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Abstract. The Segment Anything Model (SAM) serves as a funda-
mental model for semantic segmentation and demonstrates remarkable
generalization capabilities across a wide range of downstream scenar-
ios. In this empirical study, we examine SAM’s robustness and zero-shot
generalizability in the field of robotic surgery. We comprehensively ex-
plore different scenarios, including prompted and unprompted situations,
bounding box and points-based prompt approaches, as well as the abil-
ity to generalize under corruptions and perturbations at five severity
levels. Additionally, we compare the performance of SAM with state-
of-the-art supervised models. We conduct all the experiments with two
well-known robotic instrument segmentation datasets from MICCAI En-
doVis 2017 and 2018 challenges. Our extensive evaluation results reveal
that although SAM shows remarkable zero-shot generalization ability
with bounding box prompts, it struggles to segment the whole instru-
ment with point-based prompts and unprompted settings. Furthermore,
our qualitative figures demonstrate that the model either failed to predict
certain parts of the instrument mask (e.g., jaws, wrist) or predicted parts
of the instrument as wrong classes in the scenario of overlapping instru-
ments within the same bounding box or with the point-based prompt. In
fact, SAM struggles to identify instruments in complex surgical scenarios
characterized by the presence of blood, reflection, blur, and shade. Addi-
tionally, SAM is insufficiently robust to maintain high performance when
subjected to various forms of data corruption. We also attempt to fine-
tune SAM using Low-rank Adaptation (LoRA) and propose Surgical-
SAM, which shows the capability in class-wise mask prediction without
prompt. Therefore, we can argue that, without further domain-specific
fine-tuning, SAM is not ready for downstream surgical tasks.
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1 Introduction

Segmenting surgical instruments and tissue poses a significant challenge in robotic
surgery, as it plays a vital role in instrument tracking and position estima-
tion within surgical scenes. Nonetheless, current deep learning models often
have limited generalization capacity as they are tailored to specific surgical
sites. Consequently, it is crucial to develop generalist models that can effec-
tively adapt to various surgical scenes and segmentation objectives to advance
the field of robotic surgery [18]. Recently, segmentation foundation models have
made great progress in the field of natural image segmentation. The segment
anything model (SAM) [14], which has been trained on more than one billion
masks, exhibits remarkable proficiency in generating precise object masks using
various prompts such as bounding boxes and points. SAM stands as the pioneer-
ing and most renowned foundation model for segmentation. Whereas, several
works have revealed that SAM can fail on common medical image segmenta-
tion tasks [4,8,6,16]. This is not surprising or unexpected since SAM’s training
dataset primarily comprises natural image datasets. Consequently, it raises the
question of enhancing SAM’s strong feature extraction capability for medical
image tasks. Med SAM Adapter [22] utilizes medical-specific domain knowledge
to improve the segmentation model through a simple yet effective adaptation
technique. SAMed [23] has applied a low-rank-based finetuning strategy to the
SAM image encoder, as well as prompt encoder and mask decoder on the medical
image segmentation dataset.

However, evaluating the performance of SAM in the context of surgical scenes
remains an insufficiently explored area that has the potential for further in-
vestigation. This study uses two publicly available robotic surgery datasets to
assess SAM’s generalizability under different settings, such as bounding box
and point-prompted. Moreover, we have examined the possibility of fine-tuning
SAM through Low-rank Adaptation (LoRA) to examine its capability to pre-
dict masks for different classes without prompts. Additionally, we have analyzed
SAM’s robustness by assessing its performance on synthetic surgery datasets,
which contain various levels of corruption and perturbations.

2 Experimental Settings

Datasets.We have employed two classical datasets in endoscopic surgical instru-
ment segmentation, i.e., EndoVis17 [2] and EndoVis18 [1]. For the EndoVis17
dataset, unlike previous works [20,5,13] which conduct 4-fold cross-validation for
training and testing on the 8×225-frame released training data, we report SAM’s
performance directly on all eight sequences (1-8). For the EndoVis18 dataset, we
follow the dataset split in ISINet [5], where sequences 2, 5, 9, and 15 are utilized
for evaluation.
Prompts. The original EndoVis datasets [2,1] do not have bounding boxes or
point annotations. We have labeled the datasets with bounding boxes for each
instrument, associated with corresponding class information. Additionally, re-
garding the single-point prompt, we obtain the center of each instrument mask
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Table 1. Quantitative comparison of binary and instrument segmentation on En-
doVis17 and EndoVis18 datasets. The best and runner-up results are shown in bold
and underlined.

Type Method Pub/Year(20-) Arch.
EndoVis17 EndoVis18

Binary IoU Instrument IoU Binary IoU Instrument IoU

Single-Task

Vanilla UNet MICCAI15 UNet 75.44 15.80 68.89 -
TernausNet ICMLA18 UNet 83.60 35.27 - 46.22
MF-TAPNet MICCAI19 UNet 87.56 37.35 - 67.87
Islam et al. RA-L19 - 84.50 - - -

ISINet MICCAI21 Res50 - 55.62 - 73.03
Wang et al. MICCAI22 UNet - - 58.12 -

Multi-Task

ST-MTL MedIA21 - 83.49 - - -
AP-MTL ICRA20 - 88.75 - - -
S-MTL RA-L22 - - - - 43.54
TraSeTR ICRA22 Res50 + Trfm - 60.40 - 76.20
S3Net WACV23 Res50 - 72.54 - 75.81

Prompt-based
SAM 1 Point arxiv23 ViT h 53.88 55.96* 57.12 54.30*

SAM Box arxiv23 ViT h 89.19 88.20* 89.35 81.09*

* Categorical information directly inherits from associated prompts.

by simply computing the moments of the mask contour. Since SAM [14] only pre-
dicts binary segmentation masks, for instrument-wise segmentation, the output
instrument labels are assigned inherited from the input prompts.
Metrics. The IoU and Dice metrics from the EndoVis17 [2] challenge5 is used.
Specifically, only the classes presented in a frame are considered in the calculation
for instrument segmentation.
Comparison methods. We have involved several classical and recent meth-
ods, including the vanilla UNet [17], TernausNet [20], MF-TAPNet [13], Islam
et al. [10], Wang et al. [21], ST-MTL [11], S-MTL [19], AP-MTL [12], ISINet [5],
TraSeTR [24], and S3Net [3] for surgical binary and instrument-wise segmen-
tation. The ViT-H-based SAM [14] is employed in all our investigations except
for the finetuning experiments. Note that we cannot provide an absolutely fair
comparison because existing methods do not need prompts during inference.

3 Surgical Instruments Segmentation with Prompts

Implementation With bounding boxes and single points as prompts, we in-
put the images to SAM [14] to get the predicted binary masks for the target
objects. Because SAM [14] can not provide consistent categorical information.
We compromise to use the class information from the bounding boxes directly.
In this way, we derive instrument-wise segmentation while bypassing the pos-
sible errors from misclassifications, an essential factor affecting instrument-wise
segmentation accuracy.

Results and Analysis As shown in Table 1, with bounding boxes as prompts,
SAM [14] outperforms previous unprompted supervised methods in binary and

5 https://github.com/ternaus/robot-surgery-segmentation

https://github.com/ternaus/robot-surgery-segmentation
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Fig. 1. Qualitative results of SAM on various challenging frames. Red rectangles high-
light the typical challenging regions which cause unsatisfactory predictions.

instrument-wise segmentation on both datasets. However, with single points as
prompts, SAM [14] degrades a lot in performance, indicating its limited ability to
segment surgical instruments from weak prompts. This reveals the performance
of the SAM closely relies on prompt quality. For complicated surgical scenes,
SAM [14] still struggles to produce accurate segmentation results, as shown in
columns (a) to (l) of Fig. 1. Typical challenges, including shadows (a), motion
blur (d), occlusion (b, g, h), light reflection (c), insufficient light (j, l), over
brightness (e), ambiguous suturing thread (f), instrument wrist (i), and irregular
instrument pose (k), all lead to unsatisfied segmentation performance.

4 Robustness under Data Corruption

Implementation Referring to the robustness evaluation benchmark [7], we
have evaluated SAM [14] under 18 types of data corruptions at 5 severity levels
following the official implementations6 with box prompts. Note that the Elastic
Transformation has been omitted to avoid inconsistency between the input image

6 https://github.com/hendrycks/robustness

https://github.com/hendrycks/robustness
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Table 2. Quantitative results on various corrupted EndoVis18 validation data.

Task Severity
Noise Blur Weather Digital

Gaussian Shot Impulse Speckle Defocus Glass Motion Zoom Gaussian Snow Frost Fog Bright Spatter Contrast Pixel JPEG Saturate
B
in
a
ry

0 89.35

1 77.69 80.18 80.43 83.28 82.01 80.53 82.99 80.30 85.40 84.08 83.12 85.38 87.43 86.69 85.76 81.12 58.77 86.64
2 73.92 76.07 76.15 81.65 80.21 79.20 80.22 77.55 81.69 80.69 80.34 84.65 87.27 84.21 84.90 79.32 56.04 84.85
3 69.21 71.74 73.02 77.74 76.96 72.64 75.50 75.27 78.31 79.58 78.90 83.62 87.23 82.50 83.36 73.81 56.25 86.84
4 63.80 65.41 67.29 75.28 73.79 72.38 69.60 73.22 75.23 76.33 78.38 82.28 87.06 83.12 77.12 70.82 57.59 83.21
5 57.07 60.61 61.61 71.83 69.85 69.59 66.25 71.58 66.96 77.66 76.82 78.84 86.43 79.62 66.58 68.55 56.77 81.26

In
st
ru
m
en
t

0 81.09

1 69.51 71.83 72.25 74.82 73.64 72.13 74.33 71.41 76.79 75.40 74.42 76.82 79.16 78.24 77.17 72.94 54.86 78.27
2 66.06 68.09 68.53 73.19 71.74 71.02 71.46 68.85 73.15 72.13 71.65 76.14 79.00 75.54 76.22 71.55 52.23 76.61
3 62.01 64.44 65.89 69.75 68.74 64.97 67.13 67.12 70.08 70.97 70.21 75.01 78.90 73.70 74.67 66.83 51.63 78.39
4 57.28 59.12 61.03 67.82 65.87 64.87 62.15 65.18 67.23 68.43 69.79 73.73 78.73 74.24 69.48 63.99 51.88 74.91
5 51.56 55.16 55.86 64.76 62.43 62.23 59.26 63.96 60.60 69.33 68.32 70.45 78.19 70.72 61.14 61.79 51.01 73.35
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Fig. 2. Qualitative results of SAM under 18 data corruptions of level-5 severity.

and associated masks. The adopted data corruption can be allocated into four
distinct categories of Noise, Blue, Weather, and Digital.

Results and Analysis The severity of data corruption is directly proportional
to the degree of performance degradation in SAM [14], as depicted in Table 2.
The robustness of SAM [14] may be influenced differently depending on the na-
ture of the corruption present. However, in most scenarios, SAM’s performance
diminishes significantly. Notably, JPEG Compression and Gaussian Noise have
the greatest impact on segmentation performance, whereas Brightness has a neg-
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Fig. 3. Unprompted automatic mask generation for surgical scene segmentation.

ligible effect. Figure 2 presents one exemplar frame in its original state alongside
various corrupted versions at a severity level of 5. We can observe that SAM [14]
suffers significant performance degradation in most cases.

5 Automatic Surgical Scene Segmentation

Implementation Without prompts, SAM [14] can also facilitate automatic
mask generation (AMG) for the entire image. For naive investigation of the
automatic surgical scene segmentation results, we use the default parameters
from the official implementation7 without further tuning. The colors of each
segmented mask are randomly assigned because SAM [14] only generates binary
masks for each object.

Results and Analysis As shown in Fig. 3, in surgical scene segmentation of
EndoVis18 [1] data, SAM [14] can produce promising results on simple scenes
like columns (a) and (f). But it encounters difficulties when applied to more
complicated scenes, as it struggles to differentiate between the entirety of in-
strument articulating parts accurately and to identify discrete tissue structures
as interconnected units. As a foundation model, SAM [14] still lacks compre-
hensive awareness of objects’ semantics, especially in downstream domains like
surgical scenes.

6 Parameter-efficient Finetuning with Low-rank
Adaptation

With the rapid emergence of foundational and large AI models, utilizing the
pretrained models effectively and efficiently for downstream tasks has attracted
increasing research interest. Although SAM [14] has shown decent segmentation

7 https://github.com/facebookresearch/segment-anything

https://github.com/facebookresearch/segment-anything
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Fig. 4. Overall architecture of our SurgicalSAM.

performance with prompts and can cluster objects in surgical scenes, we seek to
finetune and adapt it to make it capable of traditional unprompted multi-class
segmentation pipeline - take one image as input only, and predict its segmenta-
tion mask with categorical labels.

Implementation To efficiently finetune SAM [14] and enable it to support
multi-class segmentation without relying on prompts, we consider utilizing the
strategy of Low-rank Adaptation (LoRA) [9] and also adapting the original mask
decoder to output categorical labels. Taking inspiration from SAMed [23], we im-
plement a modified architecture as shown in Fig. 4, whereby the pretrained SAM
image encoder maintains its frozen weights Wenc during finetuning while addi-
tional light-weight LoRA layers are incorporated for updating purposes. In this
way, we can not only leverage the exceptional feature extraction ability of the
original SAM encoder, but also gradually capture the surgical data representa-
tions and store the domain-specific knowledge in the LoRA layers parameter-
efficiently. We denote this modified architecture as “SurgicalSAM”. With an
input image x, we can derive the image embedding himage following

himage = Wencx+∆Wx, (1)

where ∆W is the weight update matrix of LoRA layers. Then we can decompose
∆W into two smaller matrices: ∆W = WAWB , where WA and WB are A×r and
r × B dimensional matrices, respectively. r is a hyper-parameter that specifies
the rank of the low-rank adaptation matrices. To maintain a balance between
model complexity, adaptability, and the potential for underfitting or overfitting,
we empirically set the rank r of WA and WB in the LoRA layers to 4.

During the unprompted automatic mask generation (AMG), the original
SAM uses fixed default embeddings hdefault for the prompt encoder with weights
Wprompt. We adopted this strategy and updated the lightweight prompt encoder
during finetuning, as shown in Fig. 4. In addition, we modified the segmentation
head of the mask decoder Wdec to allow for the production of predictions for
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Table 3. Quantitative evaluation of SurgicalSAM under data corruption.

Severity
Noise Blur Weather Digital

Gaussian Shot Impulse Speckle Defocus Glass Motion Zoom Gaussian Snow Frost Fog Bright Spatter Contrast Pixel JPEG Saturate

0 71.38

1 24.31 30.68 28.88 45.53 59.50 60.21 61.29 56.32 64.67 57.84 54.80 54.95 66.67 65.74 57.56 64.81 54.30 60.01
2 12.19 15.43 12.77 36.92 53.85 56.48 55.72 52.81 55.54 29.68 36.33 51.32 63.73 62.59 50.89 64.00 49.56 28.92
3 5.84 6.30 7.34 17.26 45.56 43.71 50.97 49.55 47.24 42.20 26.31 44.17 62.22 60.65 36.90 54.99 46.24 64.85
4 4.26 4.15 4.63 10.19 39.23 39.64 43.27 46.38 39.65 30.21 25.80 38.28 60.90 51.22 16.42 40.64 36.69 60.36
5 3.79 3.79 3.92 6.37 32.49 38.05 38.16 43.99 26.67 13.97 20.60 20.92 59.64 40.51 4.95 34.00 24.03 50.50

Input GT SurgicalSAM SAM AMG

Fig. 5. Qualitative comparison of our SurgicalSAM with the original SAM.

each semantic class. In contrast to the binary ambiguity prediction of the origi-
nal mask decoder of SAM, the modified decoder predicts each semantic class of ŷ
in a deterministic manner. In other words, it is capable of semantic segmentation
beyond binary segmentation.

We adopt the training split of the Endo18 dataset for finetuning and test with
the validation split, as other works reported in Table 1. Following SAMed [23],
we adopt the combination of the Cross Entropy loss LCE and Dice loss LDice

which can be expressed as

L = λLDice + (1− λ)LCE , (2)

where λ is a weighting coefficient balancing the effects of the two losses. We
empirically set λ as 0.8 in our experiments. Due to resource constraints, we
utilize the ViT b version of SAM and finetuning on two RTX3090 GPUs. The
maximum epochs are 160, with a batch size 12 and an initial learning rate of
0.001. To stabilize the finetuning process, we apply warmup for the first 250
iterations, followed by exponential learning rate decay. Random flip, rotation,
and crop are applied to augment the training images and avoid overfitting. The
images are resized to 512 × 512 as model inputs. Besides, we use AdamW [15]
optimizer with a weight decay of 0.1 to update model parameters.

Results and Analysis After naively finetuning, the SurgicalSAM model can
manage the instrument-wise segmentation without reliance on prompts. With
further tuning of hyper-parameters like the learning rate, the batch size, and
the optimizer, SurgicalSAM can achieve 71.38% mIoU score on the validation
split of the Endo18 dataset, which is on par with the state-of-the-art models in
Table 1. Since other methods in Table 1 are utilizing temporal and optical flow
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information as supplement [5], or conducting multi-task optimization [24,3], the
results of our image-only and single-task architecture SurgicalSAM are promis-
ing. Besides, the encoder backbone we finetuned is the smallest ViT b due to
limited computational resources. We believe the largest ViT h backbone can
yield much better performance. Compared with the original SAM, our new ar-
chitecture is of great practical significance as it can achieve semantic-level au-
tomatic segmentation. Moreover, the additionally trained parameters are only
18.28MB, suggesting the efficiency of our finetuning strategy.

Furthermore, we have evaluated the robustness of SurgicalSAM in the face
of data corruption using the EndoVis18 validation dataset. As shown in Table 3,
the model’s performance exhibits a significant degradation when subjected to
various forms of data corruption, particularly in the case of Blur corruption.

7 Conclusion

In this study, we explore the robustness and zero-shot generalizability of the
SAM [14] in the field of robotic surgery on two robotic instrument segmentation
datasets of MICCAI EndoVis 2017 and 2018 challenges, respectively. Extensive
empirical results suggest that SAM [14] is deficient in segmenting the entire in-
strument with point-based prompts and unprompted settings, as clearly shown
in Fig. 1 and Fig. 3. This implies that SAM [14] can not capture the surgi-
cal scenes precisely despite yielding surprising zero-shot generalization ability.
Besides, it exhibits challenges in accurately predicting certain parts of the instru-
ment mask when there are overlapping instruments or only with a point-based
prompt. It also fails to identify instruments in complex surgical scenarios, such
as blood, reflection, blur, and shade. Moreover, we extensively evaluate the ro-
bustness of SAM [14] with a wide range of data corruptions. As indicated by
Table 2 and Fig. 2, SAM [14] encounters significant performance degradation in
many scenarios. To shed light on adapting SAM for surgical tasks, we fine-tuned
the SAM using LoRA. Our fine-tuned SAM, i.e., SurgicalSAM, demonstrates
the capability of class-wise mask prediction without any prompt.

As a foundational segmentation model, SAM [14] shows remarkable general-
ization capability in robotic surgical segmentation, yet it still suffers performance
degradation due to downstream domain shift, data corruptions, perturbations,
and complex scenes. To further improve its generalization capability and robust-
ness, a broad spectrum of evaluations and extensions remains to be explored and
developed.
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