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Abstract. Deep models suffer from limited generalization capability to
unseen domains, which has severely hindered their clinical applicability.
Specifically for the retinal vessel segmentation task, although the model is
supposed to learn the anatomy of the target, it can be distracted by con-
founding factors like intensity and contrast. We propose Meta learning on
Anatomy-consistent Pseudo-modalities (MAP), a method that improves
model generalizability by learning structural features. We first leverage a
feature extraction network to generate three distinct pseudo-modalities
that share the vessel structure of the original image. Next, we use the
episodic learning paradigm by selecting one of the pseudo-modalities as
the meta-train dataset, and perform meta-testing on a continuous aug-
mented image space generated through Dirichlet mixup of the remaining
pseudo-modalities. Further, we introduce two loss functions that facili-
tate the model’s focus on shape information by clustering the latent vec-
tors obtained from images featuring identical vasculature. We evaluate
our model on seven public datasets of various retinal imaging modalities
and we conclude that MAP has substantially better generalizability. Our
code is publically available at https://github.com/DeweiHu/MAP.

Keywords: domain generalization · vessel segmentation · meta-learning
· Dirichlet mixup

1 Introduction

In the absence of a single standardized imaging paradigm, medical images ob-
tained from different devices may exhibit considerable domain variation. Fig. 1
demonstrates three types of domain shift among images delineating the retinal
vessels. The presence of such distribution mismatch can significantly degrade
the performance of deep learning models on unseen datasets, thus impeding
their widespread clinical deployment. To address the domain generalization (DG)
problem [26], a straightforward idea is to focus on the domain-invariant patterns
for the specific downstream task. For retinal vessel segmentation, the morphology
of vessels can be deemed such a domain-invariant pattern. Hence, our hypothesis
is that emphasizing the structural characteristics of the vasculature can enhance
the model’s DG performance. Following a similar idea, Hu et al. [9] proposed
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(a)healthy fundus (b)diseased fundus (c)OCT-A site-1 (d)OCT-A site-2 (e) FA

Fig. 1. Domain shift examples. Type I: pathological phenotypes (a vs. b). Type II:
cross-site shifts (c vs. d). Type III: cross-modality shifts (a-b vs. c-d vs. e).

to explicitly delineate the vessel shape by a Hessian-based vector field. How-
ever, the dependency on the image gradient makes this approach vulnerable to
low-quality data with poor contrast and/or high noise. In contrast, we instead
propose an implicit way of exploiting the morphological features by adopting the
meta-learning paradigm on anatomy-consistent pseudo-modalities (MAP).

First, we leverage a structural feature extraction network (Fig. 2(a)) gen-
erate three pseudo-modalities, similar to [9]. The network is defined by setting
the bottleneck of the U-Net [18] backbone to have the same width and height
with the input image. Given its capability to extract interpretable visualization,
this architecture is often implemented in representation disentanglement [16] and
unsupervised segmentation [8]. Supervised by the binary vessel map, the latent
image preserves the vasculature structure while the style exhibits some random-
ness, as illustrated in Fig. 2(b). Therefore, we refer to these latent images as
anatomy-consistent pseudo-modalities.

Meta-learning has recently emerged as a popular technique for addressing the
DG problem [4,10]. Following the idea of episodic training presented in MAML
[6], researchers split their training data into two subsets, meta-train and meta-
test, to mimic the scenario of encountering out-of-distribution (OOD) data dur-
ing training. Liu et al. [13] proposed to conduct meta-learning in a continuous
frequency space created by mixing up [23,11] the amplitude spectrum. They keep
the phase spectrum unchanged to preserve the anatomy in the generated images.
In contrast, given our pseudo-modalities with identical underlying vasculature,
we are able to create a continuous image space via Dirichlet mixup [19] without
affecting the vasculature. We regard images in each pseudo-modality as a corner
of a tetrahedron, as depicted in Fig. 2(c). The red facet of the tetrahedron is a
continuous space created by the convex combination of images from the three
pseudo-modalities. We use images in one pseudo-modality (blue node) for meta-
train and the mixup space (red facet) for meta-test. An important property of
the mixup space is that all the samples share the same vessel structure while
the image style may differ drastically. Hence, employing proper constraints on
the relationship between features can implicitly encourage the model to learn
the shape of vessels. Inspired by [4], we leverage a similarity loss to express the
feature consistency between the meta-train and meta-test stages. Additionally,
we propose a normalized cross-correlation (NCC) loss to differentiate latent fea-
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Fig. 2. The key components of MAP, clockwise. (a) f(·) is the synthesis network.
xi is the ith color fundus input and yi is its ground truth vessel map. k indexes three
different models that generate diverse pseudo-modalities. (b) An example image in four
pseudo-modalities: D0 is the histogram equalization of intensity-reversed green channel
of input x and Dk, k = 1, 2, 3 are generated by fk

e . (c) The four pseudo-modalities of
an input xi form the corners of a tetrahedron. The colored facet is a continuous image
space created by Dirichlet mixup. s(m)

i denotes the mth sample from the image space.
Anatomy i represents the underlying shape of vasculature in xi, which is consistent for
all samples s

(m)
i . (d) The meta-learning scheme. g(·) is the segmentation network, M

is the number of samples drawn, z is the latent feature vector.

tures extracted from images with different anatomy. In the context of contrastive
learning, these loss functions cluster positive pairs and separate negative pairs.

In our study, we use seven public datasets including color fundus, OCT an-
giography (OCT-A) and fluorescein angiography (FA) images. We train MAP on
fundus data and test on all modalities. We show that MAP exhibits outstanding
generalization ability in most conditions. Our main contributions are:

❖ We generate a continuous space of anatomy-consistent pseudo-modalities
with Dirichlet mixup.

❖ We present an episodic learning scheme employed on synthesized images.
❖ We propose a normalized cross-correlation loss function to cluster the feature

vectors with regard to the vessel structure.
❖ We conduct extensive experiments on seven public datasets in various modal-

ities which show the superior DG performance of MAP.

2 Methods

2.1 Problem Definition

Given a source domain S = {(xi,yi)|i ∈ {1, · · · , N}} that includes N pairs of
raw images xi and ground truth labels yi, our goal is to train a segmentation net-
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work g(·) that can robustly work on the target domain T = {T p|p ∈ {1, · · · , P}}
with P unseen datasets. In practice, we include only fundus images in S since
there are many public annotated fundus datasets. For T , data from three dif-
ferent modalities (fundus, OCT-A and FA) are included. We test the model
generalization on datasets with three distinct types of domain shift: (I) data
with pathological phenotypes, (II) cross-site shifts, (III) cross-modality shifts.

2.2 Pseudo-modality Synthesis

The features in the latent space of a U-Net [18] backbone is usually a low-
dimensional representation of the input images. In some applications (e.g., rep-
resentation disentanglement), it is desirable for the latent features to show visu-
ally intuitive structural characteristics. In such scenarios, the bottleneck of the
feature extraction network is set to have the same width and height as the input
image. We adopt the approach presented in [9] to synthesize pseudo-modalities
by exploiting this idea (Fig. 2(a)). Both the encoder fe and the decoder fd are
residual U-Nets. The input xi ∈ R3×H×W is a color image while yi is the bi-
nary vessel map. The model is trained by optimizing a segmentation loss which
is the sum of cross-entropy and the Dice loss [14], i.e., Lseg = LCE + LDice.
Without direct supervision, the latent image xk

i can have a different appear-
ance when the model is re-trained. Such randomness is purely introduced by
the stochastic gradient descent (SGD) in the optimization process. k = 1, 2, 3
indexes three different models and their corresponding synthesized image. For a
fair comparison, we use the pre-trained models provided in [9] to generate the
three pseudo-modalities (D1, D2, and D3) illustrated in Fig. 2(b).

An essential property of the generated images is that despite significant in-
tensity variations, they consistently maintain the shared anatomical structure
of the vasculature. Therefore, the Dk are termed anatomy-consistent pseudo-
modalities. To convert the input color fundus image xi to grayscale, we conduct
histogram equalization (CLAHE) [17] on the intensity-reversed green channel
and denote it as x0

i . The pseudo-modality of these pre-processed images is D0.

2.3 Meta-learning on Anatomy Consistent Image Space

Developed from the few-shot learning paradigm, meta-learning seeks to enhance
a model’s generalizability to unseen data when presented with limited training
sets. This is achieved by an episodic training paradigm that consists of two
stages: meta-train and meta-test. The source domain S is split into two subsets
Strain and Stest to mimic encountering OOD data during training.

Mixup is a common strategy for data augmentation as it generates new sam-
ples via linear interpolation in either image [11] or feature space [21]. Zhang et
al. [25] showed Mixup improves model generalization and robustness. In [13],
Liu et al. conduct meta-learning on generated images that are synthesized by
mixing the amplitude spectrum in frequency domain. They preserve larger struc-
tures such as the optic disc by keeping the phase spectrum un-mixed. Given our
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Fig. 3. Examples of Dirichlet distribution and corresponding sample images.

anatomy-consistent pseudo-modalities, we are able to directly work on the im-
ages rather than the frequency domain. We select D1 as the meta-train data,
and we mixup the remaining three pseudo-modalities (D0,D2, and D3) to form a
continuous space (red facet in Fig. 2(c)) from which we draw meta-test samples.

In order to mixup three examples, we set a coefficient vector λ follow the
Dirichlet distribution, i.e., λ ∼ Dirichlet(α) where λ,α ∈ R3. The probability
density function (PDF) is defined as follows:

P (λ) =
Γ (α0)

Γ (α1)Γ (α2)

3∏
i=1

λαi−1
i 1(λ ∈ H), (1)

with H = {λ ∈ R3 : λi ≥ 0,
∑3

i=1 λi = 1} and Γ (αi) = (αi − 1)!. Examples of
PDFs with different hyperparameters α are shown in the top row of Fig. 3.

The mixup image si is created by sampling the coefficient vector λ from
P (λ), i.e., si = λ1x

0
i + λ2x

2
i + λ2x

3
i . It is evident from the bottom row of Fig.

1 that the samples drawn from different distributions drastically vary in terms
of contrast and vessel intensity. Thus, the Dirichlet mixup can augment the
training data with varying styles of images without altering the vessel structure.
To thoroughly exploit the continuous image space, we set α = [1, 1, 1] such that
P (λ) is a uniform distribution and all samples are considered equally.

2.4 Structural Correlation Constraints

Next, we design constraints to facilitate the model’s concentration on the vessel
morphology. We tackle this by delineating the correlation between latent fea-
tures, as illustrated in Fig. 2(d). For two input images xi and xj (i ̸= j), the fea-
tures zi and zj are desired to be far apart, as their anatomies differ. In contrast,
the M mixup samples s(m)

i for m ∈ {1, · · · ,M} are all anatomy-consistent, thus
the corresponding features z

(m)
i should form subject-specific clusters, as shown

in Fig. 4(left). Based on this intuition, we propose two loss functions.
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Fig. 4. Left: Feature clusters. Each dot represents a feature vector. Samples repre-
senting different anatomies are shown in different colors. The highlighted dots are the
latent anchor features extracted from x1

i , x1
j and x1

k during meta-training. Right: NCC
matrix. Each entry of the matrix is the cross-correlation between two feature vectors.

Similarity loss Lsim. As mentioned in Sec. 2.3, we set Strain = D1. The feature
vector extracted during meta-training can be regarded as an anchor in the latent
space; we denote it as zai . Then the latent features z

(m)
i from samples s

(m)
i ,

m ∈ {1, · · · ,M}, should be close to the anchor zai . Here, we simply use the L1
norm as the similarity loss Lsim =

∑N
i=1

∑M
m=1 ∥z

(m)
i − zai ∥1, where N is the

number of input images. Lsim is used to reduce the distance between sample
features and the anchor within the clusters, as shown in Fig. 4(left).
Normalized cross-correlation loss Lncc. In the context of contrastive learn-
ing, the Barlow Twins objective function [22] was proposed to minimize the
redundant information contained in the embedding vectors. This is realized by
computing an empirical cross-correlation matrix of two vectors and bringing it
closer to identity such that unmatched entries are not correlated. We extend
this idea to a stack of vectors, as illustrated in Fig. 4(right). Feature vectors
are color coded in the same way as the left panel of the figure. The normalized
cross-correlations (NCC) between each pair of features form a symmetric matrix
C. As an example, the NCC of z(3)i and z

(2)
j :

C3,5 = C5,3 =
z
(3)
i · z(2)j√

z
(3)
i · z(3)i

√
z
(2)
j · z(2)j

(2)

In the ideal ground truth C∗, the entries in the black region are 1, indicating simi-
lar features. Conversely, the white region entries are 0, representing dissimilarity.
Then the NCC loss can be defined by Lncc = ∥C∗ − C∥2F .

The total loss for the meta-test stage is Ltest = ω1Lseg + ω2Lsim + ω3Lncc.
Empirically, we set ω1 = ω2 = 100, ω3 = 1.

2.5 Experimental settings

Datasets. We use 7 public datasets listed in Table 1. The source domain S
includes three color fundus datasets: DRIVE, STARE and healthy samples in
ARIA. By testing on the target domain T , we evaluate the model’s ability to
generalize across pathological, cross-site, and cross-modality shift conditions.
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dataset modality resolution number domain
DRIVE [20] fundus 565 × 584 20 S
STARE [7] fundus 700 × 605 20 S
ARIA[5] healthy fundus 768 × 576 61 S

AMD fundus 768 × 576 59 T
diabetic fundus 768 × 576 23 T

PRIME-FP20 [3] fundus 4000 × 4000 15 T
ROSE [15] OCT-A 304 × 304 30 T
OCTA-500(6M) [12] OCT-A 400 × 400 300 T
RECOVERY-FA19 [2] FA 3900 × 3072 8 T

Table 1. Datasets. Rows indicating the source domains have a white background while
the target domains are shaded according to domain shift type. From top to bottom,
(I) pathology: light gray, (II) cross-site: medium gray, (III) cross-modality: dark gray.

Implementation Details. The segmentation network g(·) is a 6-layer residual
U-Net. If the number of channels n for a layer is denoted as Cn, then the ar-
chitecture is: C8 − C32 − C32 − C64 − C64 − C16. The synthesis model f(·) only
functions on color fundus images in S during training. At test-time, fundus im-
ages are converted to grayscale by applying CLAHE on intensity-reversed green
channel, while OCT-A and FA images are passed to the segmentation network
g(·) directly. g(·) is trained and tested on an NVIDIA RTX 2080TI 11GB GPU.
We set the batch size to 10 and train for 30 epochs. We utilize the Adam op-
timizer with the initial learning rate ηtrain = 1 × 10−3 for meta-training and
ηtest = 5× 10−3 meta-testing, both decayed by 0.5 for every 3 epochs.

3 Results

Ablation Study. In Table 2, we investigate the contribution of the three ma-
jor components of the proposed method: the episodic training paradigm, the
similarity loss Lsim and the normalized cross-correlation loss Lncc. Note that
Lsim requires the access to the latent anchor and thus is only applicable when
using meta-training strategy. Without Lsim and Lncc, the model is trained with
only the segmentation loss Lseg. Our results show that the introduction of the

Episodic Lsim Lncc Type I Type II Type III Average

- - - 62.93 60.04 63.94 62.95

- - ✓ 64.73 62.48 68.06 66.02

✓ - - 67.50 63.40 64.25 65.19

✓ ✓ - 64.75 66.24 68.30 66.77

✓ - ✓ 66.10 66.99 69.71 68.05

✓ ✓ ✓ 67.39 66.99 71.60 69.43

Table 2. The ablation study on the main components of MAP on data with three
types of distribution shift. Boldface: best result, underline: second-best result.
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Method
ARIA

amd diabetic
PRIME-FP20 OCTA 500 ROSE RECOVERY

baseline 63.82 65.19 47.31 73.16 67.41 51.25

Regular[1] 64.89 66.97 55.76 73.54 68.36 55.20

BigAug[24] 65.55 67.27 59.97 76.88 69.32 63.20

MASF[4] 65.33 67.75 65.96 77.65 67.25 50.74

VFT[9] 61.81 64.05 54.64 77.91 72.81 48.28

MAP 66.69∼ 68.08∼ 68.21† 78.71† 74.25† 61.85†

oracle 73.34 70.65 77.80 86.57 76.03 74.54

Table 3. The Dice values (%) for testing on target domains. Boldface: best result,
underline: second best result. ∼ : p-value ≥ 0.05, † : p-value ≪ 0.05 in paired t-test
compared to the baseline. The background is encoded the same way as Table 1.

episodic training provides noticeable improvement in all types of distribution
shift. Both loss functions also contribute positively in general, and the proposed
method ranks the best in types II and III, and second best in type I.
Comparison to Competing Methods. There are three major classes of ap-
proaches to solve the DG problem: data augmentation, domain alignment, and
meta-learning. We compare against a representative algorithm from each: Bi-
gAug [24], domain regularization network [1], and MASF [4], respectively. We
also compare to VFT [9] as it also focuses on leveraging shape information and
pseudo-modalities. Moreover, we train a residual U-Net on S as a baseline model,
and a residual U-Net on each target domain T p ∈ T as an oracle model, to pro-
vide an indication of the lower and upper bounds of generalization performance.

Table 3 compares the Dice coefficients (%) of the competing methods. MAP
ranks the best in almost all target domains (except RECOVERY, where it ranks
second), which proves that the proposed MAP algorithm effectively enhances the
robustness of the model under all three domain shift conditions. For some of the
datasets such as ROSE and the diabetic subset of ARIA, the MAP’s performance
approaches the oracle. Compared to the VFT which explicitly models the tubular
vessel shape, the implicit constraints provide a better guidance for the deep
model to learn the structural features.

4 Conclusion

We present MAP, a method that approaches the DG problem by implicitly en-
couraging the model to learn about the vessel structure, which is considered to
be a domain-agnostic feature. This is achieved by providing the model with syn-
thesized images that have consistent vasculature but with significant variations
in style. Then by setting constraints with regard to the correlation between la-
tent features, the model is able to focus more on the target vessel structure. Our
model’s generalization capability is assessed on test data with different sources of
domain shift, including data with pathological phenotypes, cross-site shifts, and
cross-modality shifts. The results indicate that the proposed method can greatly
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improve the robustness of the deep learning models across all three domain shift
configurations.
Acknowledgements. This work is supported by the NIH grant R01EY033969
and the Vanderbilt University Discovery Grant Program.
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