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Abstract. Semantic geospatial applications, such as geographic ques-
tion answering, have benefited from knowledge graphs incorporating
information regarding geographic entities and their relations. However,
one of the most critical limitations of geographic knowledge graphs is
the lack of semantic relations between geographic entities. The most
extensive knowledge graphs specifically tailored to geographic entities are
extracted from unstructured sources, with these graphs often relying on
datatype properties to describe the entities, resulting in a flat represen-
tation that lacks entity relationships. Therefore, predicting links between
geographic entities is essential for advancing semantic geospatial appli-
cations. Existing neural link prediction methods for knowledge graphs
typically rely on pre-existing entity relations, making them unsuitable
for scenarios where such information is absent. In this paper, we tackle
the challenge of predicting spatial links in sparsely interlinked knowl-
edge graphs by introducing two novel approaches: supervised spatial
link prediction (SSLP) and unsupervised inductive spatial link predic-
tion (USLP). These approaches leverage the wealth of literal values in
geographic knowledge graphs through spatial and semantic embeddings.
To assess the effectiveness of our proposed methods, we conduct evalua-
tions on the WorldKG geographic knowledge graph, which incorporates
geospatial data extracted from OpenStreetMap. Our results demonstrate
that the SSLP and USLP approaches substantially outperform state-of-
the-art link prediction methods.

Keywords: Knowledge Graph Completion · Spatial Link Prediction ·
Literals

1 Introduction

Knowledge graphs (KGs) serve as standardized semantic knowledge represen-
tations that facilitate the integration, inference, and relationship establish-
ment among heterogeneous data sources. Domain-specific geographic knowledge
graphs are specialized knowledge graphs that focus on representing locations on
Earth. Although knowledge graphs are widely adopted in various semantic appli-
cations, their incompleteness remains a challenging problem. Link prediction in
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knowledge graphs has attracted a lot of research attention recently [7,21,28,30].
However, existing link prediction methods primarily focus on well-connected
graphs with well-defined and structured object properties. Such methods often
neglect rich semantic information in datatype properties that capture essential
attributes of geographic entities such as names, descriptions, and spatial coordi-
nates.

An example of a recently proposed geographic knowledge graph is WorldKG
[8], which includes various entities representing geographic locations extracted
from OpenStreetMap (OSM)1. As illustrated in Fig. 1, WorldKG contains the
entity wkg:10021976 representing the city of Leicester, located in the county
of Leicestershire in the United Kingdom. Although WorldKG also contains the
entities wkg:838090640 representing the United Kingdom and wkg:302324104
representing the county of Leicestershire, there are no links between these entities
in the knowledge graph. The entity representing Leicester includes the spatial
relations wkgs:isInCountry and wkgs:isInCounty associating this entity with the
literals “United Kingdom” and “Leicestershire”, while lacking the links to the
corresponding entities. Spatial link prediction can help interlink these geographic
entities to further exploit the information in the knowledge graph.

In the context of link prediction to identify spatial relations between geographic
entities, for instance, wkgs:capitalCity, wkgs:isInCountry, wkgs:isInCounty,
spatial and literal values are critical. These values play a vital role in indicat-
ing entity proximity and the types of spatial relationships. Spatial link predic-
tion can enhance the expressiveness of knowledge graphs, making it possible
to solve complex spatial queries, reveal transitive relations, and eliminate geo-
graphic disambiguation issues. Downstream tasks in geospatial question answer-
ing, data retrieval, and cross-domain semantic data-driven applications in mobil-
ity, tourism, logistics, and city planning can also benefit significantly from accurate
representations of spatial semantics in knowledge graphs.

Only few link prediction methods utilize textual entity descriptions [4,12]
or numeric literals [23,27,28] to supplement the information provided through
the graph structure. However, these approaches do not perform well without
structural information from entity relations or in the presence of heterogeneous
textual and numerical datatype properties of varied lengths [10]. Name disam-
biguation is another challenge when linking geographic entities, primarily due
to the presence of homonymous names, synonyms, and variations. For instance,
Toronto is a city’s name in Canada and the USA. Similarly, Germany, DE, and
Deutschland refer to the same country. Explicit spatial and contextual infor-
mation is crucial for accurate spatial linking. Furthermore, existing approaches
typically operate in transductive settings, aiming to predict the links between
entities known at training time, whereas predicting links in the inductive set-
tings, where the entities unseen during training appear, is a more difficult task
[2].

1 OpenStreetMap, OSM and the OpenStreetMap magnifying glass logo are trademarks
of the OpenStreetMap Foundation, and are used with their permission. We are not
endorsed by or affiliated with the OpenStreetMap Foundation.
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Fig. 1. An excerpt from the WorldKG knowledge graph [8], illustrating three entities
wkg:10021976, wkg:838090640, wkg:302324104 representing Leicester, United King-
dom and Leicestershire, respectively. Arrows in orange indicate potential spatial links
currently missing in the WorldKG knowledge graph.

In this paper, we tackle the problem of spatial link prediction and introduce
two novel approaches: Supervised Spatial Link Prediction (SSLP) and Unsuper-
vised Spatial Link Prediction (USLP). These approaches are designed to operate
in different modes, namely transductive and inductive link prediction. The SSLP
architecture leverages location embedding and word embeddings to capture lit-
eral and spatial semantics, followed by enhancement of the tail embeddings using
multi-head attention and a hierarchy-based scoring function to learn the contain-
ment hierarchy of geographic entities. In USLP, we score the tail entities for a
given triple by computing the similarity between head, relation, and tail in dif-
ferent latent spaces based on geographic proximity and literal properties.

In summary, the main contributions of this paper are as follows:

– We propose two novel approaches, SSLP and USLP, for supervised and unsu-
pervised spatial link prediction. These approaches leverage literal and geospa-
tial semantics by incorporating spatial and semantic embeddings.

– We assess the performance of existing knowledge graph completion meth-
ods on the task of spatial link prediction in real-world scenarios where the
knowledge graph lacks entity relationships.

– Through extensive experiments, we demonstrate that our proposed
approaches outperform the baseline methods by a significant margin in terms
of the Hits@k metric. These results highlight the effectiveness of our proposed
approaches in spatial link prediction tasks.
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2 Problem Statement

In this section, we formally define RDF Knowledge Graph, Geographic Entity and
Spatial Relation, following which we state the problem of Spatial Link Prediction
addressed by our work.

Definition 1 (RDF Knowledge Graph). An RDF Knowledge Graph is a
directed edge labeled multigraph represented by a set of triples G = {(h, r, t) ∈
E ×R× (E ∪L)}, where E = a set of entities, R = a set of relations, L = T ∪N
is the union of the set of textual literal values T and numeric literal values N .

For any triple (h, r, t) ∈ G, we refer to the entity h as the head or subject
entity, the entity t as the tail or object entity and the edge label r as relation or
predicate of the triple. GE is a set of relational triples representing object links,
and GL is a set of triples representing datatype properties linking entities to
literal values. Hence, GE = {(h, r, t) ∈ G | t ∈ E} and GL = {(h, r, t) ∈ G | t ∈ L}.
The triples in G are the union of the two disjoint sets GE and GL, therefore
G = GE ∪ GL and GE ∩ GL = ∅.

Let Egeo ⊆ E be the set of all geographic entities in the knowledge graph.

Definition 2 (Geographic Entity). An entity e ∈ Egeo is a geographic entity
⇔ ∃r ∈ R such that r associates e to geographic coordinates (latitude and longi-
tude).

Spatial relations are connections between two geographic entities. These con-
nections can imply physical entity relations such as containment, intersection,
and adjacency, or conceptual relations such as capital, country, and suburb.

Definition 3 (Spatial Relation). Let Rspatial ⊂ R be a set of all spatial
relations. A relation rsp ∈ Rspatial is a spatial relation if ∀(h, rsp, t) ∈ G it holds
h, t ∈ Egeo, i.e., h and t are geographic entities.

Spatial link prediction is the task of predicting spatial relations between
geographic entities in a knowledge graph.

Definition 4 (Spatial Link Prediction). Given a knowledge graph G, a geo-
graphic entity h ∈ Egeo and spatial relation rsp ∈ Rspatial, find the geographic
entity t ∈ Egeo such that (h, rsp, t) ∈ G holds.

3 Approach

We tackle the spatial link prediction problem with spatial and semantic embed-
dings and propose novel supervised and unsupervised approaches. In this section,
we describe the embedding generation process and the proposed approaches. The
supervised SSLP approach operates in the transductive link prediction setup. In
transductive link prediction, the model predicts links between entities known
during training; hence, training and prediction are conducted on the same set of
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Fig. 2. Overview of spatial and semantic embedding generation of an entity and the
architecture of SSLP model.

entities [2]. However, novel entities can emerge in knowledge graphs over time.
The inductive link prediction setup reflects this scenario by facilitating spatial
link prediction for unseen entities that do not appear during model training.
Hence, in contrast to the transductive mode, links are predicted between seen
and unseen entities of the knowledge graph. Our unsupervised USLP approach
operates in this setting.

3.1 Spatial and Semantic Embedding of Entities

We utilize the datatype properties of a geographic entity to compute entity
embeddings that capture its spatial and semantic information. The embedding
generation process overview is illustrated in Fig. 2.

A geographic entity in a knowledge graph has geographic coordinates (lati-
tude and longitude) associated with it. We embed these coordinates using the
location encoding scheme proposed by Mai et al. [16] as a dloc dimensional vector.
Using sine and cosine functions of different frequencies, the location coordinates
x ∈ R

2 in 2D space are embedded as X ∈ R
dloc -dimensional distributed represen-

tation. We consider the rdfs:label and wkgs:nameEn properties, which contain
the entity label and name in the English language, and embed each of these
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values using pre-trained fastText word embedding [6]. We sum the word embed-
dings for rdfs:label and wkgs:nameEn to obtain a single embedding W ∈ R

dlabel .
The rdf:type property associates an entity to a class in an ontology. The entity
type value is embedded using pre-trained fastText word embeddings to generate
type embeddings T ∈ R

dtype that capture word semantics.
The location, name-related embeddings, and type embeddings are concate-

nated to produce the static embedding S ∈ R
dloc+dlabel+dtype of an entity. To

create the dynamic embedding for each entity, we first concatenate the remain-
ing heterogeneous predicates and their values to form a single sentence and then
embed the sentence using the SBERT model [20]. The SBERT model employs
Siamese and triplet network structures to produce D ∈ R

ddynamic semantically
meaningful sentence embedding. Our spatial and semantic embeddings do not
rely on links between entities; hence, such embeddings offer a robust alternative
to predicting links in sparse knowledge graphs by exploiting datatype properties.

3.2 Supervised Spatial Link Prediction Approach

An overview of the SSLP architecture is presented in Fig. 2. We utilize the spa-
tially and semantically rich static and dynamic entity embeddings to infer links
for a given triple (h, r, t) ∈ G. The relation r is embedded using fastText word
embedding to reflect the semantics of relation names.

First, the architecture refines an entity’s static and dynamic embedding,
employing three fully connected layers with the ReLU activation function. After
refinement, the static and dynamic embeddings are concatenated and passed
through a fully connected layer to facilitate their fusion. This refinement and
fusion operation is applied on both the head and tail entity embeddings, and
weights are shared as done in a Siamese network to transform both head and
tail embeddings to the same vector space. This ensures the feature learning from
the head and tail entity occurs similarly, regardless of whether the entity appears
in the head or tail position.

The head embedding obtained at this stage is used for scoring and does not
pass through further layers, while multi-head attention is applied to the tail
embedding to incorporate head and relation information in the tail embedding
and to focus on relevant sections of the embedding. The head and relation embed-
dings are concatenated and passed through a linear layer to serve as the query,
while the tail embedding serves as the key and value input for attention compu-
tation. The output of the attention block is treated as the final tail embedding.
The head, relation, and tail embeddings are then projected into polar coordinates
using a hierarchy-based score function.

The HAKE (Zhang et al. 2020 [30]) score function learns a hierarchy in an
embedding space by only using triples to project entities to polar coordinates. We
divide entities into hierarchical levels using rdf:type and modify the score function
fr to explicitly perform type-based hierarchical penalization using a hierarchy
term fhterm. This enables the modeling of semantic hierarchies of geographic
entities in the embedding space. For instance, continents should be placed at
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the highest level, followed by countries, states, and districts, and finally, con-
taining suburbs and burroughs at the lower hierarchy levels. The score function
is formulated as follows:

fr(h, t) = −‖hm ◦ rm − tm‖2 − λ‖ sin((hp + rp − tp)/2)‖1 + ηfhterm. (1)

Here, hm, tm ∈ R
k, rm ∈ R

k
+ are the radial coordinates, hp, tp, rp ∈ [0, 2π)k

are the angular coordinates of head, tail, and relation embeddings respectively
and λ ∈ R is a learnable weight of phase term. fhterm is the hierarchical penal-
ization term weighed by the learnable parameter η ∈ R. The hierarchical penal-
ization is computed as:

fhterm(h, r, t) = rdir (hlevel − tlevel) , (2)

where hlevel, tlevel ∈ Z+ are hierarchy levels using rdf:type of head and tail entity
respectively and rdir ∈ [−1,+1] controls whether the head or tail entity should
have a higher hierarchy level for the given relation.

Sampling negative triples is crucial for training models. In our approach, we
sample our space to include a diversity of classes by sampling tails that have a
different rdf:type than the true tail entity and also address hard cases by sampling
tails of the same rdf:type as the true tail. Sampling tails from different classes
allows us to incorporate class distribution during learning. The loss is computed
using self-adversarial negative sampling loss (Sun et al. 2019 [22]):

L = − log σ(γ − fr(h, t)) −
n∑

i=1

p(h′
i, r, t

′
i) log σ(fr(h′

i, t
′
i) − γ). (3)

The parameter γ is a fixed margin, σ is the sigmoid function and (h′
i, r, t

′
i) is

the ith negative triple. The probability distribution of sampling negative triples
with α temperature of sampling is given by (Sun et al. 2019 [22]):

p(h′
j , r, t

′
j |{(hi, r, ti)}) =

exp αfr(h′
j , t

′
j)∑

i exp αfr(h′
i, t

′
i)

. (4)

3.3 Unsupervised Spatial Link Prediction Approach

An overview of the USLP architecture is presented in Fig. 3.
In contrast to the supervised SSLP approach, the unsupervised USLP app-

roach does not require training data for link prediction and operates in the induc-
tive mode. The triple scores are computed by comparing the similarity of head
entity, relation, and tail entity features in three spaces, namely geographic space,
name space, and class space. In the geographic space, the coordinates of head
and tail entities are represented using geohash. A geohash is an alphanumeric
string that serves as a unique identifier and compact representation of regions
using bounding boxes on the Earth surface [9]. This method splits the Earth
surface into grid cells of various sizes depending on the length of the geohash.
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The precision of the geohash is selected based on the relation in the triple, such
that relations that may have a larger spatial distance between the entities are
assigned a shorter geohash length to represent a larger area. Similarly, relations
where the entities are assumed to be spatially closer, for example, addrSuburb,
addrHamlet, are represented using longer geohash values. The centroid of the
rectangular geohash grid is computed for both head and tail entities, and the
Haversine distance between the geohash centroids serves as the similarity score
in the geographic space.

Knowledge graphs often contain spatial relations where the object is a literal
string representing the tail entity instead of the link to the entity. This literal
value can match candidate tail entities based on their rdfs:label and wkgs:nameEn
properties. In the name space, the pre-trained fastText word embeddings of the
tail entity generated using rdfs:label and wkgs:nameEn property are compared
with the embeddings of the literal string present in the object position of the
spatial relation. The cosine similarity between the two embeddings is used to
score the triples in this space. The class space also computes the cosine similarity
between the embeddings of relation name and tail rdf:type class to assign a higher
score to entities whose rdf:type is semantically similar to relation names in the
shared semantic latent space. For example, the relation wkgs:isInCountry has a
high similarity score with all entities of rdf:type country.

The final triple score is computed as the sum of the similarity scores of the
embeddings in all three spaces. Tail entities closer to the triple head and relation
in the spatial and semantic vector spaces have a higher likelihood of being linked
and will therefore achieve a higher score using this scoring scheme.

Geohash
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Fig. 3. Architecture of the USLP model.



Spatial Link Prediction with Spatial and Semantic Embeddings 187

4 Evaluation Setup

This section describes datasets, ground truth creation, baselines, and evalua-
tion metrics. All experiments were conducted on AMD Ryzen 9 3900X 12-Core
processor @ 2.2 GHz and 128 GB of memory using NVIDIA RTX A6000 GPU,
CUDA 12.1, Python 3.10.9, and PyTorch 2.0.0. The SSLP model was trained
for 3000 epochs with a batch size of 64, a learning rate of 0.001 optimized using
Adam optimizer.

4.1 Datasets

For our spatial link prediction experiments, we use the WorldKG knowledge
graph constructed by Dsouza et al. [8] using data from OpenStreetMap (OSM),
one of the richest sources of openly available semantic volunteered geographic
information. Each entity in WorldKG has geographic coordinates and heteroge-
neous spatial and non-spatial properties with textual and numeric literal values
indicating entity names in different languages, areas, populations, geographic
divisions such as a county, state, district, hamlet, and links to Wikipedia, Wiki-
data, and OSM.

4.2 Ground Truth Creation

In the current dataset version, the WorldKG knowledge graph (version 1.0) con-
tains information extracted from OSM tags and does not contain any object
property triples, lacking links between entities. All spatial relations are repre-
sented as datatype properties, with a string as the object representing a geo-
graphic entity. We extracted all triples with predicates that indicate spatial
relations in the knowledge graph and prepared a set of candidate entities that
were subclasses of wkgs:Place. Rule-based matching, using Haversine distance
from subject entities, string matching of literal strings in the object position
with entity names, and the type and relation-based filtering of subject/object
entities, was performed on a subset of triples containing instances covering all
spatial relations. We also used the identity link wkgs:wikidata, which links enti-
ties present in Wikidata and WorldKG, for matching a subset of spatial relations
using equivalent relations present in the former knowledge graph.

The ground truth was used to create two transductive datasets, namely TD1
and TD2, for evaluating the supervised approaches. The dataset TD1 contains
ground truth triples generated using WorldKG only, while TD2 additionally
contains triples created using WorldKG and Wikidata identity links. Further-
more, we created the inductive dataset ID1 containing novel entities in the test
triples for evaluating the unsupervised approaches. The test triples of ID1 are
generated by a stratified sampling of 133 triples from the ground truth. Table 1
contains statistics regarding the number of entities, relations, and triples in the
three datasets.
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Table 1. Dataset statistics. Rows indicate the count of each statistic.

Statistic Dataset

TD1 TD2 ID1

#Entities 223297 284305 313385

#Spatial relations 14 14 14

#Literal relations 354 431 128

#Literal triples 1571175 1077982 1853

#Train triples 247419 323066 323066

#Validation triples 6145 10493 39943

#Test triples 26087 15931 133

4.3 Baselines

We consider state-of-the-art and well-established link prediction methods that
can be classified into the following categories as our baselines:

– Translation distance model TransE [7] treats relations as a translation from
head entity to tail entity. Roto-translational models RotatE [22] and HAKE
[30] consider relations as rotations in a complex vector space.

– Tensor Decomposition models RESCAL [18], DistMult [29] and ComplEx
[24].

– Deep learning models such as ConvKB [17] which uses convolutional neural
networks and CompGCN [25] employing graph neural networks.

– LiteralE [12] and Literal2Entity-DistMult variant proposed by [5] where
the former uses literal values to enrich KG embeddings and the latter performs
graph transformations using literals.

– For the unsupervised approach, a naive baseline Levenshtein similarity
(LS) computes string similarity between rdfs:label and wkgs:nameEn proper-
ties of the entities to score tail triples.

All baselines were trained using the default hyperparameters and the evaluation
settings reported in the respective publications.

4.4 Evaluation Metrics

We evaluate our models on the spatial link prediction task by following the stan-
dard link prediction setup. For each triple (h, rsp, t) ∈ Gtest, the set of corrupted
triples T − is generated by replacing the true tail entity t with all other geographic
entities in the knowledge graph, hence T − = {(h, rsp, t

′) | t′ ∈ (Egeo −{t})}. The
model scores the true triple (h, rsp, t) and corrupted triples in T −. The triples’
scores are then sorted to obtain the rank of the true triple. We use the filtered
evaluation setting [7] and filter the corrupted triples T − to exclude the triples
present in the training and validation set. We summarize the overall performance
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of the models using Mean rank (MR), Mean reciprocal rank (MRR), and Hits@k
for k ∈ {1, 3, 5, 10}. Mean rank is the average rank of the test triples. Mean
reciprocal rank is the mean over the reciprocal of individual ranks of test triples.
Hits@k is the ratio of test triples present among the top k ranked triples.

5 Evaluation

This section aims to assess the performance of our proposed SSLP and USLP
approaches against prominent baselines.

5.1 Performance in Transductive Setting

The link prediction results in the transductive setting for datasets TD1 and
TD2 are summarized in Table 2. Our proposed USLP approach outperforms all
baselines on both datasets regarding MRR and Hits@k and achieves the second-
best mean rank on TD1. Its performance is closely followed by the proposed
SSLP approach, with Hits@3,5,10 lying around three percentage points below
the unsupervised model for TD1 and TD2. This result can be attributed to
the additional spatial and literal information exploited by our approaches, along
with triples for link prediction. The Literal2Entity variant with DistMult score
function [5] also utilizes KG literals to transform the knowledge graph and per-
forms well compared to other baselines, which only consider relational triples. It
achieves a competitive MRR and Hits@1 compared to USLP on TD1; however,
all other metrics are relatively lower than SSLP and USLP on both datasets. A
possible reason for its performance lag is the absence of spatial semantics and
hierarchical information in the literal transformations and scoring function used
in this model, which can be beneficial when predicting spatial links. The LiteralE
baseline fails on all metrics, despite utilizing literal triples. A possible reason for
its negligible performance can be the inability of the model to scale to a large
number of literal relations present in our datasets.

The remaining baselines use knowledge graph triples for predicting links,
with their performance lying below a margin of around 20% points in terms of
Hits@k compared to USLP and SSLP on both datasets. The sparsity of graph
neighborhood and lack of sufficient structural information affects the link pre-
diction ability of the baselines CompGCN and ConvKB employing graph neural
networks and convolutions. Simple models such as TransE, RotatE, and HAKE,
which treat relations as geometric operations, perform poorly regarding all met-
rics on TD1 and TD2. These approaches randomly initialize entity and relation
embeddings and transform them based on observed triples in the graph, causing
performance drop when predicting links in sparse knowledge graphs. DistMult
achieves better Hits@k and MRR than other baselines on TD1 and TD2; overall,
its results are lower than our approaches by a considerable margin on the TD2
dataset, especially in the case of Hits@1 and Hits@3 metrics.

The ablation study results of SSLP on dynamic embedding, multi-head atten-
tion, scoring function, and hierarchy penalization are shown in Table 3. Removing
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Table 2. Spatial link prediction performance in transductive setting. The best results
are highlighted in bold, and runner-up results are underlined.

Model TD1 Dataset TD2 Dataset

MR MRR H@1 H@3 H@5 H@10 MR MRR H@1 H@3 H@5 H@10

TransE 1104 0.147 0.065 0.174 0.229 0.306 12594 0.199 0.114 0.237 0.286 0.357

DistMult 1328 0.861 0.780 0.934 0.968 0.977 22005 0.660 0.568 0.747 0.799 0.808

HAKE 1592 0.327 0.214 0.426 0.475 0.499 13194 0.305 0.235 0.366 0.402 0.409

RotatE 1730 0.791 0.743 0.831 0.849 0.865 31671 0.010 0.002 0.004 0.006 0.021

ComplEx 34410 0.005 0.002 0.005 0.007 0.012 41360 0.025 0.016 0.026 0.032 0.041

CompGCN 750 0.095 0.000 0.004 0.078 0.396 17508 0.229 0.020 0.396 0.485 0.580

ConvKB 2555 0.099 0.019 0.132 0.179 0.249 11348 0.247 0.022 0.405 0.531 0.655

RESCAL 446 0.006 0.000 0.001 0.001 0.000 12337 0.002 0.000 0.000 0.000 0.000

LiteralE 70129 0.000 0.000 0.000 0.000 0.000 43276 0.022 0.016 0.018 0.022 0.039

L2E-

DistMult

986 0.936 0.919 0.951 0.958 0.963 7113 0.797 0.776 0.811 0.820 0.830

SSLP 144 0.894 0.823 0.962 0.972 0.978 6505 0.819 0.805 0.831 0.836 0.844

USLP 188 0.964 0.941 0.990 0.995 0.996 68 0.856 0.845 0.862 0.866 0.872

Table 3. Ablation study of SSLP. The best results are highlighted in bold, and runner-
up results are underlined.

Component TD1 Dataset TD2 Dataset

MR MRR H@1 H@3 H@5 H@10 MR MRR H@1 H@3 H@5 H@10

w/o Dynamic

Embedding

212 0.669 0.527 0.781 0.851 0.903 6304 0.508 0.383 0.599 0.658 0.684

w/o Atten-

tion

170 0.839 0.798 0.859 0.894 0.923 9787 0.682 0.639 0.702 0.725 0.758

w/ DistMult

score

327 0.336 0.104 0.434 0.616 0.802 13969 0.226 0.034 0.333 0.604 0.633

w/o Hier-

archy term

(η = 0)

280 0.876 0.816 0.922 0.934 0.964 5444 0.582 0.423 0.713 0.743 0.786

w/ Hierarchy

term (η =

0.25)

224 0.886 0.831 0.929 0.959 0.974 6732 0.649 0.458 0.832 0.853 0.867

w/ Hierarchy

term (η =

0.5)

213 0.802 0.658 0.937 0.951 0.976 4635 0.754 0.688 0.813 0.825 0.836

SSLP 144 0.894 0.823 0.962 0.972 0.978 6505 0.819 0.805 0.831 0.836 0.844

dynamic embedding in SSLP results in a decline in performance across all metrics
in both datasets. This result highlights the expressiveness of these embeddings
in serving as a latent representation for the heterogeneous predicates present in
entities and capturing valuable supplementary information such as provenance,
description, population, currency, etc., which boosts link prediction performance.
The removal of the Multi-head attention component resulted in a sharp decline
in performance for TD1 and TD2, with Hits@k for all k falling by a margin of
at least ten percentage points compared to SSLP on the latter dataset. Replac-
ing our hierarchy-based scoring function with the DistMult score also causes a
performance drop across all metrics, especially in the case of Hits@1, showcas-
ing the benefit of our hierarchy-based scoring function. To examine the effect of
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incorporating hierarchy penalization in the scoring function, we experimented
with different values for the weight parameter η. The hierarchy penalization in
our scoring caused a significant improvement in the performance of SSLP, which
uses η = 0.8 on both datasets, with a rise of Hits@1 by around 38% points for
TD2 compared to scoring with η = 0. The weight initialization of η = 0.25 also
produced the highest Hits@k for k = 3, 5, 10 in TD2.

Table 4. Spatial link prediction performance in the inductive setting. The best results
are highlighted in bold, and runner-up results are underlined.

Model ID1 Dataset

MR MRR H@1 H@3 H@5 H@10

LS w/ rdfs:label 89 0.051 0.000 0.053 0.083 0.135

LS w/ wkgs:nameEn 121 0.035 0.000 0.023 0.045 0.105

USLP 3 0.832 0.774 0.857 0.902 0.939

5.2 Performance in Inductive Setting

Table 4 shows the results of unsupervised approaches on the ID1 dataset. The
naive baseline computes string similarity using Levenshtein distance between
rdfs:label and wkgs:nameEn, showing poor results across all metrics. String
matching using literal values for predicting entity links introduces ambiguity
with no mechanism to disambiguate candidate entities. Our proposed approach,
USLP, fuses spatial proximity with entity naming semantics and type informa-
tion aiding in precise disambiguation and substantially improved results on the
ID1 dataset.

Table 5 reports the results of feature analysis on the USLP model. We com-
pute the evaluation metrics for different combinations of spaces and the inclu-
sion of dynamic embeddings along with the spaces of USLP. We observe that
for all spaces except name space, each space considered individually is unsuit-
able for the spatial link prediction task, with the Hits@1 metric lying close to
zero. On the other hand, the name space attains Hits@k values for all k in the
range of around 65 to 75% points. The geographic space captures vital informa-
tion for predicting spatial links, with its Hits@k values significantly higher than
class space and latent space of dynamic embeddings considered individually or
together. Combining geographic and name spaces further improves the perfor-
mance. The combination of geographic, name, and class space used in USLP is
the most effective for spatial link prediction, as indicated by their consistently
higher performance in terms of all metrics. Our approach aligns entities along
multiple semantic spaces by considering their similarity and is robust against
disambiguation challenges. By incorporating dynamic embeddings with USLP,
Hits@k metrics for k = 1, 3, 5 are lower; however, Hits@10 increases. This result
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can be due to noise present in the heterogeneous properties of entities, which
reduces the recall of the model but increases Hits@10 with more true entities
scoring in the top 10 ranks.

6 Related Work

In this section, we discuss related work in knowledge graph link prediction.
Link Prediction. Traditional knowledge graph link prediction methods are

based on rule mining or generating random walks in knowledge graphs. Rule
mining approaches [1] mine generic and conditional declarative rules using KG
triples, while random walk-based approaches [13] perform combinations of con-
strained, weighed, random walks and use path ranking algorithms to tune the
weights of these walks. These methods directly exploit observable features of
the graph but do not consider latent features of entities. Embedding-based
approaches transform the high-dimensional knowledge graph to low-dimensional
vector spaces, while preserving semantic information and considering latent fea-
tures of entities. Rossi et al. [21] classify these approaches as Tensor Decom-
position, Geometric, and Deep learning models. Tensor Decomposition models
view the knowledge graph as a 3D adjacency matrix and decompose this ten-
sor to low dimensional vectors to generate entity and relation representations,
with the scoring function a formulation of a bilinear product [24] or non-bilinear
[3]. Geometric models interpret relations as a geometric operation in a latent
space, where the operation can be a form of translation in the case of Transla-
tional models [7] or rotation-like transformations either separately or along with
translations for Roto-translational models [22,30]. Deep Learning models use
convolutional neural networks, reinforcement learning, or graph neural networks
to predict links [17,25]. However, all these approaches do not consider the literal
values in a knowledge graph and rely on the connectivity between entities.

Link Prediction Using Literals. Few approaches use the literal values
present in knowledge graphs for link prediction. Kristiadi et al. in [12] propose
an extension module over existing link prediction methods, named LiteralE,
to directly enrich entity embeddings with literal information using a learnable
parameterized function. Li et al. [14] perform numeric link prediction by con-
sidering the attribute semantics of literals in KG embeddings with a more com-
prehensive representation of attribute semantics. These approaches face scala-
bility issues due to constructing a literal vector or an attribute matrix. The
papers [23,27,28] also predict numeric literals in knowledge graphs using ensem-
ble learning, attribute value regression, or by simultaneously adding numerical
attribute prediction loss to triple loss. Blum et al. [5] propose three knowledge
graph transformations and add additional entities and relations in the knowl-
edge graph to enable existing approaches to leverage literals. Biswas et al. [4] use
attentive bidirectional Gated Recurrent Unit (GRU)-based encoder-decoder for
link prediction and consider textual entity descriptions and graph walks of KG.
Literal-based approaches consider either numeric literals or require long textual
entity descriptions and only utilize this information to supplement the structural
information provided by the existing links in the graph.
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Table 5. Feature analysis of USLP. The best results are highlighted in bold, and
runner-up results are underlined.

Feature ID1 Dataset

MR MRR H@1 H@3 H@5 H@10

Geographic Space 14 0.340 0.150 0.414 0.541 0.692

Name Space 22 0.695 0.669 0.692 0.699 0.752

Class Space 48 0.043 0 0.015 0.030 0.045

Dynamic Embedding 69 0.091 0 0.090 0.150 0.316

Geographic & Name 4 0.769 0.714 0.767 0.842 0.887

Geographic & Class 9 0.355 0.143 0.489 0.654 0.842

Geographic & Dynamic Embedding 18 0.151 0 0.173 0.278 0.489

Name & Class 13 0.695 0.662 0.669 0.729 0.797

Name & Dynamic Embedding 10 0.627 0.511 0.707 0.774 0.835

Class & Dynamic Embedding 51 0.128 0.023 0.143 0.195 0.383

USLP w/ Dynamic Embedding 3 0.701 0.571 0.797 0.887 0.962

USLP 3 0.832 0.774 0.857 0.902 0.939

Link Prediction Using Spatial Information. Huang et al. [11] propose
a method containing an enhancer, encoder, and decoder where the enhancer
converts relations to relation expressions using lexical, spatial, structural, and
attribute similarity networks, followed by the encoder to obtain vector represen-
tations and a decoder to perform relation prediction. SE-KGE by Mai et al. [15] is
a location-aware embedding model designed for geographic question answering.
The method encodes spatial footprints (coordinates and bounding boxes) using
a location-encoder based on Space2Vec and positional encoding of the trans-
former model. Qiu et al. [19] perform geographic link prediction by encoding
geospatial distance restriction as a weighing term based on Euclidean distance
in the objective function of translational embedding models. In contrast, Wang
et al. [26] add geographic constraints such as inclusion, adjacency, and inter-
section for optimizing existing models such as TransE and RESCAL. The link
prediction approaches using spatial information involve the construction of mul-
tiple similarity networks [11] or geographic constraints such as intersection [26],
making them infeasible on our datasets containing a large number of entities and
datatype properties.

7 Conclusion

In this paper, we proposed two novel approaches, SSLP and USLP, for transduc-
tive and inductive spatial link prediction, respectively. Our approaches address
a crucial gap in the state-of-the-art by considering literal values and spatial
semantics of geographic entities. SSLP and USLP outperform all baselines in
terms of Hits@k. Our results demonstrate that effective fusion of spatial and lit-
eral semantics in knowledge graphs can facilitate the completion of sparse KGs
that lack connectivity, including knowledge graphs from the geographic domain.
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In future research, we would like to explore the adoption of our proposed spatial
and semantic embeddings for answering complex semantic spatial queries.

Supplemental Material Statement: Our source code, experimental data, and
instructions for repeating all experiments are available at GitHub2.
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