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Abstract. We present a novel way to model diffusion magnetic reso-
nance imaging (dMRI) datasets, that benefits from the structural coher-
ence of the human brain while only using data from a single subject.
Current methods model the dMRI signal in individual voxels, disregard-
ing the intervoxel coherence that is present. We use a neural network to
parameterize a spherical harmonics series (NeSH) to represent the dMRI
signal of a single subject from the Human Connectome Project dataset,
continuous in both the angular and spatial domain. The reconstructed
dMRI signal using this method shows a more structurally coherent rep-
resentation of the data. Noise in gradient images is removed and the
fiber orientation distribution functions show a smooth change in direc-
tion along a fiber tract. We showcase how the reconstruction can be used
to calculate mean diffusivity, fractional anisotropy, and total apparent
fiber density. These results can be achieved with a single model archi-
tecture, tuning only one hyperparameter. In this paper we also demon-
strate how upsampling in both the angular and spatial domain yields
reconstructions that are on par or better than existing methods.

Keywords: Diffusion MRI · Implicit Neural Representation · Spherical
Harmonics.

1 Introduction

The human brain is a highly structured organ. With the introduction of diffu-
sion magnetic resonance imaging (dMRI) in vivo study of the structure of the
brain became a possibility. The spatially coherent structures in the brain imply
that spatial coherence should be present when modeling dMRI data. Diffusion
tensor imaging (DTI) [3] fits a tensor for every voxel of the volume describing
the diffusion in three primary directions. Constrained spherical deconvolution
(CSD) [14] can describe the orientation and relative size of fiber bundles using
fiber orientation distribution functions (fODFs). These are examples of methods
that model the fiber orientation in every voxel independently, disregarding any
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intervoxel coherence. Interpolating correctly between voxels using classical inter-
polation methods (e.g. cubic interpolation) is, therefore, difficult and susceptible
to noise, and can discard anatomical details. Interpolation in the angular domain
has proven to be a difficult task as well, as highlighted by recent challenges in
the computational dMRI community [4,13,9]. Machine learning approaches for
upsampling in both the angular and spatial domains are a promising avenue [1].
However, these methods often rely on a strong prior obtained by training on
large amount of data. This is problematic when training data is scarce or if the
model is applied to data inherently different from the data it was trained on
(e.g. pathological data). Ideally, a continuous and structurally coherent model
should be derived at the individual level (i.e., n=1).
Neural radiance field (NeRF) [8] models have shown to be extremely effective
at creating continuous 3-dimensional representations, known as implicit neural
representations, of scenes given a limited number of 2-dimensional input images
taken from limited angles. NeRF overfits a multi-layer perceptron to essentially
capture a given scene in its parameters. Unseen angles can then be sampled from
this network. This concept could translate well to dMRI, as we are trying to cre-
ate a complete representation from an incompletely sampled angular domain.
The difference with dMRI is that every angle in a dMRI-acquisition produces a
complete 3-dimensional volume of data.
In this work, we propose to use a NeRF-like model to create a model of the
dMRI data of a single subject that utilizes the structural coherence of the brain,
while providing continuity in both the angular and spatial domain. We evaluate
the resulting model in a number of downstream tasks, such as calculating mi-
crostructural metrics, and fODF estimation. We also demonstrate how the model
can be used to upsample dMRI data in both the angular and spatial domain.

2 Methods & Experiments

2.1 Data

We sourced data from a single participant from the preprocessed Human Con-
nectome Project dataset [18] consisting of 18 b = 0s/mm2 volumes, 90 b = 1000
s/mm2 volumes, 90 b = 3000 s/mm2 volumes, with 1.25mm isotropic voxels.

2.2 Model

The neural spherical harmonics model (NeSH) is an adaptation from SH-NeRF
[19]. NeSH outputs an approximation Ŝ(x, y, z, b) for a diffusion signal S(x, y, z, b).
An input pair i ∈ I consists of a voxel midpoint coordinate (x, y, z) and a gradi-
ent direction vectors b, where I is a set of all possible coordinate-direction pairs.
I has size N = nc × nd with nc being the number of coordinates and nd the
number of directions. The input coordinates are scaled to lie in [−1, 1] and are
positionally encoded using the generalization of the NeRF positional encoding
[12] into input vector x. Direction vector b is converted into the corresponding
polar angles θ (azimuth, [0, 2π)) and ϕ (elevation, [0, π]).
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A simple multi-layer perceptron (MLP) maps x into a coefficient vector k
that parameterizes a spherical harmonics (SH) series.

MΨ : x → k (1)

k = (kml )m:−l≤m≤l
l:0≤l≤lmax

(2)

where kml is the coefficient for the SH component of degree l and order m, lmax

is the maximum degree of the SH-series, and m the order. For a given i we can
now obtain an estimation of the dMRI signal:

Ŝi = Ŝ(xi, yi, zi, bi) =
∑

(km
l
)i∈ki

(kml )iY m
l (θ, ϕ) (3)

where Y m
l (θ, ϕ) is the SH component of degree l and order m for azimuth θ and

elevation ϕ obtained from bi, ki is the coefficient vector given by (1) for input
i, and (kml )i is the coefficient of Y m

l . The dMRI signal is reconstructed with
a simplified real basis SH series, using only odd-numbered degrees. Different
methods of simplifying the SH series exist [14,5]; in this paper, the method
described in MRtrix3 is used [17]. The full model is shown in Figure 1.

Fig. 1: A schematic representation of the Neural spherical harmonics (NeSH)
model. Inputs coordinates are spatially encoded into (x), directional vector b
is converted to θ and ϕ. Vector x is passed through the multi-layer perceptron
(MLP) to produce k, which parameterizes the spherical harmonics series. This
is sampled in direction b to produce the final output Ŝ.

We calculate the loss as an average over all inputs for the smooth L1 loss
[6] between the value of Ŝi, and the dMRI signal Si defined as the dMRI signal
measured at (xi, yi, zi) in the direction of bi. Unregularized, NeSH could be sus-
ceptible to overfitting on noise, if the maximum degree of the SH series is larger
than necessary to model the diffusion data in a given voxel. An L1 regularization
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term is added as an incentive to minimize unnecessary coefficients. The resulting
loss function is:

L =
1

N

∑
i∈I

(
smoothL1(Si − Ŝi) + λ

( ∑
km
l
∈ki

|(kml )i|
))

(4)

where |(kml )i| is the absolute value of the coefficient. The loss is used to update
the MLP parameters Ψ .

To reconstruct images from the trained model, a set C of (x, y, z) coordinates
is generated at the desired spatial resolution, as well as a set B of directions in
the desired angular resolution. A dMRI dataset is reconstructed by first posi-
tionally encoding, and mapping every coordinate c ∈ C to kc using (1), and
then sampling the SH-series parameterized with kc for every direction b ∈ B.
Effectively this applies (3) to every coordinate-direction pair, but only calculates
kc once for every input coordinate.
The model has the following hyperparameters: lmax sets the maximum degree
of the SH, lpos sets the number of positional encodings, σ scales the positional
encoding, n layers sets the number of layers in the MLP, hidden dim sets the
number of neurons in each layer, lr is the learning rate, λ scales the L1 regular-
ization.

2.3 Implementation

The model is implemented in python version 3.9.16, with pytorch version 2.0.0.
MRtrix3 version 3.0.4 is used to calculate DTI metrics and fODFs, and to visual-
ize results. Scilpy1 version 1.5 is used (with python version 3.10.10) to calculate
fODF based metrics, and to create interpolated spherical functions. The BET of
FSL version 6.0.6.4, is used for brain mask segmentation.

2.4 Experiments

Reconstruction and angular upsampling of the dMRI signal To assess
if the proposed model can reproduce the original data, NeSH is fit on 30 gradient
directions of the b = 1000 s/mm2 shell. A grid-search is performed over the hy-
perparameters. Visual inspection of the gradient images, as well as DTI metrics
and fODF glyphs, determine which settings produce the best results. Then, to
assess if these settings can be applied to a different set of gradient directions,
the settings found in part one are used to fit the model on 90, 60, 45, 30, 15, 10
and 3 gradient directions for both the b = 1000 s/mm2 and b = 3000 s/mm2

dMRI acquisitions. As a comparison, spherical harmonics interpolation (SHI) [5]
is fit on the same number of gradients. The root mean squared error (RMSE)
is calculated for each of the models between the input gradient images and the
reconstructed gradient images it produces:√√√√ 1

WHD|B|

W∑
x=1

H∑
y=1

D∑
z=1

∑
b∈B

(S(x, y, z, b)− Ŝ(x, y, z, b))2 (5)

1 https://github.com/scilus/scilpy
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where W , H, and D are the width, height, and depth of the image, B is the
set of gradient directions with size |B|, S(x, y, z, b) is the measured signal, and
Ŝ(x, y, z, b) is the reconstructed signal at location x, y, z for gradient direction
b. Finally the capabilities of the model to upsample in the angular domain
are assessed. The resulting models from the second part are sampled in all 90
gradient directions. The RMSE is calculated between the 90 original gradient
images and the 90 reconstructed gradient images using (5). In all experiments
the RMSE is only calculated within a brain mask.

Spatial upsampling The data modeled with NeSH can be sampled in any
spatial resolution. This experiment assesses the quality of the data when upsam-
pled in spatial domain. The HCP dataset is downsampled from 1.25mm to 2.5mm
isotropic voxels. NeSH is fit on the downsampled dataset using 90 gradient di-
rections, and then sampled at 1.25mm isotropic resolution. The downsampled
dataset is also upsampled to the original 1.25mm isotropic resolution using cubic
interpolation. For the resulting datasets a color encoded FA map is calculated
and visualized to compare the results.

DTI and fODF Metrics In this experiment we assess if the data modeled
with NeSH can be used to produce three common dMRI microstrutural metrics.
Two DTI metrics: mean diffusivity (MD) and fractional anisotropy (FA), and
one fODF metric: total apparent fiber density (AFD, [10]). The metrics are cal-
culated for 90 gradients, 90 gradients reconstructed by NeSH fit on 90 gradients,
30 gradients, 90 gradients reconstructed by NeSH fit on 30 gradients, and 90
gradients reconstructed by SHI fit on 30 gradients. The b = 1000 s/mm2 shell
was used for the DTI metrics, and the b = 3000 s/mm2 shell for AFD. The three
measures are compared to the ones obtained from the full 90 gradients set by
computing and visualizing a difference map.

fODF estimation This experiment is used to assess if fODFs can be generated
from data modeled with NeSH. The same datasets as in the previous experiment
are used. A response function is first extracted from the dMRI acquisitions using
the single shell implementation of the algorithm by Tournier [15]. Secondly,
the fODFs are calculated using single shell CSD [14]. For all five datasets, the
b = 3000 s/mm2 shell is used. Results are visualized by showing fODF glyphs.

3 Results

Reconstruction and angular upsampling of dMRI signal The grid-search
over the parameters resulted in the following hyperparameter settings: lmax = 8
(for models trained ≤ 10 gradient directions lmax = 2), lpos = 12 resulting in
an input size of 75 (12 sine and cosine encodings for each dimension + raw
coordinates), σ = 4, n layers = 4, hidden dim = 2048, lr = 10 × 10−5, λ =
10 × 10−6. The Adam optimizer was used with default settings. The model is
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trained for 5 epochs with a batch size of 1000. Figure 2 shows a slice of dMRI
data for a single gradient direcion, the output generated by NeSH, as well as
the mean squared error (RMSE) between the two images. NeSH produces a
smoother image, removing the noise from the input image. The noise appears to
be randomly distributed, without anatomical residuals.

Fig. 2: A single axial slice of dMRI data, from a single gradient direction shown
as baseline (column one) and as reconstructed by NeSH (column two). The root
mean squared error (RMSE) between the two images is shown in column three.
A two time magnification of the area in the green boxes shows the denoising
effect more clearly.

The comparisons of reconstruction error between NeSH and SHI are shown
in Figure 3a. NeSH has a higher RMSE when reconstructing a lower number of
gradients, which lowers with an increasing number of gradients. SHI has a lower
RMSE when reconstructing a lower number of gradients, which increases with
an increasing number of gradients. SHI has a consistently lower RMSE compared
to NeSH on both b = 1000 s/mm2 and b = 3000 s/mm2.

The comparisons of upsampling error between NeSH and SHI are shown in
Figure 3b. For both Nesh and SHI the RMSE of the upsampled data lowers
when the model is fit on more gradient directions. SHI has a lower RMSE for
all gradient subsets for b = 1000 s/mm2, and for all subsets with more then 15
gradients for b = 3000 s/mm2.

Spatial upsampling Figure 4 shows the color encoded FA maps for this ex-
periment. The dataset reconstructed by NeSH fit on 90 gradients is able to
reconstruct details in the cerebellar cortex and cerebellar white matter that are
lost in cubic interpolation. Finer-grained details of the 1.25mm isotropic voxel
data are lost in both upsampling methods.

DTI Metrics and fODF metrics Figure 5 shows the results of this experi-
ment. The DTI metrics (MD, FA) show low error when downsampling, and in
NeSH and SHI reconstructions on both 90 and 30 gradients, when compared to
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(a) (b)

Fig. 3: Root mean squared error (RMSE) of the reconstructed dMRI volumes
by NeSH and spherical harmonics interpolation (SHI) compared to the gradient
images used to fit the model (a) and compared to the full set of 90 gradient
images (b), for both b = 1000 s/mm2 and b = 3000 s/mm2.

Fig. 4: A slice of color encoded FA maps at the cerebellar level, generated for
different datasets. Clockwise starting top left: the 1.25mm isotropic original im-
age (ground truth), the downsampled 2.5mm isotropic image, 1.25mm isotropic
image upsampled using cubic interpolation, 1.25mm isotropic image upsampled
using NeSH. The arrows show two areas where NeSH is able to reconstruct de-
tails of the cerebellum which are lost in cubic interpolation.



8 T. Hendriks et al.

the metrics calculated on 90 gradients. Downsampling and SHI both over- and
underestimate the metric, with most errors located in the white matter areas.
NeSH more frequently underestimates the metrics and the errors are located
more in the grey matter areas. The AFD is overestimated by NeSH reconstruc-
tions, and underestimated when downsampling or resconstructing using SHI. In
AFD the distribution of error is similar for all methods, but downsampling and
SHI show an underestimation of the AFD, while NeSH shows errors in both
directions.

Fig. 5: Visualization of mean diffusivity (MD), fractional anisotropy (FA) and
total apparant fiber density (AFD). In the first column the metrics are shown
as a map for a single axial slice of the volume when calculated on the full set
of 90 gradient images. The remaining columns show the difference map for the
other datasets when compared to the 90 gradient images. Blue signifies negative
difference, red signifies positive difference.

fODF estimation The visualization of a group of fODFs in the centrum semi-
ovale and the descending part of the CST can be seen in Figure 6. The glyphs
created from the NeSH reconstructions show a smooth, structurally-coherent
change, while maintaining the important information, i.e. the crossing of fibers
in the centrum semi-ovale. In presence of a big fiber tract such as the CST, the
NeSH reconstruction shows a decrease in amplitude in other directions. In other
methods, the fODFs exhibit more noise and less alignment between voxels, while
the peaks appear sharper.
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Fig. 6: Magnified coronal view showing the fiber orientation distributions glyps
for the different datasets on a background of a T1-weighted image. First row:
centrum semi-ovale, highlighted region shows the increased intervoxel consis-
tency in NeSH modelled data. Second row: descending part of the corticospinal
tract, highlighted region shows increased intervoxel consistency in NeSH mod-
elled data, as well as a decrease in the size of the crossing fibers.

4 Discussion

We have introduced a novel method to model only a single acquisition of dMRI
data using a neural representation of spherical harmonics, called NeSH. We show
that dMRI data reconstructed by NeSH appears to be denoised compared to
the original data (Figure 2. We hypothesise that the model is able to capture
the continuous structures of the brain, but not the erratic nature of the noise.
The RMSE lies consistently higher for both the reconstruction and upsampling
compared to SHI (Figure 3, which could partly be explained by the removal of
noise. For the reconstruction of the input gradients, NeSH performs worse with a
decreasing number of input gradients. Possibly this indicates that to find a good
representation NeSH needs a minimum number of gradients, which appears to
be around 15. Both NeSH and SHI show an increase in RMSE when upsampling
to 90 gradients from a decreasing number of gradients, as is to be expected.

We also show that NeSH can also be used to upsample in the spatial domain.
Figure 4 shows that NeSH is able to reconstruct details that are not clearly visible
in the 2.5mm isotropic data, but are present in the 1.25mm ground truth. This
strengthens the hypothesis that using multiple gradient directions, NeSH can
model a continuous representation of the dMRI data. While the achievable level
of detail is lower than achieved by Alexander et al [2], it does not rely on a prior
learned from a large dataset.

Furthermore, we show that the reconstructed dMRI volumes can be used
to calculate MD, FA, and AFD. Compared to the metrics calculated using 90
gradient direction, NeSH differs mostly in the gray matter areas, while down-
sampled volumes and SHI reconstructed volumes have differences in the white
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matter areas. This supports our hypothesis that NeSH benefits from the struc-
tural continuity of the fiber bundles to model the data. As the white matter
areas are usually the areas of interest, this could be seens as a benefit of NeSH.
The increased brightness in the posterior commissure and surrounding tissue can
be explained by the lack of bias field correction in pre-processing.

Finally, we show that fODFs generated from NeSH reconstructions have a
smooth change in fiber directions between voxels. This is also supportive of the
structural continuity hypothesis. The 90 gradient, 30 gradient, and SHI recon-
structed FODs show a more erratic pattern, in which the FODs are less aligned
overall. The decrease in size of the crossing fibers in the descending part of the
CST shows that NeSH prioritizes the major bundle in this area. Some informa-
tion on possible smaller bundles is now lost, however, which is something that
should be looked into in future versions.

Limitations The lack of a gold-standard in dMRI complicates the interpreta-
tion of the experiments. The denoising effect shown in Figure 2 is an example.
We cannot be certain if the representation modelled by NeSH is a more re-
alistic one than the more noisy representation or just a smoother one. In the
last experiment NeSH consistently shows lower values in grey matter areas. The
fODFs in the grey matter area correspondingly show a less peaked, smaller am-
plitude. Compared to existing techniques this can be interpreted as an error, but
anatomically it makes sense as there are no large fiber bundles in the grey mat-
ter. Additionally, with no ground truth data, it is difficult to assess how good the
representation outside of the voxels actually is. Synthetic datasets with known
ground truths can provide a better idea. Furthermore, both the architecture
and positional encodings used in this paper are simple. Many developments in
the field NeRF have taken place since [20,12]. Architectural and methodologi-
cal changes to NeSH could lead to further improvement. Finally, we choose to
model the dMRI signal directly through an SH-series, in order to evaluate the
data quality with a variety of downstream tasks. This is not a necessity. Anything
that can be transformed into dMRI signal can be modelled by NeSH (e.g. peak
directions or fODFs, which can be convolved into a diffusion weighted signal).

Future work Future work will further investigate the advantages of modelling
dMRI data in a continuous space, as well as further evaluate the findings of
the experiments. First, the quality and usability of the denoising properties of
NeSH should be compared to other existing denoising methods. Second, using
clinical datasets of lower angular and spatial resolution can provide insight into
the ’real-world’ clinical applicability of NeSH. This is especially interesting in
MRI acquisitions of pathology (e.g. a glial-cell tumor) in the brain, as models
relying on a prior learned on outside data might fail here. The harmonization
of dMRI datasets across scanners and protocols [13,9], is another area of re-
search where NeSH can be applied. Third, fiber tracking is a common use-case
for dMRI. We have performed fibertracking using iFOD2 [16] with tract masks
and begin- and endpoint inclusion for different numbers of gradient directions.
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This showed no major differences between the different methods for all inspected
tracts. An explanation for this is the high spatial resolution of the HCP data,
which allows tracts to be generated even with a downsampled angular reso-
lution. Further research on datasets with lower spatial resolution will have to
show the value of using NeSH reconstructions for fiber tracking. Fourth, a re-
cent paper by Mancini et al [7] has shown how compression of dMRI data using
sinusoidal representation networks (SIRENs) [11] does not lead to reduced qual-
ity in downstream tasks. Using a SIREN architecture could also prove useful
for the SH-based approach we have described. Finally, the generalization of the
model to other subjects, protocols, and scanners has to be evaluated. We have
performed a preliminary experiment which showed comparable results for signal
reconstruction and fODFs.

5 Conclusion

Modeling dMRI data using NeSH produces results in downstream tasks with sim-
ilar or possibly better results than established methods. It also shows promising
results in the field of angular and spatial upsampling. NeSH can make use of
the structural coherence in the brain, and does not rely on a prior learned on
other datasets. The experiments in this paper provide an interesting avenue for
modeling dMRI data, which should be further explored in future research.
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