gruntz’s method [28].

Computing the Jordan decomposition is currently the bottleneck for the sym-
bolic method. Our experiments with Mathematica suggest that it cannot com-
pute the Jordan decomposition for even moderately sized matrices, the runtime
being exponential in the dimension of the matrix. There have been several recent
attempts to improve the state of the art in Jordan decomposition [27,42] and
we are hopeful that this subproblem will soon be feasible to compute for large
matrices.

Numerical Method: In this method, we compute h(g1(K), g2(K)) for large
K, which we call a K-approximation. Although we have not yet established
an error bound on the difference between the K-approximation and the true
value of the limit, the K-approximation appears to converge relatively quickly.
For instance, in the case of Example 3, the K-approximation for K = 15 and
K = 20 are 0.6180344 and 0.6180339 respectively, which do not differ until the
seventh decimal place. Our current approach is to compute the K-approximation
for, e.g., K = 8192 and K = 9000 and determine at which decimal place they
differ to establish the precision of the K-approximation for K = 9000. We can
also plot intermediate K-approximations against K.

A naive implementation of K-approximation does not scale. Instead, we
use the standard exponentiation by squaring technique to quickly compute K-
approximations for large K. For example, to compute M11 for some matrix M ,
it suffices to compute M2,M4, and M8, since M11 = M · M2 · M8. Note that
M4 = (M2)2 and M8 = (M4)2, hence the name exponentiation by squaring. We
need only compute logK squares and combine them per the binary representa-
tion of K. Furthermore, in our implementation, we found that we needed large
datatypes (128 bit) to represent the entries of the matrix. As matrix power for
large datatypes appears to not be implemented in the linear algebra library we
used (numpy), we implemented this operation ourselves.

Comparison: The symbolic method gives an exact, symbolic representation of
the fitness score, but unfortunately does not yet scale well, as we shall see from
the experiments in Section 5 that follows. The numerical approach on the other
hand can compute in seconds an approximation of the fitness score. As we shall
show, these approximations are precise enough to distinguish between systems
of different fitness.
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5 Case Studies

We evaluate our framework on three case studies, described in detail in the
subsections that follow, and summarized in Table 1. The symbolic method did
not terminate after an hour for the larger two case studies (2PC and ABP)
due to limitations imposed by the state of the art in Jordan decomposition (c.f.
Section 4.2). Therefore, Table 1 reports the results obtained by the numerical
method.

In each case study we compute the fitness score for different system variants
(column M). Column |M | represents the size (total number of states) of the
system being measured, which is the product of all distributed processes. Time
refers to the total execution time, in seconds. Column @f (M8192) refers to the
K-approximation of the fitness score with K = 8192, and likewise for K = 9000.
As can be seen, the two approximations are very close within each row (identical
up to at least the 3rd decimal point), which indicates convergence. The reason
we report the fitness score for K = 8192 instead of another number, say K =
8000 or K = 8500, is efficiency: 8192 the largest power of two less than 9000,
and in order to compute the fitness score for K = 9000 we need to compute it
anyway for K = 8192. Our results can be reproduced using a publicly available
artifact, which is structured, documented, and licensed for ease of repurposing
[22].

Let us remark that in the 2PC and ABP case studies, the systems being
measured were automatically generated by a distributed protocol synthesis tool,
which is an improved version of the tool described in [5,6]. As our goal in this
paper is fitness evaluation, we omit discussing the synthesis tool. But, as men-
tioned in the introduction, evaluation of automatically synthesized systems is a
promising application of our framework.

All case studies use the @avg aggregate function. Additionally, we use three
variations of the fitness function in Fig. 5. This parametric fitness function sug-
gests the possibility of constructing a library of general, reusable fitness func-
tions. Although it was straightforward to construct fitness functions for our
purposes, this library would further reduce that burden for users.

In the rest of this section we provide further details on each case study. Some
supporting figures and intermediate results are provided in Appendix A.5.

5.1 Case Study #1: Simple Communication Protocol

This section treats the communication protocol presented in Example 1. We in-
stantiate the framework to measure the average rate at which send-ack sequences
are executed and apply this instance of the framework to M and M ′ (Fig. 1).
The python representations of all simple communication protocol processes and
fitness functions are available in toy automata.py of the artifact [22].

Recall that Σ = {s, t, a}. Let f1(w) := ‘the number of send-ack sequences
of the form st∗a in w’. For instance (brackets [ and ] added for emphasis),
f1(aat[sa][sta]as[stta]stt[sa]) = 4. Additionally, let f2(w) := |w| (the length of
w) and let the fitness function be f := ⟨f1, f2⟩. The functions f1, f2 can be
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case study M |M | total time (sec.) @f (M8192) @f (M9000)

simple comm. good 3 0.0052 0.249970 0.249972
simple comm. bad 5 0.006 0.138165 0.138168
2PC H 58 0.41 0.0833 0.0832
2PC A1 30 0.25 0.07856 0.07857
2PC A2 25 0.1 0.0833 0.0832
ABP HH 144 9.1 0.016864 0.016859
ABP HA 144 8.6 0.015435 0.015430
ABP AH 144 8.7 0.015218 0.015212
ABP AA 144 8.6 0.01391 0.01390

Table 1: A summary of the numerical method results of the three case studies.

represented as the DFA shown in Fig. 5, with L = {s} and R = {a}. This fitness
function is measuring the number of send-ack sequences per unit of discrete
time, which is analogous to the traditional measure of throughput in distributed
systems.

f1
1

f2
1

f3
1

L

R
RL

f1 := L

L

f1
2 f2

2f2 :=

Σ

Σ

Fig. 5: The DFA representations of f1 and f2 for the case studies, parameterized
by the set of labels Σ, as well as a set of left endpoints L ⊆ Σ and right endpoints
R ⊆ Σ. L = Σ \ L and likewise for R.

As reported in Table 1, the system that uses the good receiver has a fitness
score of about 0.25 and the system using the bad receiver a score of about 0.138.
These scores are interpretable in that they have units: send-ack sequences per
unit of discrete time. Hence, the framework deems the good receiver as more
fit and this determination aligns with our intuitions. Because this example is
relatively small, Mathematica was able to compute the exact fitness scores of
these systems. The system that uses the good receiver has a fitness score of
exactly 1/4 (obtained after 34 seconds) and the system that uses the bad receiver

has a score of exactly 5−
√
5

20 ≈ 0.138 (obtained after 563 seconds).

5.2 Case Study #2: Two Phase Commit (2PC)

Two phase commit (2PC) is a protocol for making transactional changes to
a distributed database atomically; if one sub-operation of the transaction is
aborted at one remote database, so too must the sub-operations at all other
remote databases. Although each iteration of 2PC is terminating, it is typical
to assume there will be infinitely many such iterations, and our model reflects
this. In our model of 2PC, a user initiates a transaction by synchronizing with
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a transaction manager on the label x. The transaction is complete when the
transaction manager synchronizes with the user on label fail or succ. We omit
the details of the intermediate exchanges between the transaction manager and
database managers. The python representations of all 2PC processes and fitness
functions are available in 2pc automata.py of the artifact [22].

The fitness function for this case study is as depicted in Fig. 5, with L = {x},
R = {fail, succ}, and Σ has a total of 18 labels. This fitness function measures
the rate at which transactions are initiated and then completed.

We study three 2PC implementations, each using a different transaction man-
ager LTS. The system labeled H in Table 1 uses a previously manually con-
structed transaction manager that the synthesis tool was also able to discover
automatically, while the systems labeled A1 and A2 use new transaction man-
agers generated by the synthesis tool. The automatically generated transaction
managers have 12 states each and it is therefore hard to tell at a glance which
will give rise to the most efficient protocol. Our tool automatically reports, in
fractions of a second, a fitness score of about 0.083 for both systems H and A2,
and a score of about 0.079 for system A1. These fitness scores have units: trans-
actions per unit time. Hence, in the same amount of time, A1 completes about
5% fewer transactions than H or A2.

5.3 Case Study #3: Alternating Bit Protocol (ABP)

The Alternating Bit Protocol (ABP) allows reliable communication over an un-
reliable network. As with the prior two case studies, we use the fitness function
depicted in Fig. 5, except with L = {send}, R = {done}, and Σ of size 12. Sim-
ilar to case study #1 we are measuring the rate of send-done sequences. The
python representations of all ABP processes and fitness functions are available
in abp automata.py of the artifact [22].

In [6], the authors present a method to automatically synthesize (distributed)
ABP sender and receiver processes. Here, we evaluate the fitness of the ABP
variants that use these various synthesized processes. Together the synthesized
sender and receiver processes have 14 states, which again makes manual determi-
nations about the fitness very challenging—even more so due to the distributed
nature of the problem. It is no longer necessarily a question of which sender
or receiver is better than the other sender or receiver, but a question of which
combination of sender and receiver is best. Once again, our framework allows to
automatically make this determination in a matter of seconds.

The systems are ranked by fitness in the following order: HH, HA, AH, AA.
H stands for human-designed (and then also rediscovered during synthesis) and
A stands for newly discovered during synthesis. In this case study, the newly
discovered processes do worse than the manually constructed processes. The
difference in fitness scores is meaningful: in the same amount of time, AA will
complete about 18% fewer sequences on average. AH and HA will both complete
about 8.5% fewer sequences than HH.
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6 Related Work

Our work is broadly related to the field of performance analysis and evalua-
tion. Mathematical models typically used there include Markov Chains, Markov
Decision Processes, Markov Automata, queueing models, Petri nets, timed or hy-
brid automata, etc., e.g., see [9,15,16,17,24,33,34,35]. Our approach differs as our
mathematical framework uses neither timed nor probabilistic models such as the
ones above. Because we do not use stochastic models, our work is also different
from the work on probabilistic verification, e.g., see [8,9,10,18,32]. Our work also
differs from performance analysis approaches that use max-plus algebra based
frameworks such as the real-time calculus, e.g., see [29,37,44,45].

Our work is also related to non-boolean interpretations of temporal seman-
tics, such as the 5-valued robust temporal logic rLTL [7,43]. However, our moti-
vation is performance comparisons rather than robustness. Our framework also
differs from that of signal temporal logic (STL) [11,12,26,38,39,40,41], which is
valued over real-time traces. Our framework is over discrete traces, although
there have been recent STL extensions which handle both real and discrete
time [25]. In addition, our framework is parameterized by generic quantitative
concepts (the fitness and aggregate functions and the comparison relation) that
are present neither in rLTL nor in STL or its variants.

Our work is closely related to the field of quantitative verification, synthesis,
and games, e.g., see [1,2,13,14,19,20,21,31]. Typically, these works assign values
to weighted automata. These automata blend in a single model both the descrip-
tion of the system and the description of any performance or fitness functions
associated with the system. In comparison, our framework decouples the descrip-
tion of the system (e.g., a plain LTS without any weights) from the description
of the fitness function (e.g., a DFA). Our semantical framework is also very gen-
eral and can handle multi-dimensional fitness functions and arbitrary aggregate
functions, not just sup, which is the only aggregate supported by these works.

Sensing cost, described in [4], measures how many signals each state of a
system needs to observe in order to make a decision. The sensing cost of a run
is the average sensing cost of the states visited along that run. The sensing cost
of a system is the expected sensing cost along all runs. Finally, the sensing cost
of a language is the minimal sensing cost across all automata that accept that
language. It seems the primary focus of this work is to establish a complexity
measure for languages, but it can certainly be used to compare two systems.
Sensing cost can be viewed as a particular fitness criteria, but it is a syntactic
metric, whereas our framework considers semantic metrics. Sensing cost is syn-
tactic in the sense that it is computed over runs of states rather than runs of
transition symbols and it primarily uses quantities that are captured statically
from the transition function. Finally, sensing cost is measured solely with respect
to input symbols and thus in some sense only measures how well a system can
cope with the environment. On the other hand, our framework makes measure-
ments over all symbols and can therefore yield results about e.g. the rate at
which the system does a good thing.
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Propositional quality, presented in [3], is another way to measure the fitness
of a system. Like our work, the framework used here is parameterized by arbi-
trary functions. Unlike our work that uses DFA’s to specify fitness criteria, the
authors formalize what they call quality using a quantitative variant of LTL.
The emphasis of their paper is that this variant of LTL has computational prob-
lems that are analogous to those of traditional LTL and that these problems can
be solved by natural extensions of non-quantitative algorithms without much if
any additional run-time complexity overhead. There is no obvious reduction be-
tween our framework and propositional quality because the arbitrary functions
introduced by the latter can only consider sub-traces of a fixed size and they do
not take any limits, sup, inf, etc over this size parameter. In particular, it isn’t
obvious how propositional quality could express average throughput of a trace in
the limit as we do for our case studies. Conversely, there is no obvious reduction
of their work to our treatment of LTS with DFA fitness criteria, namely because
their logic formulas induce a sort of recursive computation that can never be
captured by a DFA. Their focus is on worst-case behavior whereas our focus has
been on average-case behavior.

7 Conclusions and Future Work

We proposed a formal framework that assigns fitness scores to systems modeled
as finite LTSs. The main novelty of our framework is that it decouples the de-
scription of the system from the set of domain-specific parameters such as fitness
and aggregate functions, which determine the final fitness score. Furthermore,
the user defines these fitness scores and aggregate functions over partial runs,
which are easier for the user to reason about—our framework does the heavy
lifting of extending this reasoning to infinite traces. This decoupling and finite
reasoning make our framework more useable and its results more interpretable.
Indeed, in all of our case studies the scores are not merely numbers; they have
meaningful units, e.g., send-ack sequences per unit of time.

We used our framework to evaluate the automatically synthesized ABP proto-
cols presented in [6] as well as our own automatically synthesized 2PC protocols.
We showed that some of these protocols are better than others. Inspired by this
application, we plan to investigate the use of our framework in protocol synthe-
sis, specifically in synthesizing protocols that not only satisfy a given correctness
specification but are also optimal with respect to a fitness score.

We are also actively exploring ways to improve the scalability of the sym-
bolic method. In particular, we may be able to feasibly compute a simplified
version of the the recurrence matrix ξi without sacrificing the accuracy of the
final computed limit. Additionally, we would like to generalize our method to
aggregates like min /max, which do not have conditional representations, and
to systems that cannot be represented as finite labeled transition systems. We
suspect that best/worst-case analysis reduces to the minimal cost-to-time ratio
problem [36], but in general aggregates with no conditional representation may
be more challenging.
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A Appendix

A.1 Example Illustrating Oscillating Fitness Score

Example 11 (Oscillating Fitness Score). Here we provide an example of a system
which does not have a well-defined fitness score w.r.t. rate of $. Let M = {x}
be a system with just one trace. Below are some example of the prefixes of this
x. This trace is pathological, unlikely to be seen by itself in the real world. We
craft it specifically so that for all prefixes of x, there are two longer prefixes, x1

and x2, such that rate$(x1) = 1/2 and rate$(x2) = 3/4. It follows immediately
that this fitness score oscillates between 1/2 and 3/4 in the limit.

Prefix #$ : #0 rate$

0$ 1 : 1 1/2

0$$$ 3 : 1 3/4

0$$$00 3 : 3 1/2

0$$$00$$$$$$ 9 : 3 3/4

0$$$00$$$$$$000000 9 : 9 1/2

0$$$00$$$$$$000000$$$$$$$$$$$$$$$$$$ 27 : 9 3/4

...

⊓⊔
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A.2 Fitness-Optimal Synthesis Problem

In addition to the fitness score evaluation and comparison problems considered at
the end of Section 3, we can also consider the following fitness-optimal synthesis
problem. First, we define the following notion of fitness-optimality:

Definition 14 (Fitness-optimality). Let F = ⟨Σ, f,@,≼, φ⟩. We say that
system M∗ is optimal w.r.t. F if M∗ |= φ and for all systems M such that
M |= φ, we have @fM

∗ ≼ @fM . ⊓⊔

We can then consider the following synthesis problem: Given fitness function
f , aggregate function @, comparison relation ≼, and specification φ, compute, if
it exists, a system which is fitness-optimal with respect to F = ⟨Σ, f,@,≼, φ⟩. It
is possible that such a system either does not exist or is not unique.

Studying fitness-optimal synthesis is beyond the scope of the current paper
and is left for future work.

A.3 Example of Definition 3 Continued

Consider again the fitness function represented by DFA f1 and f2 shown in
Fig. 2.

On input $0$$0, f1 visits the sequence of states (where circles denote accept-
ing states)

f0
1 , f1

1 , f0
1 , f1

1 , f1
1 , f0

1

and therefore, as desired, f1($0$$0) = 3. On the same input f2 visits

f0
2 , f1

2 , f1
2 , f1

2 , f1
2 , f1

2

and therefore f2($0$$0) = 5. Hence, f($0$$0) = (3, 5), which is an analog for
the rate 3/5.

A.4 Proof of Correctness

We prove that the recurrence matrix and the initial condition vector enable us to
compute sum(f ⊙Mn, i). This section aims to show sum(f ⊙Mn, i) = (ξn+1

i vi)0.
We will first prove several lemmas. We fix i and write ξ and v rather than ξi
and vi

Lemma 3. For all n ⩾ 0, β̂n+1 = Dβ̂n ⊓⊔

Proof. Consider the following derivation.

Dβ̂n =

D1β̂n

...

DN β̂n

 =



N∑
i=1

D1,iβ
i
n

...
N∑
i=1

DN,iβ
i
n


=



N∑
i=1

t1,iβ
i
n

...
N∑
i=1

tN,iβ
i
n


(∗)
=

β
1
n+1
...

βN
n+1

 = β̂n+1
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where tk,i is the number of transitions from i to j.

All of these steps follow from definition, but step (∗) is worth clarifying. If i
is a predessor of j, then all n-length paths leading to i can be extended by next
going to state j. Hence, the number of (n+ 1)-length paths ending in j is equal
to

N∑
i=1

tj,iβ
i
n

⊓⊔

Lemma 4. For all n ⩾ 0, α̂n+1 = Dα̂n +Aβ̂n ⊓⊔

Proof. This lemma follows from a very similar derivation to that in Lemma 3.
We omit it. ⊓⊔

Armed with these lemmas, we can prove the primary result of this paper,
first stated in Section 4.1.

Proof of Theorem 1.

Proof (By induction). We first prove the base case where n = 0.

ξv
(Def)
=

0 1̂ 0̂

0̂ D A

0̂ 0 D

 0
α̂0

β̂0

 =


∑

α̂0

Dα̂0 +Aβ̂0

Dβ̂0

 (L3, L4)
=

α0

α̂1

β̂1


and now we prove the inductive case.

ξn+1v = ξξnv
(IH)
=

0 1̂ 0̂

0̂ D A

0̂ 0 D

αn−1

α̂n

β̂n

 =


∑

α̂n

Dα̂n +Aβ̂n

Dβ̂n

 (L3, L4)
=

 αn

α̂n+1

β̂n+1


⊓⊔

Proof of Corollary 1.

Proof. For each fi||M , (ξn+1
i vi)0 = αn by Theorem 1. By definition, αn is the

total number of accepting states visited across all length n paths through M ||fi.
Therefore, (ξn+1

i vi)0 = sum(f ⊙Mn, i). The corollary follows:

@f (M) = lim
n→∞

h(sum(f ⊙Mn, 1), sum(f ⊙Mn, 2), ..., sum(f ⊙Mn, d))

= lim
n→∞

h((ξn+1
1 v1)0, (ξ

n+1
2 v2)0, ..., (ξ

n+1
d vd)0)

⊓⊔
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A.5 Case Studies: Intermediate Results and Additional Figures

We first point to the intermediate results for the system using the good receiver
for the toy communication protocol of Example 1. Figs. 6 and 7 are the interme-
diate results of steps and 1 and 2 of the algorithm, respectively. Fig. 8 shows the
symbolic expressions used to compute the limit exactly. Likewise for the system
using the bad receiver, see Figs. 9, 10, and 11. Fig. 12 shows a plot of the inter-
mediate K-approximations necessary to compute the final K-approximations,
where K = 9000.

The 2PC transaction managers are depicted in Figs. 13, 14, and 15. Due to
space, we do not include the intermediate calculations for the 2PC case study,
but the plot of the K-approximations can be found in Fig. 16.

The ABP receivers of [6] are depicted in Figs. 17 and 18 as well as two of
their senders in Figs. 19 and 20. The plot of the K-approximations can be found
in Fig. 21.

p10

p30 p21 p22

M ||f1 = s

a

s t
s

p10

p20 p21 p22

M ||f2 = s

a

s t
s

Fig. 6: Synchronous products M ||f1 and M ||f2. In M ||fk, state pji corresponds

to the pair of states pi of M and f j
k of fk.

D(1) =


0 0 0 0
1 0 1 1
0 1 0 0
0 1 0 0

 A(1) =


0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

 ξ1 =

0 1̂ 0̂

0̂ D(1) A(1)

0̂ 0 D(1)



α̂
(1)
0 = 0̂ β̂

(1)
0 =

[
1

0̂

]
v1 =

 0

α̂
(1)
0

β̂
(1)
0


D(2) = D(1) A(1) = D(2) ξ2 =

0 1̂ 0̂

0̂ D(2) A(2)

0̂ 0 D(2)


α̂
(2)
0 = 0̂ β̂

(2)
0 =

[
1

0̂

]
v2 =

 0

α̂
(2)
0

β̂
(2)
0



Fig. 7: The recurrence matrices and initial condition vectors ξk, vk correspond to

M ||fk and their intermediate components are D(k), A(k), α̂
(k)
0 , β̂

(k)
0 .



Decoupled Fitness Criteria for Reactive Systems 27

g1(n) = sum(f ⊙Mn, 1) ={
2

n−9
2

(((√
2− 2

)
(−1)n +

√
2 + 2

)
n− 2

((√
2− 1

)
(−1)n +

√
2 + 1

))
n > 0

0 n = 0

g2(n) = sum(f ⊙Mn, 2) ={
2

n−5
2

(√
2(−1)n − 2(−1)n +

√
2 + 2

)
(n− 1) n > 0

0 n = 0

Fig. 8: The symbolic, arithmetic expression for sum(f ⊙ Mn, 1) and sum(f ⊙
Mn, 2). When taking a limit, we can ignore the cases where n = 0.
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′
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′
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′

p24
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s
M ′||f2 =

Fig. 9: Synchronous products M ′||f1 and M ′||f2. In M ′||fk, state pji
′
corresponds

to the pair of states p′i of M
′ and f j

k of fk.

D′(1) =


0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 1 0 0

 A′(1) =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

 ξ′1 =

0 1̂ 0̂

0̂ D′(1) A′(1)

0̂ 0 D′(1)



α̂
′(1)
0 = 0̂ β̂

′(1)
0 =

[
1

0̂

]
v′1 =

 0

α̂
′(1)
0

β̂
′(1)
0


D′(2) = D′(1) A′(1) = D′(2) ξ′2 =

0 1̂ 0̂

0̂ D′(2) A′(2)

0̂ 0 D′(2)


α̂
′(2)
0 = 0̂ β̂

′(2)
0 =

[
1

0̂

]
v′2 =

 0

α̂
′(2)
0

β̂
′(2)
0



Fig. 10: The recurrence matrices and initial condition vectors ξ′k, v
′
k correspond

to M ′||fk and their intermediate components are D′(k), A′(k), α̂
′(k)
0 , β̂

′(k)
0 .
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g′1(n) = sum(f ⊙M ′
n, 1) =

k2m
1 (2−c5m)−c2m1 (k5m+2)

4m5c0
n = 4m

2
√

2k1c
2m
1 −2k

2m+1
2

1 +4
√
2k5m(k2m

1 +c2m1 )+(√c1−2
√
2)k2m+1

1

22m+3/25k5
n = 4m+ 1

4
√

k1c
2m
1 −4k

2m+1
2

1 −8
√
5k1(k2m

1 +c2m1 )m
22m+15k5

√
c1

n = 4m+ 2

−8
√

2k1c
2m
1 +2k2m+1

1 −4
√
2k1(k5k

2m
1 +c5c

2m
1 )m+(8

√
2+

√
c1−

√
5c1)k

2m+1
2

1

22m+3/25k5
√
c1

n = 4m+ 3

Fig. 11: The symbolic, arithmetic expression for sum(f⊙M ′
n, 1). This expression

can be represented as a non-piecewise function using complex numbers; indeed
that is how Mathematica expresses it by default. The terms cj , kj are

√
5 + j

and
√
5 − j respectively. The term m := ⌊n/4⌋. We omit the expression for

sum(f ⊙M ′
n, 2).

Fig. 12: A graph of theK-approximation againstK for the simple communication
protocol case study.
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m0 m1 m2 m3

m5 m4m6m7

m11 m10 m9 m8

MH
x? x1! x2!

no∗?

yes∗?
yes∗?cm1!cm2!

succ!

fail!

ab2! ab1! yes∗?
no∗?

x?
yes∗?,no∗?

x?

Fig. 13: The transaction manager used by the 2PC system labeled H. The label
yes∗ denotes both yes1 and yes2. Likewise for no∗.

m0 m1 m2

m3m5

m4

m6m7

m11 m10 m9 m8

MA
x? x1!

cm1!cm2!

succ!

fail!

ab2! ab1!

yes∗?,no∗?
x?

yes1?

no1?yes2?

no2?

x2!

x2!

yes∗?
no∗?

x?

Fig. 14: The transaction manager used by the 2PC system labeled A1. The label
yes∗ denotes both yes1 and yes2. Likewise for no∗.
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m0 m1 m2

m3m5

m4

m6m7

m11 m10 m9 m8

MA
x? x1!

cm1!cm2!

succ!

fail!

ab2! ab1!

yes∗?,no∗?
x?

yes1?

no1?yes2?

no2?

x2!

yes∗?
no∗?

x?

x2!

Fig. 15: The transaction manager used by the 2PC system labeled A2. The label
yes∗ denotes both yes1 and yes2. Likewise for no∗.

Fig. 16: A graph of theK-approximation againstK for the 2PC case study. Note:
@f (Hk) and @f (A2k) overlap completely.
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r0 r1 r2

r5 r4 r3

p′0? deliver!

a0!a1!

p′1?

p′1? p′0?

RecH :=

deliver!

Fig. 17: A manually constructed ABP receiver from [6]. Note: the synthesis algo-
rithm of [6] was able to automatically synthesize this receiver, but we will refer
to it as the human-made receiver.

r0 r1 r2

r5 r4 r3

p′0? deliver!

a0!a1!

p′1?

deliver!
p′1? p′0?

RecA :=

Fig. 18: An automatically synthesized ABP receiver from [6]. We will refer to
this receiver as the algorithm-made receiver.
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send?
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a′
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done!

send?
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a′
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done!

timeout?

timeout?

timeout?

send?

a′
0?

timeout?

a′
0?, a

′
1?

a′
1?

send?

SndrH :=

Fig. 19: A manually constructed ABP sender from [6]. We will refer to this sender
as the human-made sender.
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s0

s4 s1

s2

s7

s6 s5

s3

a′
0?, a

′
1?

timeout?

send?

a′
0?

done!

send?, a′
1?

p1!a′
1?

send?

done!

timeout?

p0!

send?a′
1?

a′
0?

timeout?
a′
0?, timeout?

SndrA :=

Fig. 20: An automatically synthesized ABP sender from [6]. We will refer to this
sender as the algorithm-made sender.

Fig. 21: A graph of the K-approximation against K for the ABP case study.
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