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Abstract. Multi-task learning (MTL) has shown great potential in med-
ical image analysis, improving the generalizability of the learned features
and the performance in individual tasks. However, most of the work
on MTL focuses on either architecture design or gradient manipulation,
while in both scenarios, features are learned in a competitive manner. In
this work, we propose to formulate MTL as a multi/bi-level optimization
problem, and therefore force features to learn from each task in a coop-
erative approach. Specifically, we update the sub-model for each task
alternatively taking advantage of the learned sub-models of the other
tasks. To alleviate the negative transfer problem during the optimiza-
tion, we search for flat minima for the current objective function with
regard to features from other tasks. To demonstrate the effectiveness of
the proposed approach, we validate our method on three publicly avail-
able datasets. The proposed method shows the advantage of cooperative
learning, and yields promising results when compared with the state-of-
the-art MTL approaches. The code will be available online.

Keywords: Multi-Task · Cooperative Learning · Optimization.

1 Introduction

With the development of deep learning, multi-task learning (MTL) has shown
great potential to improve performance for individual tasks and to learn more
transferable features (better generalizability), whilst reducing the number of the
network parameters [16]. MTL has been widely studied in many domains in-
cluding image classification [14] or image segmentation [9]. The core assumption
behind MTL is that tasks could be correlated and thus provide complementary
features for each other [4]. MTL is also applied in medical image analysis tasks
[11,6,20,5], where strong associations between multiple tasks commonly exist.
For example, the diagnosis of cancer may indicate the extent of disease severity,
which can be correlated with the patient’s survival, thus diagnosis and prognosis
of cancer could be learned simultaneously [18]. In clinical diagnosis, annotations
of organs or tissues could support radiologists to grade disease, to mimic this
process, Zhou et.al [24] studied to simultaneously segment and classify (grade)
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tumors into benign or malignant class using 3D breast ultrasound images. Sim-
ilarly, to improve the prediction of lymph node (LN) metastasis [21], Zhang
et.al proposed a 3D multi-attention guided multi-task learning network for joint
gastric tumor segmentation and LN classification [23].

Typically, MTL methods can be broadly categorized into hard and soft
parameter-sharing paradigms [16]. The former adopts one backbone as the en-
coder to extract common features for all tasks, and the latter designs encoders
for each task while constraining their associated parameters. To exploit the cor-
relation between tasks, a large amount of work focuses on the architecture design
of the network to enable the cross-task interaction [23]. For example, Misra et.al
designed a cross-stitch model to combine features from multiple networks [12].
Besides network design, many researchers pay more attention to the neural net-
work optimization process to counter the negative transfer issue [16]. As tasks
could compete with each other for shared resources, the overall performance
might be even poorer than those of solving individual tasks. To address this
issue, previous works either change the weights of each task objective adap-
tively using heuristics [2], or manipulate the gradient to be descending direction
for each task [10]. However, as those methods formulate MTL in a competitive
manner, it is difficult to guarantee that the complementary information is fully
utilized by each task. Moreover, most of them are designed for or evaluated on
a simple scenario, where only one domain is involved and the tasks are homoge-
neous, namely all tasks are either dense prediction or image-level classification.

In this work, we propose a novel cooperative MTL framework (MT-COOL),
which manages to update the features of one task while taking into account
the current state of other features. Specifically, we adopt the soft parameter-
sharing strategy and update each sub-model conditioning on the information
learned by other tasks in an alternative manner. To avoid the negative transfer
problem during the training, we further propose to search for flat minima of
the current task with regard to others at each iteration. As a proof of concept,
we first validate this method on the simple MNIST dataset for classification
tasks. To show the advantage of the proposed approach in the medical domain,
we use REFUGE2018 dataset for optic cup/disc segmentation and glaucoma
classification, and HRF-AV dataset for artery and vein segmentation tasks. The
results show a promising perspective of the proposed multi-task cooperative
approach, compared to the state-of-the-art methods.

The main contributions of this work are as follows:

– We propose a novel MTL framework, which learns features for each task in
a cooperative manner.

– We propose an effective optimization strategy to alleviate convergence issues.

– We validate the proposed method on three MTL scenarios with different
task settings. The proposed method delivers promising results in all settings,
compared with the state-of-the-art MTL approaches.
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2 Method
For a better explanation, here we take two-task learning as an example, which
can be generalized to n-task problems easily.

2.1 Bi-Level Optimization for Cooperative Two-Task Learning

Formally, let xi ∈ RW×H×C denotes an image with the width W , height H
and channel C, yi ∈ RC0 is a label for classification, (or yi ∈ RW×H×C0 for
segmentation) and C0 is the number of classes, Fi(·; θi) is a feature extractor,
Gi(·;ϕi) is a prediction function for task i = 1, . . . , T where T is a number of
tasks, and here T = 2. θi and ϕi are corresponding parameters to be learned.
Our task is to predict label ŷi = Gi(Fi(xi)).

For MTL, instead of using shared backbone, i.e., F1 = F2, and updating them
simultaneously with a single loss ℓ, we propose to optimize them in a cooperative
manner, that is learning (F1, G1) conditioned on a fixed and informative F2, and
versa vice. Generally, it can be formulated as a bi-level optimization problem:

(U) min
θ1,ϕ1

L1(θ1, ϕ1, θ2) = ℓ1(G1(M(F1(x1; θ1), F2(x1; θ2));ϕ1), ŷ1), (1)

(L) min
θ2,ϕ2

L2(θ2, ϕ2, θ1) = ℓ2(G2(M(F1(x2; θ1), F2(x2; θ2));ϕ2), ŷ2), (2)

where ℓi is the loss function, e.g. cross-entropy loss for classification. M denotes
a feature fusion to facilitate the current task learning by incorporating useful
information from other tasks. A common choice for M is to use a linear combi-
nation of features, also known as cross-stitch [12] or concatenation operation in
multi-layers (which is used in this work due to its simplicity).

To solve the problem Eq.(1)-(2), we propose to update (θ1, ϕ1) and (θ2, ϕ2) al-
ternatively, as other traditional methods for bi-level optimization problem could
be inefficient [1] due to the complexity of deep neural networks. However, with-
out any constraint, this alternative optimization strategy could fail to achieve
convergence to an optimal solution. For example, at the t-th iteration, we first
optimize L1(θ1, ϕ1, θ

(t−1)
2 ) to obtain an optimum (θ

(t)
1 , ϕ

(t)
1 ). It is possible that for

the second task, L2(θ
(t−1)
2 , ϕ

(t−1)
2 , θ

(t−1)
1 ) < L2(θ

(t−1)
2 , ϕ

(t−1)
2 , θ

(t)
1 ), which means

that the update for the first task could increase the prediction risk of the second
one, and cancel the gain from optimization of L2. Here, we also term this issue
as negative transfer. To alleviate this effect, we propose to search for flat minima
for one task with regard to the features from the other task in each iteration.

2.2 Finding Flat minima via Injecting Noise

As mentioned above, the network optimized for one task could be sensitive to the
change of parameters for other tasks, which may cause non-convergent solutions.
Hence, at each iteration, for each task, we search for an optimum that is non-
sensitive to the update of other parameters within a fixed neighborhood. We
term this kind of optima as flat minima.

To formally state this idea, assume that noise ϵi ∼ {U(−b, b)}dϵi with b > 0,
dϵ = dθi and dθi the dimension of θi. Then for task 1, at t-th iteration our target
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is to minimize the expected loss function with regard to the parameters (θ1, ϕ1)
and noise ϵ2, i.e.,

(U) R[t]
1 (θ1, ϕ1) =

∫
Rdϵ2

L1(θ1, ϕ1, θ
[t−1]
2 + ϵ2)dP (ϵ2) = E[L1(θ1, ϕ1, θ

[t−1]
2 + ϵ2)],

(3)
s.t. |θ1 − θ

[t−1]
1 | < b,

where P (ϵ2) is the noise distribution, and the solution is denoted as (θ
[t]
1 , ϕ

[t]
1 ).

Similarly, for task 2, the loss function is as follows,

(L) R[t]
2 (θ2, ϕ2) =

∫
Rdϵ1

L2(θ2, ϕ2, θ
[t]
1 + ϵ1)dP (ϵ1) = E[L2(θ2, ϕ2, θ

[t]
1 + ϵ1)], (4)

s.t. |θ2 − θ
[t−1]
2 | < b.

Note that it is hard to find an ideal flat minimum (θ
[t]
1 , ϕ

[t]
1 ) for Eq. (3), such

that L1(θ
[t]
1 , ϕ

[t]
1 , θ

[t−1]
2 + ϵ

(j1)
2 ) = L1(θ

[t]
1 , ϕ

[t]
1 , θ

[t−1]
2 + ϵ

(j2)
2 ), ∀ϵ(j1)2 , ϵ

(j2)
2 ∼ P (ϵ2),

and L1(θ
[t]
1 , ϕ

[t]
1 , θ

[t−1]
2 ) < L1(θ

[t−1]
1 , ϕ

[t−1]
1 , θ

[t−1]
2 ), which satisfies the requirement

to avoid the optimization issue (see Sect. 2.1). Hence, our goal is to find an
approximately flat minimum to alleviate this issue. A similar idea has been
proposed for continual learning [19]. However, our method differs as follows: (1)
the flat minimum in [19] is searched for the current task, while in our work, it is
searched with regard to other tasks; (2) Once the flat minimum is found for the
first task in a continual learning problem, search region for the remaining tasks
is fixed, while in our work, the parameters for each task are only constrained in
a single iteration, and search region could change during the optimization.

In practice, it is difficult to minimize the expected loss, we instead minimize
its empirical loss for Eq. (3) and Eq. (4) as follows,

(U) L
[t]
1 (θ1, ϕ1) =

1

M

M∑
j=1

L1(θ1, ϕ1, θ
[t−1]
2 + ϵ

(j)
2 )+λ ·KL(ŷ

(j)
1 ,

1

M

M∑
n=1

ŷ
(n)
1 ), (5)

(L) L
[t]
2 (θ2, ϕ2) =

1

M

M∑
j=1

L2(θ2, ϕ2, θ
[t]
1 + ϵ

(j)
1 ) + λ ·KL(ŷ

(j)
2 ,

1

M

M∑
n=1

ŷ
(n)
2 ), (6)

where ϵ
(j)
i is a noise vector sampled from P (ϵi), M is the sampling times, and

KL is the Kullback-Leibler Divergence. The first term in Eq. (5) or Eq. (6) is
designed to find a satisfying minimum for the current task, and the second term
enforces this minimum to be flat as desired.

Warm Up the Network. To initialize the parameters for Eq.(3)) and Eq.(4)
with non-sensitive (θ

[0]
1 , θ

[0]
2 ), we minimize the following loss function,

Ltotal =
1

M

M∑
j=1

(L1(θ1 + ϵ
(j)
1 , ϕ1, θ2 + ϵ

(j)
2 ) + L2(θ2 + ϵ

(j)
2 , ϕ2, θ1 + ϵ

(j)
1 )). (7)

Algorithm. We term the proposed multi-task cooperative learning method as
MT-COOL. The algorithm is described in Algorithm 1. Note that to alleviate
the optimization issue discussed in Section 2.1, after the update for each task, we
clamp the parameters to ensure that they fall within the flat region, as described
in Line 17 in Algorithm 1.
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Algorithm 1: Cooperative Learning via Searching Flat Minima
Input: Images and labels (xi, yi) for task i ∈ T = {1, 2}. Network for both tasks with

randomly initialized parameters ψi = (θi, ϕi), ψ = (ψ1, ψ2). Sampling times M ,
inner iteration number L, the flat region bound b. The step sizes α, β.

/* Warm up the network to obtain initialized parameters ψ[0] */
1 for iteration t = 1, 2, · · · , Tw do
2 Sampling ϵi ∼ {U(−b, b)}dϵi with M times for i = 1, 2, respectively;
3 Compute Ltotal in Eq. (7);
4 Update ψ[t] = ψ[t−1] − α▽Ltotal(ψ);
5 end
6 Start cooperative learning with ψ[0] = ψ[Tw ];

/* Alternative Update ψi for task i = 1, 2. */
7 for Outer iteration t = 1, 2, · · · do
8 for task i = 1, 2 do
9 for inner iteration l = 1, 2, · · · , L do

10 Sampling ϵi ∼ {U(−b, b)}dϵi with M times for task i ;
11 Compute L[t]

i (θi, ϕi) in Eq. (5) (or Eq. (6)) with fixed θ[t−1]

T \{i};
12 if l=1 then
13 Update ψ[t]

i = ψ
[t−1]
i − β▽L[t]

i (ψi) ;
14 else
15 Update ψ[t]

i = ψ
[t]
i − β▽L[t]

i (ψi) ;
16 end
17 Clamp θ[t]i into [θ

[t−1]
i − b, θ

[t−1]
i + b];

18 end
19 end
20 end

Output: Model parameters (θ1, ϕ1, θ2, ϕ2).

Network Configuration Fig. 1 illustrates the framework for two-task cooper-
ative learning. Our framework consists of an encoder and task-specific decoders.
The parameters at each layer of the encoder are evenly allocated to each task,
and the learned features are then concatenated as the input of the next layer.

Conv+ReLU+BN

𝑪𝒊𝒏

𝑪𝒐𝒖𝒕
𝑪𝒊𝒏

⨁

𝑪𝒐𝒖𝒕
𝑪𝒐𝒖𝒕 − 𝒊𝒏𝒕(

𝑪𝒐𝒖𝒕

𝟐
)

𝒊𝒏𝒕(
𝑪𝒐𝒖𝒕

𝟐
)

Conv+ReLU+BN

Conv+ReLU+BN

(a) Conventional Conv Block (b) Conv Block for Two-Task Learning 

Encoder

…

Conv Block for Two-Task Learning

Decoder 

for Task1

Decoder 

for Task2

(c) General Cooperative Two-task Learning framework

𝜃

𝜃1

𝜃2

Fig. 1. A general framework for our MTL method. (a) is the conventional convolution
block, (b) illustrates the structure of a convolution block for cooperative two-task
learning, and (c) shows the general framework for MTL, which contains an encoder
and task-specific decoders.
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3 Experiments

We validate our MTL framework in three scenarios as follows: (1) classification
tasks on different classes with the MNIST dataset [8], (2) one domain for simul-
taneous segmentation and classification tasks using the REFUGE2018 dataset
[13], and (3) one domain for two segmentation tasks with HRF-AV dataset [7].
For our method, we adopt the stochastic gradient descent (SGD) optimizer, and
empirically set the bound value b = 0.05, the learning rate α = β = 0.1. To
reduce the training time and the memory, we simply set the sampling number
M = 1. All experiments are implemented using one GTX 1080Ti GPU.

3.1 Dataset

(1) MNIST. This dataset contains 50,000 training and 10,000 testing images.
To simulate a multi-task learning setting, we divide both the training and test
images into two subsets with either even numbers {0, 2, 4, 6, 8} (denoted as
Task 1 ) or odd numbers {1, 3, 5, 7, 9} (denoted as Task 2 ). For the network,
we adopt the widely used LeNet architecture for MNIST dataset [8], of which
the last layer contains 50 hidden units, followed by a final prediction output. (2)
REFUGE2018. The REFUGE2018 challenge [13] provides 1200 retinal color
fundus photography. The target of this challenge is glaucoma detection and optic
disc/cup segmentation. We divide this dataset into 800 samples for training and
400 test subset, where the ratio of the number of glaucomas to non-glaucoma
images are both 1 : 9. As discussed in [13], glaucoma is mostly characterized by
the optic nerve head area. Hence, we cropped all images around the optic disc
into 512× 512. We used the UNet [15] for the segmentation task, with the four
down-sampling modules as the shared encoders. The output of segmentation and
the features from the bottom layers are taken as the input of the decoder for
classification. (3) HRF-AV. This dataset [7] contains 45 fundus images with a
high resolution of 3504 × 2336. The tasks for this dataset are the binary vessel
segmentation and the artery/vein (A/V) segmentation. We randomly split the
dataset into 15 and 30 samples for training and testing. We adopt the U-Net as
the backbone with the bottom feature channel being 256. During training, we
crop patches with size of 2048× 2048 randomly as input.

3.2 Results on MNIST Dataset

Ablation Study To validate the effectiveness of the two terms in Eq.(5) and
Eq.(6), we conduct two experiments: (1) Vanilla. We simply optimize the objec-
tive of each task alternatively without any constraints or sampling operations.
(2) Ours (w/o Reg). We sample noises during training, and optimize the losses
with solely the first term in Eq.(5) and Eq.(6), i.e., without the similarity regu-
larization. We run 5 times for each method, and report their mean and standard
deviation values.

As shown in the top four rows of Table 1, compared to the Independent
approach, the proposed Vanilla bi-level optimization method can utilize the
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Table 1. Performance of SOTA MTL methods on MNIST dataset. We set the number
of parameters of Joint method as the base 1, and the values in the column ‘Params’
are the ratio of the parameter number of each method to the Joint.

Methods Params Task 1 Task 2
Independent ≈ 2 99.41 ± 0.03492 98.77 ± 0.06029

Ours (Vanilla) 1 99.61±0.06210 99.37±0.04494
Ours (w/o Reg) 1 99.66±0.03765 99.56±0.07203
MT-COOL (Ours) 1 99.72±0.03978 99.62±0.01576

Joint 1 99.60 ± 0.03765 99.51 ±0.06281
CAGrad [10] 1 99.67±0.05293 99.51±0.05229
GradDrop [3] 1 99.65± 0.03492 99.53±0.04245
MGDA [17] 1 99.63± 0.05883 99.47±0.05078
PCGrad [22] 1 99.66±0.04180 99.51±0.09108

Images Ground Truth Joint CAGrad GradDrop MGDA PCGrad MT-COOL

1st 
quartile 

2nd 
quartile 

3rd 
quartile 

Independent

Fig. 2. Visualization results from MTL methods on REFUGE2018 dataset. The se-
lected samples rank the 1st quartile, median and 3rd quartile in terms of the segmen-
tation performance of Independent.

features from other tasks and boost the performance of the current one. By
introducing noises to find flat minima during training, Ours (w/o Reg) further
achieves higher prediction, particularly for Task 2. Finally, by adding similarity
regularization, our method obtains the best results.

Comparison Study We compare the proposed method with four state-of-the-
art (SOTA) MTL approaches, including MGDA [17], PCGrad [22], GradDrop
[3] and CAGrad [10]. We also implement the Joint method as a baseline, which
simply sums the loss of each task as the total loss for training.

As shown in Table 1, all MTL methods improve the performance on each task,
compared to Independent. Among all the compared methods, our technique
performs the best on both tasks.

3.3 Comparison on REFUGE2018 Dataset

For REFUGE2018 dataset, we compare our method with CAGrad, GradDrop,
MGDA, PCGrad, and Joint. We run each method three times, and report the
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Table 2. Performance of SOTA MTL methods on REFUGE2018 dataset.

Methods Params
Segmentation Classification

Cup (Dice%) Disc (Dice%) Acc AUROC Sen Spe

Independent ≈ 2 95.14±0.05110 86.87± 005644 0.900±0.00235 0.902±0.0106 0.658±0.0117 0.927±0.00392

Joint 1 91.19±0.7600 77.36±0.5236 0.907±0.0183 0.895±0.0221 0.658±0.0656 0.935±0.0264

CAGrad [10] 1 92.67±0.7702 81.71±0.2874 0.914±0.00513 0.904±0.00562 0.658±0.0235 0.942±0.00796

GradDrop [3] 1 91.70±0.6376 78.91±1.439 0.909±0.00424 0.922±0.0115 0.716±0.0471 0.930±0.00988

MGDA [17] 1 93.87±0.5017 83.87±0.9732 0.895±0.0154 0.914±0.00610 0.633±0.0824 0.924±0.0260

PCGrad [22] 1 91.74±0.5569 79.80±0.8748 0.911±0.00849 0.898±0.0136 0.675±0.0204 0.937±0.00796

MT-COOL (Ours) 1 94.37±0.1706 86.18±0.3046 0.937±0.0113 0.942±0.0149 0.750±0.000 0.958±0.0126

Table 3. Performance of SOTA MTL methods on HRF-AV dataset.

Methods Params A/V Segmentation Binary Segmentation
Acc (A) F1 (A) Acc (V) F1 (V) Acc (AV) F1 (A/V) Acc F1

Independent ≈ 2 0.9814 0.6999 0.9821 0.7492 0.9692 0.7698 0.9691 0.7831
Joint 1 0.9622 0.3537 0.9661 0.5171 0.9664 0.7360 0.9691 0.7835
CAGrad [10] 1 0.9687 0.4754 0.9696 0.5520 0.9668 0.7364 0.9690 0.7790
GradDrop [3] 1 0.9708 0.5127 0.9716 0.5736 0.9666 0.7343 0.9686 0.7742
MGDA [17] 1 0.9636 0.2343 0.9632 0.5315 0.9660 0.7263 0.9691 0.7793
PCGrad [22] 1 0.9671 0.4262 0.9681 0.5387 0.9667 0.7357 0.9687 0.7763
MT-COOL (Ours) 1 0.9801 0.6671 0.9811 0.7135 0.9674 0.7424 0.9701 0.7912

mean ± std values of Dice score on optic cup and disc for the segmentation
task, and accuracy (Acc), Area Under the Receiver Operating Characteristics
(AUROC), sensitivity (Sen) and specificity (Spe) for the classification task.

As shown in Table 2, our method achieves comparable results on the seg-
mentation task with the Independent, while other MTL methods degrade sig-
nificantly, particularly on Disc. For the classification task, our method achieves
the best performance in terms of all the metrics. Fig. 2 provides the visualiza-
tion results for qualitative comparison. One can see that the proposed method
obtains the best prediction shape among all MTL methods.

3.4 Comparison on HRF-AV Dataset

We also conduct a comparison study on HRF-AV dataset. Each method is re-
peated three times, and the mean results are presented in Table 3. One can see
that compared to the Independent, all the other MTL methods perform poorly,
especially on A/V segmentation task. For example, the best F1 scores on A/V
segmentation among the five MTL methods are 0.5127 and 0.5736, respectively,
obtained by GradDrop, which are much lower than those from Independent.
On the contrary, our method performs comparably with the Independent on
A/V segmentation, and even slightly better on binary segmentation. For quali-
tative comparison, please refer to Fig.1 in the Supplementary material.
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4 Conclusion

In this work, we propose a novel MTL framework via bi-level optimization. Our
method learns features for each task in a cooperative manner, instead of com-
peting for resources with each other. We validate our model on three datasets,
and the results prove its great potential in MTL. However, there are still some
issues that need to be studied in the future. For example, we need to validate our
method on large-scale tasks and find a more efficient learning strategy such as
using distributed learning. Moreover, how to allocate the parameters to each task
automatically and effectively is important for model generalization. For better
interpretability, learning features specific to each task should also be studied.
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