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Abstract. Knowledge Graph Embedding (KGE) has proven to be an
effective approach to solving the Knowledge Graph Completion (KGC)
task. Relational patterns which refer to relations with specific seman-
tics exhibiting graph patterns are an important factor in the perfor-
mance of KGE models. Though KGE models’ capabilities are analyzed
over different relational patterns in theory and a rough connection be-
tween better relational patterns modeling and better performance of
KGC has been built, a comprehensive quantitative analysis on KGE
models over relational patterns remains absent so it is uncertain how
the theoretical support of KGE to a relational pattern contributes to
the performance of triples associated to such a relational pattern. To
address this challenge, we evaluate the performance of 7 KGE models
over 4 common relational patterns on 2 benchmarks, then conduct an
analysis in theory, entity frequency, and part-to-whole three aspects and
get some counterintuitive conclusions. Finally, we introduce a training-
free method Score-based Patterns Adaptation (SPA) to enhance KGE
models’ performance over various relational patterns. This approach is
simple yet effective and can be applied to KGE models without addi-
tional training. Our experimental results demonstrate that our method
generally enhances performance over specific relational patterns. Our
source code is available from GitHub at https://github.com/zjukg/

Comprehensive-Study-over-Relational-Patterns.

Keywords: Relational patterns · Knowledge graph embedding · Rule
mining · Knowledge graph completion.

1 Introduction

Knowledge Graphs (KGs) are used to organize triples and represent various
types of information about the real world. A typical triple consists of a head
entity, a relation, and a tail entity, expressed in the format (h, r, t). Several
well-known KG projects, including FreeBase [1], WordNet [22], YAGO [31], and
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DBpedia [19], have gained attention for their successful use in natural language
processing [41], question answering [3], recommendation systems [36], and other
downstream tasks.

Despite the vast number of triples in large-scale KGs, they suffer from the
problem of incompleteness. To address this problem, the Knowledge Graph Com-
pletion (KGC) task, such as link prediction, aims to predict missing triples based
on known triples. Knowledge Graph Embedding (KGE) [35] has proven to be
an effective approach to solving the KGC task by capturing semantic represen-
tations of entities and relations in a low-dimensional vector space.

Most KGEmethods utilizing triples as learning resources derive the semantics
of entities and relations from graph structures. Relations with specific semantics
typically exhibit corresponding graph patterns, which we call relational patterns
in this paper, such as symmetry/antisymmetry, inversion, and composition [32].
The performance of KGE models is widely regarded as being closely tied to
their capacity for capturing relational patterns within the KG [45,32,28,20,4].
Previous studies have endeavored to explore whether KGE models truly learned
the relational patterns among triples. Some works [42,45] use the learned rela-
tion embeddings to mine rules corresponding to different relational patterns and
prove that the mined rules are of high quality, showing KGE models success-
fully learned the relational patterns among triples. Some works [32,46] utilize
distribution histograms to reveal that embeddings of relations associated with
relational patterns tend to converge towards specific positions within the vec-
tor space. Although previous studies have theoretically analyzed KGE models’
capabilities in addressing various relational patterns and established a rough
connection between better relational patterns modeling and better performance
of KGC, a comprehensive quantitative analysis of KGE models to relational pat-
terns remains absent. In the absence of such research, it is uncertain how the
theoretical support of KGE for a specific relational pattern contributes to the
prediction results of triples associated with that pattern. Consequently, quan-
tifying KGE models’ performance over particular relational patterns poses a
significant challenge.

In this paper, we propose a methodology to classify triples into relational
patterns based on rules mined from training data, then the capacity of KGE
models in reasoning over different patterns can be quantified with the perfor-
mance of triples belonging to specific patterns. We conduct numerous exper-
iments, in theory, entity frequency, and part-to-whole aspects, to assess KGE
models’ performance over relational patterns, leading to the following conclu-
sions: 1) Theoretical support for a relational pattern in a KGE model does not
guarantee superior performance compared to another KGE model lacking such
support. 2) The influence of entity frequency on the performance of different
relational patterns varies. Performance for symmetric patterns diminishes as
entity frequency increases, while for other patterns, performance improves with
increasing frequency. 3) If one KGE model significantly outperforms another, the
superior model will exhibit better performance overall relational patterns. Con-
versely, when two KGE models exhibit similar overall performance, their perfor-
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mance over relational patterns may diverge considerably. Lastly, we introduce a
training-free method, Score-based Patterns Adaptation (SPA), to enhance KGE
models’ performance over various relational patterns. Our experimental results
demonstrate that SPA generally improves performance over specific relational
patterns.

The contributions of this paper are summarized as follows:

1. To our best knowledge, we are the first to conduct a comprehensive quanti-
tative analysis over relational patterns;

2. We evaluate the performance of 7 KGE models over 4 common relational pat-
terns on 2 benchmarks, then provide an analysis in theory, entity frequency,
and part-to-whole three aspects, and get some counterintuitive conclusions;

3. We introduce a training-free method, Score-based Patterns Adaptation (SPA),
designed to enhance KGE models’ performance over various relational pat-
terns. This approach is simple yet effective and can be applied to KGE
models without additional training.

This article is structured as follows: Section 2 introduces the related work and
Section 3 introduces preliminaries and background. Sections 4 and 5 are the main
part of the paper, presenting our methodology, the comprehensive quantitative
analysis of patterns, and SPA results. Section 6 presents conclusions and an
outlook for future work.

2 Related Work

In this section, we concentrate on the related work of this paper, which encom-
passes the process of KGE, the definition of various relational patterns, and rule
mining for relational patterns.

Knowledge Graph Embedding. Knowledge Graph Embedding (KGE) models
strive to capture the semantic meanings of entities and relations by mapping
them to continuous vectors, allowing for effective information retrieval and knowl-
edge discovery. The process of KGE generally initializes the entity and relation
embeddings and subsequently updates them with the score function and loss
function. Score function measures the plausibility of a triple (h, r, t) with em-
beddings. These functions can be classified into two categories: translational
distance based and semantic matching based models [35,16]. The translational
distance based model primarily includes TransE and its extensions (such as
TransH [37], TransR [21], TransD [15]), RotatE [32], and others. Semantic match-
ing based models mainly comprise RESCAL [25], DistMult [42], ComplEx [34]
and more. Table 3 presents some common score functions of KGE models. Neg-
ative sampling is the process of generating negative samples as most KGs
predominantly contain positive triples. Negative triples are produced by cor-
rupting a positive triple (h, r, t) through the replacement of either h or t. Es-
tablished methods encompass uniform negative sampling [2], Bernoulli negative
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sampling [37], and so on. Loss functions strive to minimize the scores of neg-
ative triples while maximizing those of positive triples. Principal loss function
methods mainly include pointwise logistic loss [34], pairwise hinge loss [2], soft-
plus loss [24], self-adversarial negative sampling loss [32] and others.

Relational Patterns. Relational patterns serve as a crucial metric for evaluating
the performance of KGE models. Our comprehension of relational patterns be-
comes deepening over time. Wang et al. [37] highlight several mapping properties
of relations that ought to be considered when embedding a knowledge graph, in-
cluding reflexive, one-to-many, many-to-one, and many-to-many. Xie et
al. [38] introduce a method called Type-embodied Knowledge Representation
Learning (TKRL) that leverages hierarchical entity types to enhance the
representation learning of knowledge graphs. Minervini et al. [23] incorporate
equivalence and inversion axioms to improve the training of neural em-
beddings for knowledge graphs. The purpose of these axioms is to improve the
accuracy and generalization abilities of neural embeddings by utilizing exter-
nal background knowledge. Sun et al. [32] discuss relational patterns such
as symmetry/antisymmetry, inversion, and composition. Then RotatE is
proposed and demonstrates higher performance on various benchmarks. Qu et
al. [28] examine the subrelational pattern in the context of exploring the
impact of different rule patterns on knowledge graph reasoning. Cao et al. [4]
suggest that multiple relations and propose DualE to model multiple relations
using a combination of translation and rotation with greater performance. Some
common relational patterns with their conditions are listed in Table 1.

Rule Mining. Rule mining can be employed to uncover non-obvious structures
in data with logical rules [43]. The logical rules serve as a flexible declarative
language for conveying high-level cognition [14,40], which can enhance the ac-
curacy of reasoning or contribute to the generation of new triples [7,44]. Vari-
ous rule mining methods have been developed to efficiently extract rules from
large-scale knowledge graphs. The WARMR [9] and ALEPH [30] discover asso-
ciation rules over a limited set of queries. AMIE [11] and Ontological Path-
finding [6] mine rule based on an exhaustive top-down search with pruning
strategies. AMIE+ [10] improves the precision of the forecasts by using joint
reasoning and type information. RARL [27] uses relatedness between predicates
to improve search efficiency. These mined logical rules can correspond to the ma-
jority of relational patterns we proposed (the relationships between them will
be detailed in Section 3). In this paper, we employ the latest version of AMIE
called AMIE3 [18] to achieve length control and a trade-off between efficiency
and quality.

3 Preliminaries and Background

Knowledge Graph. With a set of entities E and a set of relations R, Knowledge
Graph G can be represented as a set of triplets G = {(h, r, t)} in which h ∈ E
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and t ∈ E represent the head and tail entity respectively, r ∈ R represents the
relationship between h and t. A triple (h, r, t) can also be represented as r(h, t).
Most KGs are far from complete. KGC comes into play as a powerful application
to infer missing links. For example, predicting the missing head or tail entities
given (h, r) or (r, t) pairs.

Relational Patterns. We gave definitions of six key patterns [32,28] that could
be written in regular rule form concerned in Table 1, including symmetric, anti-
symmetric, inverse, equivalent, subrelation, and compositional patterns.

Table 1. Conditions for relational patterns and its rule formulation. EN(r) refers to the
set of entity pairs with (head entity, tail entity) that satisfy r(head entity, tail entity).
∅ refers to the empty set. The r in each row is represented as the relation belonging
to the corresponding pattern. Note that the n in parentheses after the compositional
indicates the number of relations in the hypothesis.

Relational Patterns Condition Rule Form

symmetric EN(r) = {(t, h)|(h, t) ∈ EN(r)} r(H,T )↔ r(T,H)

antisymmetric EN(r) ∩ {(t, h)|(h, t) ∈ EN(r)} = ∅ r(H,T ) ↮ r(T,H)

inverse EN(r′) ⊆ {(t, h)|(h, t) ∈ EN(r)} r(H,T )← r′(T,H)

equivalent EN(r′) = EN(r) r(H,T )↔ r′(H,T )

subrelation EN(r′) ⊆ EN(r) r(H,T )← r′(H,T )

compositional(n)
{(h, t)|(h, a1) ∈ EN(r1). . .
(an, t) ∈ EN(rn)} ⊆ EN(r)

r(H,T )
← r1(H,X1), ...rn(Xn, T )

Closed-Path Rules The rule has the property of a closed path [42] if and only
if the sequence in the hypotheses creates a path from the subject argument to
the object argument of the conclusion predicate without any cycles or repeated
nodes. Closed-path rules are a type of rule that is used to capture complex
relationships between entities in KGs. A closed-path rule τ is of the form:

r(H,T )← r1(H,X1) ∧ r2(X1, X2) ∧ ... ∧ rn(Xn−1, T ) (1)

where H,T,Xi are variables. We usually represent hypotheses r1(H,X1)∧r2(X1,
X2) ∧ ... ∧ rn(Xn−1, T ) as the body and denote the conclusion r(H,T ) as the
head of the rule. Rule quality could be evaluated through statistical metrics such
as standard confidence, partial-close-world assumption (PCA) Confidence, and
Head Coverage [11].

4 Methodology

The overall architecture of our methodology is shown in Fig. 1. Our work pipeline
can be divided into the following three steps. 1) In the training stage, train
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Fig. 1. The overall architecture of our methodology. Sym, inv, mul, comp2, and comp3
are abbreviations for symmetric, inverse, multiple, compositional2, and compositional3
respectively.

the KGE model on the training set to get entities’ and relations’ embeddings.
2) In the classification and analysis stage, classify triple (h, r, t) into patterns
datasets based on the classification of r. Then the performance of different KGE
models over different patterns is analyzed comprehensively and quantitatively
through experiments on specific pattern datasets. 3) Compute the final score by
combining the SPA score and KGE score without requiring additional training.

The training of KGE models in step 1 follows the standard process, thus we
omit the training details of KGE models and refer readers to the original papers
of these methods. Next, we will describe Steps 2, and 3 of the architecture of
our methodology in detail.

4.1 Classification of Triples

In this subsection, we focus on classifying triples into different relational pattern
datasets to realize the comprehensive quantitative capabilities analysis of KGE
models over various relational patterns. We first give a more detailed explanation
of the classification method. Then we make an analysis of the relational pattern
from the perspective of rule form and KG’s property.

Classification Method The rule form of relational patterns often takes the form
of Horn rules with closed paths (as seen in Table 1), which are similar to the
rules mined by rule mining in KGs. Therefore, we decide to utilize rule mining
to classify relations Type(r) based on the rule form of distinct patterns. For
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example, if we get a rule τ : r(H,T )← r(T,H) which is similar to the rule form
of symmetric pattern r(H,T ) ↔ r(T,H), we will get Type(r) = {symmetric}
(note that one relation may belong to more than one pattern). Classification of
the triple Type((h, r, t)) is based on the classification of its relation r, in which
Type((h, r, t)) = Type(r). The performance of the KGE model over a relational
pattern P can be quantified according to the performance of the set of triples
belonging to this relational pattern that {(h, r, t)|P ∈ Type((h, r, t))}.

Relational Patterns Analysis For the relational patterns mentioned in Table 1,
we conduct a more detailed analysis of six relational patterns:

1. For the antisymmetric pattern, we consider it as the negative counterpart of
symmetric patterns. Since the triples in knowledge graphs are all positive, the
correctness of non-existing triples is unknown. Therefore, we only consider
positive patterns in the experiments.

2. Subrelation and equivalent patterns share a similar rule form. The test set
is classified based on the rules obtained from the training set, with the test
set used as the head of the rule to reversely get the body. However, since the
training and test sets are randomly divided, the prior and posterior between
them are weak. Thus, we merge these two patterns into multiple patterns,
following the expression by Cao et al. [4].

3. In the compositional pattern, if the length of the rule is 1, it can become
the previous pattern form. Some works [33,7] incorporated language biases,
such as restricting the length of rules up to 3 to deal with the vast search
space and self-loops. We also set the length of rules to 2 and 3 in subsequent
experiments.

4.2 Score-based Patterns Adaptation (SPA)

To explicitly enhance the capability of KGE models over relational patterns, we
aim to propose a simple approach to specifically promote KGE models on dif-
ferent patterns. Therefore, we introduce a training-free method, Score-based
Patterns Adaptation (SPA), which combines information from specific re-
lational patterns and KGE score to modify the score function of models. The
fundamental premise of SPA is that if the head triple is true, the triples within
the body are also likely to be true with a high probability as the rule’s head can
be inferred from the body using established rules. Consequently, we propose to
utilize the result derived from the rule’s body as SPA score to enhance the infer-
ence over specific patterns. We also consider the rule confidence of rule mining
as the confidence of relational patterns to measure the credibility of the modified
score. The details are as follows:

Table 2 shows the SPA score with rule τ on different relational patterns.
Compared to Table 1, Table 2 is refined based on the relational patterns anal-
ysis in Table 1. For the symmetric pattern, if we have the rule τ : r(H,T ) ←
r(T,H), we consider this relation r in the rule to be symmetric and can con-
tribute to reasoning by calculating symmetric SPA score f(t, r, h). And for the
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Table 2. Correspondence between SPA score and rules in relational patterns. Multiple
is the combination of subrelation and equivalent patterns mentioned in Table 1.

Relational Patterns Rule τ SPA score Sp(h, r, t)

Symmetric r(H,T )← r(T,H) f(t, r, h)

Inverse r(H,T )← r′(T,H) f(t, r′, h)

Multiple r(H,T )← r′(H,T ) f(h, r′, t)

Compositional r(H,T )← r1(H,X1), ...rn(Xn, T ) Path(h, r1...rn, t)

inverse pattern, we consider the relation r to be inverse with relation r′ on rule
τ : r(H,T ) ← r′(T,H), and the semantic information in the body is f(t, r′, h)
when computing the credibility of (h, r, t). Similarly to symmetric and inverse

patterns, we can get SPA score f(h, r′, t) for the multiple and Path(h, r1...rn, t)
for the compositional.

Nevertheless, the compositional rules mined by the majority of existing open-
source techniques are not readily applicable, largely due to their not chain-like
structure [26]. Take the rule τ : r(H,T ) ← r1(X,H), r2(X,T ) as an example,
we need first convert the body part r1(X,H) into r1

−1(H,X), where r1
−1 de-

notes the inverse relation of r1, then we can obtain a compositional chain rule
r(H,T ) ← r1

−1(H,X), r2(X,T ), and see Appendix A for more details on the
implementation of Compositional SPA.

Table 3. The details of KGE models, where ∥ · ∥1 and ∥ · ∥2 denote the absolute-value
norm and Euclidean norm respectively. The expression of h,r,t in bold is denoted as
their embedding vectors.

Model fkge(h, r, t) Path(h, r1...rn, t)

TransE −∥h+ r− t∥1 −∥h+ r1...+ rn − t∥1
RotatE −∥h ◦ r− t∥2 −∥h ◦ r1... ◦ rn − t∥2

HAKE
−∥hm ◦ rm − tm∥2−

λ ∥sin ((hp + rp − tp) /2)∥1
−∥hm ◦ r1m... ◦ rnm − tm∥2−

λ
∥∥sin ((hp + r1p...+ rnp − tp

)
/2

)∥∥
1

ComplEx Re
(
h⊤diag(r)t̄

)
Re

(
h⊤diag(r1)...diag(rn)t̄

)
DualE < Qh⊗W 0

r , Qt > < Qh⊗W 0
r1 ...⊗W

0
rn , Qt >

PairRE −
∥∥h ◦ rH − t ◦ rT

∥∥
1

−
∥∥h ◦ r1H ... ◦ rnH − t ◦ r1T ... ◦ rnT

∥∥
1

DistMult h⊤diag(r)t h⊤diag(r1)...diag(rn)t

We predict any missing fact jointly with the KGE score (Table 3) and SPA
score (Table 2). For a query (h, r, ?), we substitute the tail entity with all can-
didate entities (h, r, t′) and compute their KGE scores f(h, r, t) and compute
the SPA score sp(h, r, t) if relation r belongs to specific p patterns. There may
be many relations with the relation r showing specific patterns, so we need to
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consider all of them. The final scores can be presented as:

s(h, r,t) = skge (h, r, t)+

λp
1∑

τ∈Setp(r)
MCτ

∑
τ∈Setp(r)

MCτ (sp (h, r, t)− skge (h, r, t))
(2)

where the function skge represents the score function of KGEmodels and sp(h, r, t)
represents the SPA score of the p pattern. Setp(r) represents the p pattern rule
set of relation r. λp represents the hyper-parameters of the p pattern, and MCτ

represents the mean confidence of the rule τ to measure the credibility of the
modified score.

5 Experiments

In this section, we introduce the experiment results with analysis. Specifically,
in subsection 5.1, we introduce the datasets, metrics, and implementation first.
Next in subsection 5.2, we analyze the performance of the KGE models over
relational patterns with three questions. Last, in subsection 5.3 and 5.4, we
compare the performance of using SPA to optimize the score function on specific
patterns and analyze SPA with the case study.

5.1 Evaluation Setup

Datasets. We have chosen two benchmark datasets, FB15k-237 and WN18RR,
which are commonly used for evaluating Knowledge Graph Embedding (KGE)
models. A summary of these datasets is presented in Appendix B.

Evaluation protocol. Following the same protocol as in TransE [2], we evaluate
link prediction performance by assessing the ranking quality of each test triple.
For a given triple (h, r, t) in the test set, we replace either the head (h′, r, t) or the
tail entity (h, r, t′) with all entities and rank the candidate triples in descending
order according to their scores. We select Mean Reciprocal Rank (MRR) as the
evaluation metric. Furthermore, we use the “filtered” setting [2] to eliminate the
reconstructed triples that are already present in the KG.

Implementation Details. In our experiments, we employ the combination of
PCA confidence and HC thresholds to mine rules with AMIE3 [18] and clas-
sify relations and triples then conduct quantitative analysis. The best models
are chosen by early stopping on the validation set using MRR over different
patterns. As our SPA method optimizes the score function based on the em-
bedding information from the trained KGE model without retraining or param-
eter adjustment, we do not modify the learning rate, margin, or other hyper-
parameters. Instead, we only adjust the hyper-parameter λ for the four patterns
(symmetric, inverse, multiple, and compositional). Our settings for hyper-
parameter selection are as follows: the hyper-parameters of symmetric pattern
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λsym, inverse pattern λinv, and multiple pattern λsub are adjusted within
the set {±1,±2,±3,±4,±5,±10,±50,±100}, while the hyper-parameter for the
compositional pattern λcomp2 is adjusted within the set {±1e−5,±1e−4,±1e−3
,±0.01,±0.02,±0.05,±0.1,±0.2,±0.5,±1,±2,±5}. It should be noted that to
ensure a fair comparison, experiments with the SPA strategy have the same
hyper-parameters and implementation as the original models, except for pattern
hyper-parameters. For more details about hyper-parameters in different KGE
models, please refer to Appendix C.

Table 4. Statistics of the number of rules and relations for different relational pat-
terns. #Rule, #r(P ) denote the number of the mined rules and relations in pattern P
#{r|P ∈ Type(r)} respectively. Sym, inv, mul, comp2, and comp3 are abbreviations for
symmetric, inverse, multiple, and compositional patterns respectively. The mining
results of relational patterns on FB15k-237 and WN18RR with five prescribed thresh-
olds, where the symbol means the symbolization of different thresholds. i.e., the symbol
of “PCA=0.9 and HC=0.6 thresholds” can be written as θ1.

Confidence Thresholds FB15k-237 / WN18RR

Symbol PCA HC # Rule #r(sym) #r(inv) #r(sub) #r(comp2) #r(comp3)

θ1 0.9 0.5 6k/5 6/3 4/0 14/0 49/0 111/1
θ2 0.8 0.5 6k/10 26/3 11/0 22/0 62/0 147/3
θ3 0.6 0.3 13k/41 28/3 26/0 32/0 96/0 203/7
θ4 0.4 0.1 39k/84 31/3 48/0 55/0 162/1 233/10
θ5 0.2 0.1 54k/115 31/3 67/0 73/0 185/1 233/10

5.2 Quantitative Analysis over Relational Patterns

Table 4 displays the number of rules mined in the two benchmarks at different
confidence thresholds. We can obviously observe that the number of rules in
FB15k-237 is much more than that in WN18RR, and there are all five relational
patterns. While there are only two relational patterns in WN18RR, indicating
that the data in FB15k-237 is more miscellaneous than that in WN18RR.

Following the suggestions of RUGE [12] and taking HC in the middle position,
the evaluation of performance over patterns will be based on θ2 (PCA=0.8 and
HC=0.5).

Fig. 2 illustrates the heat map of relation distribution to show the over-
lapping between patterns. More details about the heat map can be found in
Appendix D. In FB15k-237, the overlap between compositional3 and others
are close to 1, while the overlap between other relations is small, which means
that relations in compositional3 are massive. The relationships in WN18RR
are simpler without inverse or multiple. Furthermore, we closely examine
the rules of compositional3 in WN18RR and find that the body of rules con-
sists of the head relation with two symmetric relations [8], which causes the
compositional3 pattern to lose its compositional meaning.
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Fig. 2. The heat map of the relations’ distribution in five relational patterns. From left
to right are the statistical results under FB15k-237 and WN18RR datasets.

Considering the significant overlap of compositional3 with other patterns in
FB15k-237 and its meaninglessness in WN18RR, we discard the compositional3
pattern and conduct further experiments with the remaining four patterns.

Our analysis is driven by the form of three questions.
Q1: Does a KGE model supporting a specific relational pattern

in theory achieve better link prediction results on triples related to
the relational pattern compared to another KGE model that does not
support such a relational pattern?

Table 5. Comparison of seven KGE models over various relational patterns with θ2.
✓ indicates that the model supports the pattern while ✗ indicates unsupported. The
numbers with Star(∗) indicate the baseline in each pattern. The percentages in paren-
theses represent the MRR ratios compared to the baseline while the radio of baseline
in each pattern is always 100%. If the model gets better performance than the baseline,
it indicates in bold, otherwise in gray.

Relation Patterns
Model

Symmetric Inverse Multiple Composition2

TransE ✗(100%)∗ ✓(98%) ✗(105%) ✓(119%)

RotatE ✓(98%) ✓(98%) ✗(102%) ✓(120%)

HAKE ✓(98%) ✓(96%) ✗(104%) ✓(124%)

DistMult ✓(94%) ✗(100%)∗ ✗(106%) ✗(100%)∗
ComplEx ✓ (61%) ✓(49%) ✗(52%) ✗(100%)

DualE ✓(90%) ✓(93%) ✓(100%)∗ ✓(117%)

PairRE ✓(105%) ✓(99%) ✓(104%) ✓(125%)

We consider the answer to be NO. Intuition suggests that if a model it-
self does not support one relational pattern, it may have a lower MRR in the
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link prediction task compared to other KGE models that support the related
relational pattern. However, the experimental results contradict our intuition.

Table 5 shows the comparison between seven KGE models. Due to the ab-
sence of some relational patterns in WN18RR, we only consider FB15k-237 for
this experiment. In symmetric, the benchmark is TransE which does not support
this pattern, while the other six KGE models (except PairRE) that do support
it perform worse than TransE. The same result also appears in inverse and
multiple. Only in compositional2, KGE models show significantly better per-
formance for the supported than unsupported ones. Moreover, it is difficult to
judge the capability of KGE models over patterns when comparing those that
support the same pattern. For instance, in symmetric, all supporting models
perform around 90% except for ComplEx, which also achieves 90% in inverse,
105% in multiple, and 120% in compositional2.

We consider that one of the reasons for this phenomenon is the complexity of
the relations. The complex relatedness between relations makes relational pat-
terns less discernible. As shown in Fig. 2, expect compositional3, the overlap
between patterns is still not small and part overlaps values up to 50-70%. This
suggests that a single pattern is insufficient to construct the semantics of rela-
tions in complex KGs. Also, the issue of sparsity presents a significant challenge
for KGE models in reasoning processes [29,39]. Generally, the infrequency of an
entity correlates with diminished reasoning accuracy [45]. This prompts an in-
vestigation into the extent to which entity frequency impacts relational patterns,
thus leading to our second research question.

Q2: What is the impact of entity frequency for different KGE mod-
els over patterns?
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Fig. 3. Statistics of triples in four patterns with entity frequency under θ2. From left
to right are the results on FB15k-237 and WN18RR. (Note that the vertical axis is
exponential)

The statistics for the number of triples over patterns are shown in Fig. 3.
For a triple (h, r, t), the threshold limit is the total number of occurrences of h
and t in the KG. The symmetric pattern is significantly reduced from 0 to 5
frequency and the number of triples in the compositional2 pattern is large with
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Fig. 4. MRR of seven KGE models(TransE, RotatE, HAKE, DistMult, ComplEx,
DualE, and PairRE) with varying entity frequency over patterns. The two figures in the
first row, from left to right, are the experimental results of the symmetric pattern in
FB15k-237 and WN18RR respectively. The second line from left to right is the results
over inverse, multiple, and compositional2 patterns in FB15k-237 respectively.

little change in entity frequency. In WN18RR, it only contains the symmetric

pattern without inverse and multiple patterns. The number of symmetric

triples is large and decreases sharply with increasing frequency. The subsequent
experiments in this question will be based on the data mentioned above.

Fig. 4 illustrates the performance of seven KGEmodels over different patterns
with varying entity frequencies on two datasets. In FB15k-237, we observe that
the performance of ComplEx is significantly worse than the other models. In
WN18RR, TransE, which does not support symmetric, is considerably worse
than the other models. Intuitively, we expect that as the constraints on entity
frequency increase, the KGE model should be better at learning embeddings of
entities and result in better performance. However, in the symmetric pattern,
there is a noticeable downward trend as the constraints on entity frequency
increase. The performance on inverse (the first plot in the second row of Fig. 4)
and multiple (the middle plot in the second row of Fig. 4) in FB15k-237 is
consistent with our intuition. Performance on compositional2 shows an initial
drop followed by a rise.

We find that the impact of entity frequency on different models (except Com-
plEx) is similar. Additionally, different patterns (except symmetric) generally
improve as the constraint on entity frequency increases. We consider the reason
for the downward trend as the increasing entity frequency is that the symmetric
pattern relation solution is usually unitary. For example, in RotatE [32] and
HAKE [46], the symmetric relation tends to be π to realize the rotation in com-
plex space. With the increase in the entity frequency, the relations involved in the
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entities may also increase, resulting in the entity is not in the center symmetric
position, which makes the model less effective.

Subsequently, we aim to examine the correlation between pattern-specific
performance and overall performance in KGE inference, thereby formulating
our final research question.

Q3: If one KGE model performs better than another one on link
prediction, is it because it improves uniformly across different rela-
tional patterns?

ComplEx DistMult DualE TransE RotatE HAKE PairRE
0.1

0.3

0.5

0.7

M
R
R

symmetric
inverse
multiple
compositional2

Fig. 5. Comparison of seven KGE models under relational patterns with the overall
performance in FB15k-237. The dotted lines in each model represent the performance
under the complete test set of FB15k-237.

We compare seven KGE models over relational patterns with the full set
of MRR in FB15k-237, as shown in Fig. 5. We find there are two scenarios.
First, if one model demonstrates overall improvement compared to another, there
will be significant enhancements in all relational patterns. For instance, when
comparing ComplEx to DistMult, MRR has increased from 0.26 to 0.29, and
it is evident that DistMult has improved in all patterns relative to ComplEx.
Second, the relational pattern capability may be poor even when the overall
performance is similar. Taking TransE, RotatE, and HAKE as examples, the
overall performance of the three models is similar (0.33 for TransE, 0.333 for
RotatE, and 0.329 for HAKE), but the capability of HAKE is slightly weaker
than the other two models overall patterns.

5.3 Score-based Patterns Adaptation Results

We compare the effectiveness of using SPA to optimize the score function on spe-
cific pattern datasets. We observe that different KGE models with SPA achieve
greater performance in various pattern datasets on FB15K237 and WN18RR.
Table 6 displays the experimental result on FB15k-237.

On FB15k-237, our SPA strategy attains the best performance, demonstrat-
ing that it can effectively learn all patterns in specific pattern datasets. In the
performance comparison of the symmetric pattern, KGE models with SPA, such
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Table 6. Link prediction results of several models evaluated on FB15k-237 with the
metric of MRR. w/o SPA represents using only KGE score without SPA strategy
and w SPA represents using SPA with KGE score. Bold numbers indicate the best
performance over patterns.

Model
FB15k-237

Sym. dataset Inv. dataset Sub. dataset Comp.2 dataset
w/o. SPA w. SPA w/o. SPA w. SPA w/o. SPA w. SPA w/o. SPA w. SPA

TransE .282 .301 .592 .649 .500 .546 .402 .403
RotatE .277 .293 .590 .644 .485 .543 .407 .407
HAKE .278 .288 .581 .633 .495 .559 .418 .418

DistMult .264 .264 .603 .622 .505 .529 .338 .338
ComplEx .174 .179 .296 .296 .247 .273 .339 .339
DualE .253 .254 .559 .564 .475 .483 .397 .399
PairRE .295 .316 .597 .676 .494 .555 .424 .425

as TransE, RotatE, and PairRE, achieve a 2% improvement in MRR. For the
inverse pattern, KGE models with SPA, such as TransE, RotatE, HAKE, and
PairRE, show MRR improvements of 5-8%. For the multiple pattern, KGE
models with SPA, such as TransE, RotatE, HAKE, and PairRE, exhibit MRR
improvements of around 6%. For the compositional2 pattern, we find that SPA
gets only slight improvements in DualE and PairRE. A possible explanation for
this phenomenon is that during the experiment, we calculate the contribution of
the compositional2 pattern in the form of 2-hops, which may further amplify
errors and make the effect less pronounced. The experimental result of WN18RR
is presented in Appendix E and is consistent with our conclusions in FB15k-237.

5.4 Case Study

Score-based Patterns Adaptation (SPA) utilizes the information from relational
patterns, which is simple but effective to be applied to KGE models without fur-
ther training. As Table 7 shows, we provide an intuitive demonstration for SPA.
We select an example case (1980 Summer Olympics, /olympics/olympic games/
sports, ?) from the FB15k-237 and list the tail prediction rank on skge(h, r, t),
sp(h, r, t), and s(h, r, t) based on RotatE.

Firstly, we get the rule τ : /user/jg/default domain/olympic games/sports(H,
T ) → /olympics/olympic games/sports(H,T ) with PCA = 0.83 and HC = 0.72
from test set which means relations in the head and body of rule τ with high
similarity. The rank of the correct answer (Rowing) is 5,6, and 2 with different
scores respectively, while confusing answers such as Artistic gymnastics, Swim-
ming, and Volleyball are decreased in the rank of the s(h, r, t), which means that
SPA calculates the SPA score from the body of rules with the KGE score can
achieve more accurate in reasoning.
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Table 7. The rank of part entities in different score functions. The reasoning task
is (1980 Summer Olympics, /olympics/olympic games/sports, ?) from the FB15k-237,
and we list the tail prediction rank in KGE score skge(h, r, t), SPA score sp(h, r, t), and
KGE with SPA score s(h, r, t) based on RotatE. The rankings are sorted from highest
to lowest with “filter” and the “Rowing” entity is the grounding.

Q: (1980 Summer Olympics, /olympics/olympic games/sports, ?) A: Rowing

Rank KGE score skge(h, r, t) SPA score sp(h, r, t) KGE and SPA s(h, r, t)

1 Artistic gymnastics Artistic gymnastics Canoe Slalom

2 Swimming Swimming Rowing

3 Volleyball Freestyle wrestling Swimming

4 Freestyle wrestling Volleyball Artistic gymnastics

5 Rowing Archery Cycling

6 Archery Rowing Volleyball

6 Conclusion and Future Work

We study KGC tasks in KGE models based on relational patterns and analyze
the result in theory, entity frequency, and part-to-whole three aspects with some
counterintuitive and interesting conclusions. Firstly, theoretical backing for a
KGE model’s relational pattern doesn’t ensure its superiority over models with-
out such support. Secondly, entity frequency differently affects relational pat-
terns’ performance; it decreases for symmetric patterns yet increases for others
with rising frequency. Finally, a significantly outperforming KGE model consis-
tently excels across all relational patterns otherwise doesn’t.

In the future, we believe that the research of KGE should not be con-
fined to relational patterns. Greater attention should be given to analyzing the
correlations between overall relations from a macro perspective, negative sam-
pling [17,13], and loss function.

Supplemental Material Statement: Our source code, datasets and results of
study with SPA are all available from GitHub at https://github.com/zjukg/
Comprehensive-Study-over-Relational-Patterns.
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Appendix

A Implementation Details on Compositional Pattern.

The compositional pattern differs from other patterns in that its rule length
is no longer 1. We mainly discuss rules with rule length 2. Since the rules in the
compositional pattern are usually not close-path rules, we need to get their
inverse relation and define the function of compositional inference. Our approach
is mainly divided into the following two steps: 1)construction of inverse relation
for all relations. 2) Define the function of the compositional inference.

Construction of inverse relation for all relations To make the experiment sim-
pler, we do not add a new reverse triple (t, r−1, h) of (h, r, t) in the dataset, but
derive its inverse relation from the properties of itself. Table 8 lists all the inverse
relations that need to be used in our experiment.

Table 8. Reverse Relation for different KGE models. Note that TransE, RotatE, DualE
represent entities and relations into real, complex, and dual-quaternion space respec-
tively, inverse relations of them the inverse in the corresponding space. HAKE is the
combine of TransE and RotatE. The relation in DistMult and ComplEx are diagonal
matrixes and the inverse of relations are the inverse of the matrixes.

Model Reverse Relation(r−1)

TransE r−1 = −r
RotatE r−1 = r

HAKE r−1
m = −rm r−1

p = r

DistMult diag(r)−1 = 1/diag(r)

ComplEx diag(r)−1 = 1/diag(r)

DualE W♢−1
r = W♢

r

PairRE rH−1 = 1/rH rT−1 = 1/rT

Define the function of the compositional inference The original compositional
rule can be encoded into a closed-path rule by inverse relation. Table 3 defines
the compositional inference function Path(h, r1, ...rn, t), the proof of them can
be listed as follows:

For TransE, r1,r2 can compose r, we can get r1 + r2 = r.
Proof: If r1(h, e1), r2(e1, t), and r(h, t), we have

h+ r1 = e1 ∧ e1 + r2 = t ∧ h+ r = t⇒ r1 + r2 = r (3)

For RotatE, HAKE, DualE, and PairRE, the proof of the compositional
inference function Path(h, r1, ...rn, t) of relationships between relation in head
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r and relations in body r1, ...rn can be found in works [32,46,4,5] respectively.
For DistMult and ComplEx, since these two models themselves do not support
compositional pattern, we use the method of modeling as a multiplication of
matrices proposed by Yang [42] to construct compositional inference function
Path(h, r1, ...rn, t).

B Dataset Detail

Table 9 shows the detail of FB15k-237 and WN18RR.

Table 9. Statistics of datasets. The symbols #E and #R denote the number of entities
and relations respectively. #TR, #VA, and #TE denote the size of the train set,
validation set, and test set respectively

Dataset #E #R #TR #VA #TE

FB15k-237 14541 237 272115 17535 20466
WN8RR 40493 11 86835 3034 3134

C The Hyper-parameter Settings.

Table 10 shows hyper-parameters settings of KGE models over different pattern
datasets.

Table 10. Hyper-parameters settings of KGE models over different pattern

KGE model λsym λinv λmul λcomp

TransE -2 -2 -3 0.2
RotatE -4 -1 -4 -0.01
HAKE -2 -1 -3 0.1

DistMult -2 -2 -4 1e-5
ComplEx -2 -1 -4 -0.01
DualE -2 -1 -3 -0.01
PairRE -10 -2 -2 0.5

D Pattern Matrix

The relationships between relations may be highly complex, and overlapping
between patterns can affect the final analysis, we propose the Pattern Matrix
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to indicate the degree of intersection between pairs of relational patterns. Each
element Mij of the matrix M represents the ratio of the relation overlap of
relational pattern Pi to Pj that

Mij =
|RPi

∩RPj
|

|RPi
|

, RPk
= {r|Pk ∈ Type(r)} (4)

where RPi
represents the set of relations that belong to Pi, |X| represents the

length of the set X, and ∩ denotes the intersection of sets.

E SPA Results on WN18RR.

Table 11 displays the experimental results on WN18RR. On WN18RR, which
only has a symmetric pattern due to the absence of complex connections be-
tween relations like in FB15k-237, we analyze the symmetric pattern. With SPA,
TransE achieves a 40% improvement in MRR, and by comparing the Hit@N
metrics, the primary improvement is in Hit@1, which increases from 0 to 0.8
with SPA. This may be because TransE does not support the symmetric model,
and there is an evident symmetric relationship in WN18RR, causing TransE to
learn the symmetric relation as a 0 vector with high probability, resulting in
low performance in Hit@1. Except for TransE, the less conspicuous performance
of other models may also be related to the obvious symmetric relationship in
the dataset itself, which enables different models that support the symmetric

pattern to better learn symmetric relationships.

Table 11. Link prediction results of several models evaluated on the WN18RR dataset
with the metric of MRR. Bold numbers indicate the best performance over patterns.

Model
Symmetry dataset Hyper-parameters

w/o. SPA w. sym. SPA λsym

TransE .431 .833 50
RotatE .935 .935 1
HAKE .942 .942 1

DistMult .928 .928 1
ComplEx .943 .944 1
DualE .938 .939 2
PairRE .939 .939 1
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