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Abstract. A knowledge graph is a powerful representation of real-world enti-
ties and their relations. The vast majority of these relations are defined as posi-
tive statements, but the importance of negative statements is increasingly recog-
nized, especially under an Open World Assumption. Explicitly considering neg-
ative statements has been shown to improve performance on tasks such as entity
summarization and question answering or domain-specific tasks such as protein
function prediction. However, no attention has been given to the exploration of
negative statements by knowledge graph embedding approaches despite the po-
tential of negative statements to produce more accurate representations of entities
in a knowledge graph.
We propose a novel approach, TrueWalks, to incorporate negative statements into
the knowledge graph representation learning process. In particular, we present a
novel walk-generation method that is able to not only differentiate between posi-
tive and negative statements but also take into account the semantic implications
of negation in ontology-rich knowledge graphs. This is of particular importance
for applications in the biomedical domain, where the inadequacy of embedding
approaches regarding negative statements at the ontology level has been identified
as a crucial limitation.
We evaluate TrueWalks in ontology-rich biomedical knowledge graphs in two dif-
ferent predictive tasks based on KG embeddings: protein-protein interaction pre-
diction and gene-disease association prediction. We conduct an extensive analysis
over established benchmarks and demonstrate that our method is able to improve
the performance of knowledge graph embeddings on all tasks.

Keywords: Knowledge Graph · Knowledge Graph Embedding · Negative State-
ments · Biomedical Applications.

1 Introduction

Knowledge Graphs (KGs) represent facts about real-world entities and their relations
and have been extensively used to support a range of applications from question-answering
and recommendation systems to machine learning and analytics [17]. KGs have taken to
the forefront of biomedical data through their ability to describe and interlink informa-
tion about biomedical entities such as genes, proteins, diseases and patients, structured
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according to biomedical ontologies. This supports the analysis and interpretation of bi-
ological data, for instance, through the use of semantic similarity measures [32]. More
recently, a spate of KG embedding methods [42] have emerged in this space and have
been successfully employed in a number of biomedical applications [28]. The impact
of KG embeddings in biomedical analytics is expected to increase in tandem with the
growing volume and complexity of biomedical data. However, this success relies on the
expectation that KG embeddings are semantically meaningful representations of the
underlying biomedical entities.

Regardless of their domain, the vast majority of KG facts are represented as positive
statements, e.g. (hemoglobin, hasFunction, oxygen transport). Under a Closed World
Assumption, negative statements are not required, since any missing fact can be as-
sumed as a negative. However, real-world KGs reside under the Open World Assump-
tion where non-stated negative facts are formally indistinguishable from missing or
unknown facts, which can have important implications across a variety of tasks.

The importance of negative statements is increasingly recognized [2,10]. For exam-
ple, in the biomedical domain, the knowledge that a patient does not exhibit a given
symptom or a protein does not perform a specific function is crucial for both clinical
decision-making and biomedical insight. While ontologies are able to express nega-
tion and the enrichment of KGs with interesting negative statements is gaining traction,
existing KG embedding methods are not able to adequately utilize them [21], which
ultimately results in less accurate representations of entities.

We propose True Walks, to the best of our knowledge, the first-ever approach that is
able to incorporate negative statements into the KG embedding learning process. This
is fundamentally different from other KG embedding methods, which produce negative
statements by negative random sampling strategies to train representations that bring the
representations of nodes that are linked closer, while distancing them from the negative
examples. TrueWalks uses explicit negative statements to produce entity representations
that take into account both existing attributes and lacking attributes. For example, for
the negative statement (Bruce Willis,NOT birthPlace,U.S.), our representation would
be able to capture the similarity between Bruce Willis and Ryan Gosling, since neither
was born in the U.S (see Figure 1). The explicit declaration of negative statements such
as these is an important aspect of more accurate representations, especially when they
capture unexpected negative statements (i.e., most people would expect that both actors
are U.S. born). Using TrueWalks, Bruce Willis and Ryan Gosling would be similar not
just because they are both actors but also because neither was born in the U.S.

True Walks generates walks that can distinguish between positive and negative
statements and consider the semantic implications of negation in KGs that are rich
in ontological information, particularly in regard to inheritance. This is of particular
importance for applications in the biomedical domain, where the inadequacy of embed-
ding approaches regarding negative statements has been identified as a crucial limita-
tion [21]. We demonstrate that the resulting embeddings can be employed to determine
semantic similarity or as features for relation prediction. We evaluate the effectiveness
of our approach in two different tasks, protein-protein interaction prediction and gene-
disease association prediction, and show that our method improves performance over
state-of-the-art embedding methods and popular semantic similarity measures.
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Fig. 1. A DBPedia example motivating the negative statements problem. The author of Bruce
Willis’ picture is Gage Skidmore.

Our contributions are as follows:

– We propose TrueWalks, a novel method to generate random walks on KGs that are
aware of negative statements and results in the first KG embedding approach that
considers negative statements.

– We develop extensions of popular path-based KG embedding methods implement-
ing the TrueWalks approach.

– We enrich existing KGs with negative statements and propose benchmark datasets
for two popular biomedical KG applications: protein-protein interaction (PPI) pre-
diction and gene-disease association (GDA) prediction.

– We report experimental results that demonstrate the superior performance of True-
Walks when compared to state-of-the-art KG embedding methods.

2 Related Work

2.1 Exploring Negative Statements

Approaches to enrich existing KGs with interesting negative statements have been pro-
posed both for general-purpose KGs such as Wikidata [3] and for domain-specific
ones such as the Gene Ontology (GO) [11,44]. Exploring negative statements has been
demonstrated to improve the performance of various applications. [2] developed a method
to enrich Wikidata with interesting negative statements and its usage improved the per-
formance on entity summarization and decision-making tasks. [44] have designed a
method to enrich the GO [14] with relevant negative statements indicating that a pro-
tein does not perform a given function and demonstrated that a balance between positive
and negative annotations supports a more reasonable evaluation of protein function pre-
diction methods. Similarly, [11] enriched the GO with negative statements and demon-
strated an associated increase in protein function prediction performance. The relevance
of negative annotations has also been recognized in the prediction of gene-phenotype
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associations in the context of the Human-Phenotype Ontology (HP) [22], but the topic
remains unexplored [25]. It should be highlighted that KG embedding methods have
not been employed in any of these approaches to explore negative statements.

2.2 Knowledge Graph Embeddings

KG embedding methods map entities and their relations expressed in a KG into a lower-
dimensional space while preserving the underlying structure of the KG and other se-
mantic information [42]. These entity and relation embedding vectors can then be ap-
plied to various KG applications such as link prediction, entity typing, or triple classifi-
cation. In the biomedical domain, KG embeddings have been used in machine learning-
based applications in which they are used as input in classification tasks or to predict
relations between biomedical entities. [21] provides an overview of KG embedding-
based approaches for biomedical applications.

Translational models, which rely on distance-based scoring functions, are some of
the most widely employed KG embedding methods. A popular method, TransE [6], as-
sumes that if a relation holds between two entities, the vector of the head entity plus
the relation vector should be close to the vector of the tail entity in the vector space.
TransE has the disadvantage of not handling one-to-many and many-to-many relation-
ships well. To address this issue, TransH [43] introduces a relation-specific hyperplane
for each relation and projects the head and tail entities into the hyperplane. TransR [23]
builds entity and relation embeddings in separate entity space and relation spaces.

Semantic matching approaches are also well-known and use similarity-based scor-
ing functions to capture the latent semantics of entities and relations in their vector
space representations. For instance, DistMult [48] employs tensor factorization to em-
bed entities as vectors and relations as diagonal matrices.

2.3 Walk-Based Embeddings

More recently, random walk-based KG embedding approaches have emerged. These
approaches are built upon two main steps: (i) producing entity sequences from walks in
the graph to produce a corpus of sequences that is akin to a corpus of word sequences or
sentences; (2) using those sequences as input to a neural language model [27] that learns
a latent low-dimensional representation of each entity within the corpus of sequences.

DeepWalk [31] first samples a set of paths from the input graph using uniform ran-
dom walks. Then it uses those paths to train a skip-gram model, originally proposed by
the word2vec approach for word embeddings [27]. Node2vec [16] introduces a differ-
ent biased strategy for generating random walks and exploring diverse neighborhoods.
The biased random walk strategy is controlled by two parameters: the likelihood of vis-
iting immediate neighbors (breadth-first search behavior), and the likelihood of visiting
entities that are at increasing distances (depth-first search behavior). Neither DeepWalk
nor node2vec take into account the direction or type of the edges. Metapath2vec [8]
proposes random walks driven by metapaths that define the node type order by which
the random walker explores the graph. RDF2Vec [35] is inspired by the node2vec strat-
egy but it considers both edge direction and type making it particularly suited to KGs.
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OWL2Vec* [7] was designed to learn ontology embeddings and it also employs direct
walks on the graph to learn graph structure.

2.4 Tailoring Knowledge Graph Embeddings

Recent KG embedding approaches aim to tailor representations by considering different
semantic, structural or lexical aspects of a KG and its underlying ontology. Approaches
such as EL [20] and BoxEL [45] embeddings are geometric approaches that account for
the logical structure of the ontology (e.g., intersection, conjunction, existential quanti-
fiers). OWL2Vec* [7] and OPA2Vec [37] take into consideration the lexical portion of
the KG (i.e., labels of entities) when generating graph walks or triples. OPA2Vec also
offers the option of using a pre-trained language model to bootstrap the KG embedding.
Closer to our approach, OLW2Vec* contemplates the declaration of inverse axioms to
enable reverse path traversal, however, this option was found lacking for the biomedi-
cal ontology GO. Finally, different approaches have been proposed to train embeddings
that are aware of the order of entities in a path, such as [51] and [34], which extend
TransE and RDF2Vec, respectively.

3 Methods

3.1 Problem Formulation

In this work, we address the task of learning a relation between two KG entities (which
can belong to the same or different KGs) when the relation itself is not encoded in the
KG. We employ two distinct approaches: (1) using the KG embeddings of each entity

Fig. 2. A GO KG subgraph motivating the reverse inheritance problem.
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as features for a machine learning algorithm and (2) comparing the KG embeddings
directly through a similarity metric.

We target ontology-rich KGs that use an ontology to provide rich descriptions of
real-world entities instead of focusing on describing relations between entities them-
selves. These KGs are common in the biomedical domain. As a result, the KG’s rich-
ness lies in the TBox, with a comparatively less complex ABox, since entities have
no links between them. We focus on Web Ontology Language (OWL) [15] ontologies
since biomedical ontologies are typically developed in OWL or have an OWL version.

Biomedical entities in a KG are typically described through positive statements that
link them to an ontology. For instance, to state that a protein P performs a function
F described under the GO, a KG can declare the axiom P ⊑ ∃hasFunction.F .
However, the knowledge that a given protein does not perform a function can also
be relevant, especially to declare that a given protein does not have an activity typi-
cal of its homologs [12]. Likewise, the knowledge that a given disease does not ex-
hibit a particular phenotype is also decisive in understanding the relations between
diseases and genes [25]. We consider the definition of grounded negative statements
proposed by [2] as ¬(s, p, o) which is satisfied if (s, p, o) /∈ KG and expressed as a
NegativeObjectPropertyAssertion3. Similar to what was done in [2], we do not have a
negative object property assertion for every missing triple. Negative statements are only
included if there is clear evidence that a triple does not exist in the domain being cap-
tured. Taking the protein example, negative object property assertions only exist when
it has been demonstrated that a protein does not perform a particular function.

An essential difference between a positive and a negative statement of this kind is re-
lated to the implied inheritance of properties exhibited by the superclasses or subclasses
of the assigned class. Let us consider that (P1, hasFunction, F1) and (F1, subClassOf, F2).
This implies that (P1, hasFunction, F2), since an individual with a class assignment
also belongs to all superclasses of the given class, e.g., a protein that performs iron
ion binding also performs metal ion binding (see Figure 2). This implication is eas-
ily captured by directed walk generation methods that explore the declared subclass
axioms in an OWL ontology. However, when we have a negative statement, such as
¬(P2, hasFunction, F1), it does not imply that ¬(P2, hasFunction, F2). There are no
guarantees that a protein that does not perform iron ion binding also does not perform
metal ion binding, since it can very well, for instance, perform calcium ion binding.
However, for (F3, subClassOf, F1) the negative statement ¬(P2, hasFunction, F1) im-
plies that ¬(P2, hasFunction, F3), as a protein that does not perform iron ion binding
also does not perform ferric iron binding nor ferrous iron binding. Therefore, we need
to be able to declare that protein P1 performs both functions F1 and F3, but that P2

performs F1 but not F3. Since OWL ontologies typically declare subclass axioms, there
is no opportunity for typical KG embedding methods to explore the reverse paths that
would more accurately represent a negative statement.

The problem we tackle is then two-fold: how can the reverse inheritance implied
by negative statements be adequately explored by walk-based KG embedding methods,
and how can these methods distinguish between negative and positive statements.

3https://www.w3.org/TR/owl2-syntax/#Negative_Object_Property_Assertions
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Fig. 3. Overview of the TrueWalks method with the four main steps: (i) creation of the RDF
graph, (ii) random walk generation with negative statements; (iii) neural language models, and
(iv) final representation.

3.2 Overview

An overview of TrueWalks, the method we propose, is shown in Figure 3. The first step
is the transformation of the KG into an RDF Graph. Next, our novel random walk gen-
eration strategy that is aware of positive and negative statements is applied to the graph
to produce a set of entity sequences. The positive and negative entity walks are fed to
neural language models to learn a dual latent representation of the entities. TrueWalks
has two variants: one that employs the classical skip-gram model to learn the embed-
dings (TrueWalks), and one that employs a variation of skip-gram that is aware of the
order of entities in the walk (TrueWalksOA, i.e. order-aware).

3.3 Creation of the RDF Graph

The first step is the conversion of an ontology-rich KG into an RDF graph. This is a
directed, labeled graph, where the edges represent the named relations between two
resources or entities, represented by the graph nodes4. We perform the transformation
according to the OWL to RDF Graph Mapping guidelines defined by the W3C5. Simple

4https://www.w3.org/RDF/
5https://www.w3.org/TR/owl2-mapping-to-rdf/
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axioms can be directly transformed into RDF triples, such as subsumption axioms for
atomic entities or data and annotation properties associated with an entity. Axioms in-
volving complex class expressions are transformed into multiple triples which typically
require blank nodes.

Let us consider the following existential restriction of the class obo:GO_0034708
(methyltransferase complex) that encodes the fact that a methyltransferase complex is
part of at least one intracellular anatomical structure:

ObjectSomeValuesFrom(obo:BFO_0000050 (part of),
obo:GO_0005622 (intracellular anatomical structure))

Its conversion to RDF results in three triples:
(obo:GO_0034708, rdfs:subClassOf, _:x)
(_:x, owl:someValuesFrom,obo:GO_0005622)
(_:x, owl:onProperty,obo:BFO_0000050)

where _:x denotes a blank node.

3.4 Random Walk Generation with Negative Statements

The next step is to generate the graph walks that will make up the corpus (see Algorithm
1). For a given graph G = (V,E) where E is the set of edges and V is the set of vertices,
for each vertex vr ∈ Vr, where Vr is the subset of individuals for which we want to learn
representations, we generate up to w graph walks of maximum depth d rooted in vertex
vr. We employ a depth-first search algorithm, extending on the basic approach in [35].
At the first iteration, we can find either a positive or negative statement. From then on,
walks are biased: a positive statement implies that whenever a subclass edge is found
it is traversed from subclass to superclass, whereas a negative statement results in a
traversal of subclass edges in the opposite direction (see also Figure 3). This generates
paths that follow the pattern vr → e1i → v1i → e2i. The set of walks is split in two,
negative statement walks and positive statement walks. This will allow the learning
of separate latent representations, one that captures the positive aspect and one that
captures the negative aspect.

An important aspect of our approach is that, since OWL is converted into an RDF
graph for walk-based KG embedding methods, a negative statement declared using a
simple object property assertion (e.g. notHasFunction) could result in the less accurate
path: Protein P → notHasFunction → iron ion binding → subClassOf → ion bind-
ing. Moreover, random walks directly over the NegativeObjectPropertyAssertion, since
it is decomposed into multiple triples using blank nodes, would also result in inaccu-
rate paths. However, our algorithm produces more accurate paths, e.g.: Protein P →
notHasFunction → iron ion binding → superClassOf → ferric iron binding by ade-
quately processing the NegativeObjectPropertyAssertion.

3.5 Neural Language Models

We employ two alternative approaches to learn a latent representation of the individuals
in the KG. For the first approach, we use the skip-gram model [27], which predicts the
context (neighbor entities) based on a target word, or in our case a target entity.
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Algorithm 1 Walk generation for one entity using TrueWalks. The function GET NON
VISITED NEIGHBOURS(status) is used to generate the random walks using a depth-
first search. It gets the neighbors of a given node that have not yet been visited in previ-
ous iterations. If the status is negative (which means that the first step in the walk was
made with a negative statement), the neighbors will include all the non-visited neigh-
bors except those connected through subclass statements, and if the status is positive, it
will include all the neighbors except those connected through superclass statements.
1: d← max_depth_walks
2: w ← max_number_of_walks
3: ent← root_entity
4: function GET TRUEWALKS(ent)
5: pos_walks← GET RANDOM WALKS(ent, positive)
6: neg_walks← GET RANDOM WALKS(ent, negative)
7: return pos_walks, neg_walks

8: function GET RANDOM WALKS(ent, status)
9: while len(walks) < w do

10: walk ← ent
11: depth← 1
12: while depth < d do
13: last← len(walk) == d
14: e, v ← GET NEIGHBOR(walk, status, last)
15: if e, v == None then
16: break
17: walk.append(e, v)
18: depth++

19: walks.append(walk)
20: return walks
21: function GET NEIGHBOR(walk, status, last)
22: n← GET NON VISITED NEIGHBORS(status)
23: if len(n) == 0 & len(walk) > 2 then
24: e, v ← walk[−2], walk[−1]
25: ADD VISITED NEIGHBORS(e, v, len(walk)− 2, status)
26: return None
27: e, v ← n[rand()]
28: if last then
29: ADD VISITED NEIGHBORS(e, v, len(walk), status)
30: return e, v

Let f : E → Rd be the mapping function from entities to the latent representations
we will be learning, where d is the number of dimensions of the representation (f is then
a matrix |E|×d). Given a context window c, and a sequence of entities e1, e2, e3, ..., eL,
the objective of the skip-gram model is to maximize the average log probability p:

1

L

L∑
l=1

log p(el+c|el) (1)
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where p(el+c|el) is calculated using the softmax function:

p(el+c|el) =
exp(f(el+c) · f(el))∑E
e=1 exp(f(e) · f(el))

(2)

where f(e) is the vector of the entity e.
To improve computation time, we employ a negative sampling approach based

in [27] that minimizes the number of comparisons required to distinguish the target en-
tity, by taking samples from a noise distribution using logistic regression, where there
are k negative samples for each entity.

The second approach is the structured skip-gram model [24], a variation of skip-
gram that is sensitive to the order of words, or in our case, entities in the graph walks.
The critical distinction of this approach is that, instead of using a single matrix f , it cre-
ates c× 2 matrices, f−c, ..., f−2, f−1, f1, ..., fc, each dedicated to predicting a specific
relative position to the entity. To make a prediction p(el+c|el), the method selects the
appropriate matrix fl.

The neural language models are applied separately to the positive and negative
walks, producing two representations for each entity.

3.6 Final Representations

The two representations of each entity need to be combined to produce a final represen-
tation. Different vector operations can, in principle, be employed, such as the Hadamard
product or the L1-norm. However, especially since we will employ these vectors as in-
puts for machine learning methods, we would like to create a feature space that allows
the distinction between the negative and positive representations, motivating us to use
a simple concatenation of vectors.

4 Experiments

We evaluate our novel approach on two biomedical tasks: protein-protein interaction
(PPI) prediction and gene-disease association (GDA) prediction[39]. These two chal-
lenges have significant implications for understanding the underlying mechanisms of
biological processes and disease states.

Both tasks are modeled as relation prediction tasks. For PPI prediction, we employ
TrueWalks embeddings both as features for a supervised learning algorithm and directly
for similarity-based prediction. For GDA prediction, since embeddings for genes and
diseases are learned over two different KGs, we focus only on supervised learning. We
employ a Random Forest algorithm across all classification experiments with the same
parameters (see the supplementary file for details).

4.1 Data

Our method takes as input an ontology file, instance annotation file and a list of instance
pairs. We construct the knowledge graph (KG) using the RDFlib package [5], which
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Table 1. Statistics for each KG regarding classes, instances, nodes, edges, positive and negative
statements.

GOPPI GOGDA HPGDA

Classes 50918 50918 17060
Literals and blank nodes 532373 532373 442246
Edges 1425102 1425102 1082859
Instances 440 755 162
Positive statements 7364 10631 4197
Negative statements 8579 8966 225

parses the ontology file in OWL format and processes the annotation file to add edges
to the RDFlib graph. The annotation file contains both positive and negative statements
which are used to create the edges in the graph.

Protein-Protein Interaction Prediction Predicting protein-protein interactions is a
fundamental task in molecular biology that can explore both sequence and functional
information [18]. Given the high cost of experimentally determining PPI, computational
methods have been proposed as a solution to the problem of finding protein pairs that
are likely to interact and thus provide a selection of good candidates for experimental
analysis. In recent years, a number of approaches for PPI prediction based on functional
information as described by the GO have been proposed [50,20,37,38,21]. The GO
contains over 50000 classes that describe proteins or genes according to the molecular
functions they perform, the biological processes they are involved in, and the cellular
components where they act.

The GO KG is built by integrating three sources: the GO itself [14], the Gene On-
tology Annotation (GOA) data [13], and negative GO annotations [44] (details on the
KG building method and data sources are available in the supplementary file). A GO
annotation associates a Uniprot protein identifier with a GO class that describes it. We
downloaded the GO annotations corresponding to positive statements from the GOA
database for human species. For each protein P in the PPI dataset and each of its asso-
ciation statements to a function F in GOA, we add the assertion (P, hasFunction, F ).
We employ the negative GO associations produced in [44], which were derived from
expert-curated annotations of protein families on phylogenetic trees. For each protein
P in the PPI dataset and each of its association statements to a function F in the nega-
tive GO associations dataset, we add a negative object property assertion. To do so, we
use metamodeling (more specifically, punning 6) and represent each ontology class as
both a class and an individual. This situation translates into using the same IRI. Then,
we use a negative object property assertion to state that the individual representing a
biomedical entity is not connected by the object property expression to the individual
representing an ontology class. Table 1 presents the GO KG statistics.

The target relations to predict are extracted from the STRING database [40]. We
considered the following criteria to select protein pairs: (i) protein interactions must be

6https://www.w3.org/TR/owl2-new-features/#F12:_Punning
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extracted from curated databases or experimentally determined (as opposed to compu-
tationally determined); (ii) interactions must have a confidence score above 0.950 to
retain only high confidence interaction; (iii) each protein must have at least one pos-
itive GO association and one negative GO association. The PPI dataset contains 440
proteins, 1024 interacting protein pairs, and another 1024 pairs generated by random
negative sampling over the same set of proteins.

Gene-Disease Association Prediction Predicting the relation between genes and dis-
eases is essential to understand disease mechanisms and identify potential biomarkers
or therapeutic targets [9]. However, validating these associations in the wet lab is expen-
sive and time-consuming, which fostered the development of computational approaches
to identify the most promising associations to be further validated. Many of these ex-
plore biomedical ontologies and KGs [41,49,36,4,26] and some recent approaches even
apply KG embedding methods such as DeepWalk [1] or OPA2Vec [37,30].

For GDA prediction, we have used the GO KG, the Human Phenotype Ontology
(HP) KG (created from the HP file and HP annotations files), and a GDA dataset. Two
different ontologies are used to describe each type of entity. Diseases are described un-
der the HP and genes under the GO. We built GO KG in the same fashion as in the PPI
experiment, but instead of having proteins linked to GO classes, we have genes associ-
ated with GO classes. Regarding HP KG, HP [22] describes phenotypic abnormalities
found in human hereditary diseases. The HP annotations link a disease to a specific
class in the HP through both positive and negative statements.

The target relations to predict are extracted from DisGeNET [33], adapting the ap-
proach described in [30] to consider the following criterion: each gene (or disease) must
have at least one positive GO (or HP) association and one negative GO (or HP) asso-
ciation. This resulted in 755 genes, 162 diseases, and 107 gene-disease relations. To
create a balanced dataset, we sampled random negative examples over the same genes
and diseases. Table 1 describes the created KGs.

4.2 Results and Discussion

We compare TrueWalks against ten state-of-the-art KG embedding methods: TransE,
TransH, TransR, ComplEx, distMult, DeepWalk, node2vec, metapath2vec, OWL2Vec*
and RDF2Vec. TransE, TransH and TransR are representative methods of translational
models. ComplEx and distMult are semantic matching methods. They represent a bottom-
line baseline with well-known KG embedding methods. DeepWalk and node2vec are
undirected random walk-based methods, and OWL2Vec* and RDF2Vec are directed
walk-based methods. These methods represent a closer approach to ours, providing a
potentially stronger baseline. Each method is run with two different KGs, one with only
positive statements and one with both positive and negative statements. In this second
KG, we declare the negative statements as an object property, so positive and negative
statements appear as two distinct relation types. The size of all the embeddings is 200
dimensions across all experiments (details on parameters can be found in the supple-
mentary file), with TrueWalks generating two 100-dimensional vectors, one for the pos-
itive statement-based representation and one for the negative, which are concatenated
to produce the final 200-dimensional representation.
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Relation Prediction using Machine Learning To predict the relation between a pair
of entities e1 and e2 using machine learning, we take their vector representations and
combine them using the binary Hadamard operator to represent the pair: r(e1, e2) =
ve1 × ve2 . The pair representations are then fed into a Random Forest algorithm for
training using Monte Carlo cross-validation (MCCV) [46]. MCCV is a variation of tra-
ditional k-fold cross-validation in which the process of dividing the data into training
and testing sets (with β being the proportion of the dataset to include in the test split) is
repeated M times. Our experiments use MCCV with M = 30 and β = 0.3. For each
run, the predictive performance is evaluated based on recall, precision and weighted av-
erage F-measure. Statistically significant differences between TrueWalks and the other
methods are determined using the non-parametric Wilcoxon test at p < 0.05.

Table 2 reports the median scores for both PPI and GDA prediction. The top half
contains the results of the first experiment where we compare state-of-the-art methods
using only the positive statements to TrueWalks (at the bottom) which uses both types.
The results reveal that the performance of TrueWalks is significantly better than the

Table 2. Median precision, recall, and F-measure (weighted average F-measure) for PPI and GDA
prediction. TrueWalks performance values are italicized/underlined when improvements are sta-
tistically significant with p-value < 0.05 for the Wilcoxon test against the positive (Pos)/positive
and negative (Pos+Neg) variants of other methods. The best results are in bold.

Method PPI Prediction GDA Prediction

Precision Recall F-measure Precision Recall F-measure

Po
s

TransE 0.553 0.546 0.554 0.533 0.538 0.531
TransH 0.566 0.562 0.566 0.556 0.563 0.548
TransR 0.620 0.607 0.616 0.594 0.600 0.592
ComplEx 0.680 0.659 0.679 0.597 0.625 0.598
distMult 0.765 0.737 0.754 0.585 0.600 0.575
DeepWalk 0.813 0.836 0.822 0.618 0.646 0.629
node2vec 0.826 0.741 0.794 0.643 0.616 0.644
metapath2vec 0.562 0.563 0.561 0.554 0.531 0.549
OWL2Vec* 0.833 0.806 0.823 0.652 0.656 0.646
RDF2Vec 0.831 0.826 0.828 0.623 0.625 0.615

Po
s+

N
eg

TransE 0.584 0.582 0.585 0.597 0.585 0.586
TransH 0.573 0.572 0.570 0.563 0.554 0.554
TransR 0.722 0.678 0.704 0.633 0.625 0.630
ComplEx 0.750 0.720 0.740 0.549 0.545 0.545
distMult 0.813 0.740 0.784 0.530 0.523 0.534
DeepWalk 0.843 0.834 0.841 0.615 0.646 0.630
node2vec 0.847 0.734 0.798 0.614 0.594 0.621
metapath2vec 0.557 0.569 0.558 0.527 0.531 0.522
OWL2Vec* 0.860 0.812 0.840 0.654 0.600 0.645
RDF2Vec 0.847 0.844 0.845 0.625 0.661 0.630

TrueWalks 0.870 0.817 0.846 0.667 0.625 0.661
TrueWalksOA 0.868 0.836 0.858 0.661 0.616 0.654
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other methods, improving both precision and F-measure. An improvement in precision,
which is not always accompanied by an increase in recall, confirms the hypothesis that
embeddings that consider negative statements produce more accurate representations of
entities, which allows a better distinction of true positives from false positives.

A second experiment employs a KG with both negative and positive statements
for all methods. Our method can accurately distinguish between positive statements
and negative statements, as discussed in subsection 3.4. For the remaining embedding
methods, we declare the negative statements as an object property so that these meth-
ods distinguish positive and negative statements as two distinct types of relation. This
experiment allows us to test whether TrueWalks, which takes into account the positive
or negative status of a statement, can improve the performance of methods that handle
all statements equally regardless of status.

The bottom half of Table 2 shows that both variants of TrueWalks improve on pre-
cision and F-measure for both tasks when compared with the state-of-the-art methods
using both positive and negative statements. This experiment further shows that the
added information given by negative statements generally improves the performance of
most KG embedding methods. However, no method surpasses TrueWalks, likely due
to its ability to consider the semantic implications of inheritance and walk direction,
especially when combined with the order-aware model.

Comparing the two variants of TrueWalks demonstrates that order awareness does
not improve performance in most cases. However, TrueWalksOA improves on precision
and F-measure for all other state-of-the-art methods. These results are not unexpected
since the same effect was observed in other order-aware embedding methods [34].

Regarding the statistical tests, TrueWalks performance values are italicized/under-
lined in Table 2 when improvements over all other methods are statistically significant,
except when comparing TrueWalks with OWL2Vec* for GDA, since in this particular
case the improvement is not statistically significant.

Relation Prediction using Semantic Similarity We also evaluate all methods in PPI
prediction using KG embedding-based semantic similarity, computed as the cosine sim-
ilarity between the vectors of each protein in a pair. Adopting the methodology em-
ployed by [20] and [45], for each positive pair e1 and e2 in the dataset, we compute the
similarity between e1 and all other entities and identify the rank of e2. The performance
was measured using recall at rank 107, recall at rank 100, mean rank, and the area under
the ROC curve (Table 3). Results show that TrueWalksOA achieves the top performance
across all metrics, but TrueWalks is bested by RDF2Vec on all metrics except Hits@10,
by OWL2Vec* on Hits@100 and by node2vec on Hits@10.

To better understand these results, we plotted the distribution of similarity values
for positive and negative pairs in Figure 4. There is a smaller overlap between negative
and positive pairs similarities for TrueWalksOA, which indicates that considering both
the status of the function assignments and the order of entities in the random walks

7Since we compute the similarity score for all possible pairs to simulate a more realistic
scenario where a user is presented with a ranked list of candidate interactions, the task is several
degrees more difficult to performant and all KG embedding methods have a recall score of 0 at
rank 1. As a result, we have excluded the results for this metric from our analysis.
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Table 3. Hits@10, Hits@100, mean rank, and ROC-AUC for PPI prediction using cosine simi-
larity obtained with different methods. In bold, the best value for each metric.

Method Hits@10 Hits@100 MeanRank AUC

Po
s

TransE 0.013 0.125 103.934 0.538
TransH 0.013 0.134 102.703 0.543
TransR 0.037 0.196 81.916 0.636
ComplEx 0.080 0.261 64.558 0.689
distMult 0.112 0.340 46.512 0.803
DeepWalk 0.125 0.380 35.406 0.847
node2vec 0.163 0.375 37.275 0.827
metapath2vec 0.017 0.151 98.445 0.558
OWL2Vec* 0.152 0.386 33.192 0.860
RDF2Vec 0.133 0.391 32.419 0.870

Po
s

+
N

eg

TransE 0.022 0.161 94.809 0.576
TransR 0.100 0.274 60.120 0.732
TransH 0.025 0.174 91.553 0.594
ComplEx 0.132 0.334 45.268 0.805
distMult 0.149 0.378 35.351 0.853
DeepWalk 0.148 0.383 35.365 0.849
node2vec 0.166 0.389 34.305 0.840
metapath2vec 0.020 0.165 93.374 0.578
OWL2Vec* 0.160 0.397 32.234 0.869
RDF2Vec 0.155 0.401 30.281 0.879

TrueWalks 0.161 0.392 32.089 0.869
TrueWalksOA 0.166 0.407 28.128 0.889

results in embeddings that are more meaningful semantic representations of proteins.
Furthermore, the cosine similarity for negative pairs is consistently lower when using
both variants of TrueWalks, which supports that the contribution of negative statement-
based embeddings is working towards filtering out false positives.

5 Conclusion

Knowledge graph embeddings are increasingly used in biomedical applications such
as the prediction of protein–protein interactions, gene-disease associations, drug-target
relations and drug-drug interactions [28]. Our novel approach, TrueWalks, was moti-
vated by the fact that existing knowledge graph embedding methods are ill-equipped
to handle negative statements, despite their recognized importance in biomedical ma-
chine learning tasks [21]. TrueWalks incorporates a novel walk-generation method that
distinguishes between positive and negative statements and considers the semantic im-
plications of negation in ontology-rich knowledge graphs. It generates two separate
embeddings, one for each type of statement, enabling a dual representation of entities
that can be explored by downstream ML, focusing both on features entities have and
those they lack. TrueWalks outperforms representative and state-of-the-art knowledge
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Fig. 4. Violin plot with embedding similarity obtained with RDF2Vec with positive statements
(R2V P), RDF2Vec with both positive and negative statements (R2V P+N), TrueWalks (TW),
and TrueWalksOA (TWOA).

graph embedding approaches in the prediction of protein-protein interactions and gene-
disease associations.

We expect TrueWalks to be generalizable to other biomedical applications where
negative statements play a decisive role, such as predicting disease-related phenotypes [47]
or performing differential diagnosis [19]. In future work, we would also like to explore
counter-fitting approaches, such as those proposed for language embeddings [29], to
consider how opposite statements can impact the dissimilarity of entities.

Supplemental Material Statement: The source code for True Walks is available on GitHub
(https://github.com/liseda-lab/TrueWalks). All datasets are available on Zen-
odo (https://doi.org/10.5281/zenodo.7709195). A supplementary file contains
the links to the data sources, the parameters for the KG embedding methods and ML models,
and the results of the statistical tests.
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