
Election Manipulation in Social Networks with Single-Peaked
Agents

Vincenzo Auletta1, Francesco Carbone1, and Diodato Ferraioli1

Università degli Studi di Salerno, Fisciano SA 84084, Italy
{auletta@,f.carbone41@studenti.,dferraioli@}unisa.it

Abstract. Several elections run in the last years have been characterized by attempts to manipulate
the result of the election through the diffusion of fake or malicious news over social networks. This
problem has been recognized as a critical issue for the robustness of our democracy. Analyzing and
understanding how such manipulations may occur is crucial to the design of effective countermeasures
to these practices.
Many studies have observed that, in general, to design an optimal manipulation is usually a com-
putationally hard task. Nevertheless, literature on bribery in voting and election manipulation has
frequently observed that most hardness results melt down when one focuses on the setting of (nearly)
single-peaked agents, i.e., when each voter has a preferred candidate (usually, the one closer to her own
belief) and preferences of remaining candidates are inversely proportional to the distance between the
candidate position and the voter’s belief. Unfortunately, no such analysis has been done for election
manipulations run in social networks.
In this work, we try to close this gap: specifically, we consider a setting for election manipulation
that naturally raises (nearly) single-peaked preferences, and we evaluate the complexity of election
manipulation problem in this setting: while most of the hardness and approximation results still hold,
we will show that single-peaked preferences allow to design simple, efficient and effective heuristics for
election manipulation.

1 Introduction

Nowadays, online social networks have become a ubiquitous, fast, easily accessible source of information: e.g.,
Matsa and Shearer [32] showed that about one-fifth of American adults consults social media to read news.
Interestingly a significant part of the interviewed people declared that social media news somehow altered
their opinion [32]. This makes social networks a powerful tool that can be exploited to manipulate people’s
minds about a particular theme, spreading targeted news to specific users. Indeed, this spread of information
has been apparently exploited in many recent elections [2,26,18,27]. The most prominent example has been
the 2016 U.S. election: in the campaign preceding this event, fake news spreading has been so relevant that
some commentators argued that the election’s outcome could be different if the campaign had been fair [2].

The relevance of the topic leads the AI community to investigate about the problem of manipulating
elections by spreading information over social networks. Specifically, the problem has been modelled as
follows: let G = (V,E) be a graph representing the (online) social network of the voters, with V being the
set of voters and E being the set of (possibly directed) social relationships between voters. Each voter v ∈ V
has a political opinion that somehow implies particular preferences over the set C of candidates that, in
turn, imply a particular vote according to the voting rule that controls the election. The manipulator has a
(possibly unlimited) budget B to spend to hire some voters, bribe them, and make them act as influencers to
spread some news in favour of or against a target candidate c∗ ∈ C. As a result of such influence, some voters
(depending on their influenceability and the effectiveness of the hired influencers) will update their opinions
and change their votes in favour of or against the target candidate. The aim of the manipulator is to choose
the best set of influencers (not violating the budget constraint) to optimize a specific objective function that
encodes the chances of victory of the target candidate c∗. Wilder and Vorobeychik [36] have been the first
to deal with this problem. They indeed prove that it is hard to compute both the set of influencers that
maximizes the probability of victory of c∗, and the one that optimizes the expected difference between the

ar
X

iv
:2

30
8.

10
84

5v
1

 [
cs

.G
T

]
 2

1
A

ug
 2

02
3

number of votes of c∗ and the number of votes of the best candidate different from c∗. However, for the
latter problem there is a greedy algorithm that computes a constant approximation of the optimum [36].
These results have been extended to more complex settings, focusing, e.g., on different models of information
diffusion, different voting rules, and different messages to spread [20,1,19].

These works complement the large literature in AI and social choice about bribery in elections [11,12,13,23]:
they focus on ways of altering the outcome of an election by changing the preference of a few of voters. Any-
way, all these works do not take into account the possibility that manipulators could use voters’ social
relationships to spread the manipulation. Most of the results in these works imply that it is computationally
hard to compute the best way to alter an election. Still, most of these hardness results have been showed
to melt down when the preferences of voters satisfy the realistic hypothesis of being single-peaked or nearly
single-peaked [34,25,15,24], where single-peakedness implies that candidates can be seen as ordered (e.g.,
along the political spectrum), voters have a preferred candidate (e.g., the one that is closer to their own
political belief) and the preference towards remaining candidates decreases as the distance between their
position and the one of the preferred candidate increases.

Our contribution. Election manipulation involving information spreading in social networks has not been
explicitly studied for the setting in which preferences are single-peaked. In this work we address this issue, by
studying the problem of election manipulation through social influence in single-peaked scenarios. Specifically,
we will build over known models of election manipulation in order to embed into them the principles of single-
peakedness. Namely, in our model, each voter has an opinion on the topic of the voting and their ranking
of alternatives depends on the distance between the candidates’ positions and the voter’s belief. Here, the
diffusion of information has the effect to change the opinion of the voter, and hence it may alter her ranking,
but still guaranteeing it to be single-peaked. This model can be also easily extended to encompass nearly
single-peaked preferences: these, indeed, may simply arise from voters having a noisy view of candidates
position. Given this model, the problem is to find, subject to a budget constraint, the set of “seeds” from
which to start the information campaign that maximizes the margin of victory of the desired candidate.

It is not hard to check that previous hardness results extend also to this setting. Moreover, we show that
there exists an approximation algorithm for the problem guaranteeing to return a set of seeds able to achieve
at least a constant fraction of the margin of victory that would be achieved by selecting the optimal set of
seeds whenever the target candidate is the one that receives the largest benefit from the campaign1. The
proposed algorithm is based on a greedy approach, and it is built on Monte Carlo simulations in order to
estimate the performance of a seed selection. Unfortunately this algorithm, even if it guarantees a polynomial
time complexity, turns out to be computationally expensive, even for very small instances of the problem.

This motivates the need to design more efficient algorithms, trying to speed up computations while
preserving the effectiveness of the manipulation. To this aim, this work proposes and compares several fast
heuristics to identify the best voters to influence the electorate; we experimentally show that the best of these
heuristics is a variant of the standard PageRank. We show that the performance of this heuristic overwhelms
the one of the approximation algorithm, improving execution times by a factor of (up to) 3000 on average.
And this improvement comes with a relatively small loss in terms of effectiveness. Moreover, the proposed
heuristics turn out to be robust against altered voters’ views of candidates’ positions generating only nearly
single-peaked preferences: the performances of the heuristics clearly degrade with the amount of noise in the
voter’s view, but they are very close to the single-peaked case when this noise is limited.

Other Related Works. The problem of election manipulation over social networks has been only recently
formalized in [36]. However, several works considered similar issues. E.g., [33] studies a plurality voting
scenario in which the voters can vote iteratively and shows how to modify the relationship among voters
to make the desired candidate win an election. [4,5,6] show that in some scenarios, when there are only
two candidates, a manipulator controlling the order in which information is disclosed to voters can lead the
1 For example, this may not occur when a message is spread in favour of an extremist party when there are few

supporters of an half-extreme party and many supporters for a moderate party: the message causes many votes to
move from the moderate towards the half-extreme party, while few votes are conquered by the target party.

2

minority to become a majority. [8] shows that a similar manipulator can lead a bare majority to consensus.
These results do not extend to more than two candidates [7,9]. [16] shows how this manipulator must select
the seeds diffusing information in a two-candidate election. [22] considers a similar issue, but its model does
not directly embed the diffusion of information over networks. Our model for election manipulation is also
largely inspired by models of election manipulations under metric preferences [3,37].

2 The Model

Consider an election with a set of voters V and a set of candidates (or alternatives) C = {c0, c1, ..., cm−1}.
Let c∗ ∈ C be a special target candidate such that we want to alter the election in her favour. We consider
a plurality voting rule: the voters cast a single vote for their preferred candidate (we assume that they do
not misreport the preferred candidate to alter the election outcome), and the winner of the election is the
candidate receiving the largest number of votes.

A candidate c is associated with a position xc (e.g., their position on the political spectrum). For simplicity,
we assume henceforth, that positions are included in [−1, 1]. Each voter v also is associated with a position
xv in [−1, 1] reflecting her belief. The preference of v over candidates depends on her position xv and her
view of the candidates’ positions. Indeed, we assume that voters may not have a clear picture of the political
positions of the parties. For instance, a pure moderate party can be perceived as moderate-left by some voters
and moderate-right by others. To model this, we associate with each candidate c a random variable Xc that
presumably depends on the true position xc of the candidate; the blurred view of each voter v consists of
a random realization xv

c of Xc. Note that the noisy positions of the candidates in the views are clipped in
[−1,+1] to ensure that they remain in the allowed range. Hence, the blurred position of candidate c in the
view of voter v can be expressed as xv

c = [xc + η(xc)]
+1
−1, where η(xc) is the noise term depending on the

real position of the candidate, and [·]+1
−1 indicates the clip operation. We assume that η(xci) and η(xcj) are

independent, for any ci ̸= cj . We below consider several different ways to generate the noise term.
The ranking of voter v with respect to candidate c is then defined with respect to the goal of minimizing

the absolute value of the difference between xv and xv
c : i.e., the most preferred is the one that minimizes

|xv − xv
c |, the second most preferred one achieves the second smallest value of this function, and so on.

It is immediate to check that, whenever the view of voters corresponds to real candidates positions, the
preferences built in this way are single-peaked, i.e., for each voter v there is a preferred candidate c, and for
each pair of candidate c′, c′′ such that xc′ < xc′′ ≤ xc (xc′ > xc′′ ≥ xc), c′ is preferred less than c′′ by v. It is
easy to see that this method also allows to model nearly single-peaked voters: if the variance of the noise is
high, the chances of swapping adjacent candidates on the political spectrum are high, too. Hence, the higher
the noise, the higher is the number of swaps necessary to make the resulting ranking single-peaked (see also
Figure 1), that is a very common measure of distance from single-peakedness [21]. Anyway, we stress that
preferences of voter v are always single-peaked according to her own view, even if they are not single-peaked
according to the real position of candidates or other voters’ views.

3

Fig. 1: An example of the positions of candidates in nearly-single-peaked electorates. The election involves
3 parties {c0, c1, c2}. The left plot shows the distribution of candidates’ positions when noise variance is
low. It shows that it is unlikely to swap adjacent candidates in the left-to-right order; hence, preferences are
likely to remain single-peaked with respect to the axis [c0, c1, c2]. The right plot shows the effect of noise
with high variance: the intersections of the distributions can potentially make candidates swap, creating non-
single-peaked preferences. The higher the variance of the noise, the higher the chances of swapping adjacent
candidates, and the higher the swap distance of the electorate from being perfectly single-peaked.

A manipulator can spread information supporting c∗ among voters. Formally, we suppose that voters are
arranged on the nodes of a social network G = (V,E, p), where E is the set of edges (u, v) connecting voter
u to voter v, and p(u, v) ∈ [0, 1] encodes the strength of this relationship, namely how probable is that the
information that u sends to v affects the opinion of v. The manipulator is then supposed to select a subset
S of voters, of size not larger than a given budget B, from which the information is sent. As most of the
previous literature about election manipulation through social networks [36,1,19] we assume that information
spreads through the network according to the Independent Cascade Model [29]: it starts with S0 = S and,
at each time step t, if St−1 is not empty, each voter u in St−1 sends the information to each neighbor v that
has not been yet affected, and this neighbor v is affected, and hence inserted in St, with probability p(u, v).
When a voter v is affected by the news spread by the manipulator (i.e., v belongs to St for some t ≥ 0), his
belief is updated. Specifically, the voter’s position is moved by a constant amount δ towards the position (in
her view) of the target candidate. If the voter is closer than δ to the position of c∗, then she simply moves
to xv

c∗ . Formally, the voter’s new position x̂v is x̂v = xv +min(δ, |xv
c∗ − xv|) · sign(xv

c∗ − xv).
As in previous literature [36,1,20,19], we assume that the goal of the manipulator is to choose the set of

seed S of size at most B that maximizes the increment in the margin of victory of c∗. Specifically, the goal of
the manipulator is to maximize the expected change of margin of victory ∆MoV (S) = |V ∗

c∗ |−maxc̸=c∗ |V ∗
c |−

(|Vc∗ | −maxc ̸=c∗ |Vc|), where, by |Vc| and |V ∗
c |, we mean, respectively, the number of votes for the candidate

c before and after the manipulation. Essentially ∆MoV is the increase of the advantage of c∗ over its best
opponent before and after the manipulation (that is guaranteed to be always non-negative). Note that the
manipulator knows exactly the real position of candidates and of the voters, but she does not know the
voters’views.

It is not hard to see that by considering the special case of zero-noise, only two candidates and δ large
enough to guarantee that the least preferred candidate becomes the most preferred candidate for each voter v
activated by the spread of information, our model reduces to the one considered in [36]. Hence, the hardness
result described there for the election manipulation problem clearly extends to our model. For this reason, in
the rest of this work we only look for algorithms able to approximate the optimal choice of the manipulator.

4

Specifically, we say that an algorithm is α-approximate, for α ≤ 1 if it always returns a set of seeds S such
that E[∆MoV (S)] ≥ αE[∆MoV (S∗)], where S∗ = argmaxS E[∆MoV (S)] : |S| ≤ B is the optimal seed.

In this work we will also consider an extension of previous models: we allow the manipulator to run a
multi-round campaign, by choosing in each round the seeds from which the information spreads, and the
electorate evolves accordingly.

We next introduce two tools that will turn out to be particularly useful in the design of our algorithms.
The first one consists in an algorithm for finding an approximation to the optimal solution for the Influence
Maximization problem: given a budget B, a network G = (V,E) and a weight w(v) for each vertex w, find
the subset S∗ ⊆ V of size at most B that maximizes the expected total weight of vertices in A(S∗), that
is the vertices affected by the information sent from S∗ and spread according to the Independent Cascade
model, i.e., S∗ = argmaxS E

[∑
v∈A(S) w(v)

]
. It is well-known (cf. [29]) that a simple hill-climbing algorithm

equipped with Monte Carlo simulations for the estimation of the expectation of random variables is able to
return a set of seeds S that provides a

(
1− 1

e − ε
)
-approximation of the expected influence of the optimal

choice of seeds S∗.
The second useful tool is given by the PageRank measure [17]. It is a measure of importance of nodes,

that evaluates the importance of a node with respect to the importance of its neighbors. Specifically, the page
rank r(v) of a node v in a graph G = (V,E) is computed as s

|Nv|
∑

u∈Nv
r(u) + 1−s

|V |
∑

u∈V r(u), where Nv is
the set of neighbors of v in G, and s is a factor in [0, 1] weighting these two contributions. It is well-known
that by repeatedly applying this update rule we will eventually converge to fixed point values (that is, values
that do not change after a further application of the update rule), that we will take as the PageRank measure
of these nodes.

3 Approximation Algorithm

We here propose a greedy algorithm, that returns a constant approximation of the optimal solution to the
Election Manipulation problem in the setting described above whenever the view of voters corresponds to
the real position of candidates. The design of the algorithm directly mimics the ones proposed in [36,19]. The
crux of the algorithm is identifying the voters that, if influenced, will change their minds and vote for the
target candidate c∗. Then, the problem is solved by simply computing the set of seeds that maximizes the
weighted influence maximization [29] for which weights 1 are assigned to such voters and 0 to all the other
nodes. Indeed, nodes that already supports the target candidate can be useful for spreading information, but
reaching them will not modify the margin of victory of the target candidate; similarly, influencing a voter
that cannot be convinced to vote for the target candidate apparently cannot improve the margin of victory.
Unfortunately, influencing a voter that will never vote for c∗ after the manipulation is not that pointless:
even if the number of votes of the target candidate does not increase, this voter may change her preferred
candidate and erode votes for the best opponent of the target candidate, possibly increasing the margin of
victory of c∗. So we need to prove that, even if this strategy is not accounted by our algorithm (i.e., it only
focuses on influencing nodes that can be made to support the target candidate but do not actually do), we
still achieve a constant approximation whenever the campaign for the target candidate does not advantage
other candidates more than the target itself2.

Since our approximation algorithm relies on the influence maximization algorithm discussed above, it is
easy to see that its computational complexity is O (B · |V | ·MI), where B is the budget, |V | is the number
of nodes in the graph, and MI is the cost of estimating the marginal influence of a node via Monte Carlo
simulations, that depends on the margin of error that one is willing to accept in the computed estimation.
Proposition 1 proves that MI also polynomially depends on the size of the input, allowing us to conclude
that our algorithm is polynomial.

Proposition 1. Let P be a weighted influence maximization problem with the following properties:
2 In [36], it is not necessary to take into account this case since only two candidates are considered. In [19], instead,

this case is considered, but the algorithm is showed to provide a constant approximation on stronger assumptions
than in our setting.

5

– n is the number of nodes of the graph;
– for N ≤ n nodes v1, ..., vN , the weights are w(v1) = ... = w(vN) = 1;
– for n−N nodes vN+1, ..., vn the weights are w(vN+1) = ... = w(vn) = 0.

That is, P is an influence maximization problem in which nodes vN+1, ..., vn can be ignored in the final result.
Let A be the set of seed nodes that start the diffusion process. Assume that A contains at least one node v

such that w(v) = 1. Let σw(A) be the expected sum of weights of influenced nodes at the end of the diffusion
dynamic (i.e., the expected number of infected nodes ignoring the nodes with weight 0).

If the diffusion process starting from A is simulated independently at least N2

ϵ2 · ln
(
1
λ

)
times, then the

average number of influenced nodes with weight 1 over these simulations is a (1±ϵ)-approximation to σw(A),
with probability at least 1− 2λ2.

Proof. Assume that the diffusion process is repeated T ≥ N2

ϵ2 · ln
(
1
λ

)
times.

Let X1, X2, ..., XT ∈ [0, 1] be the fraction of influenced nodes with weight 1 in each of these runs. The
estimate of σw(A) is

σ̂w(A) =
N

T

T∑
i=1

Xi

Writing X =
∑T

i=1 Xi, then E[X] = T
N σw(A). Standard bounds (e.g., Theorem 2.3 from [28]) give that

Pr

(
|X − T

N
σw(A)| ≥ Tγ

)
≤ 2e−2Tγ2

∀γ ≥ 0 (1)

Considering γ = ϵ
N σw(A), rearranging the left side of inequality 1 we get

Pr

(
|X · N

T
− σw(A)| ≥ ϵσw(A)

)
and rearranging the right side of inequality 1 we get

2e−2Tγ2

≤ 2e−2ln(1
λ)σ

2
w(A) ≤ 2e−2ln(1

λ) = 2λ2

where the last inequality holds if σw(A) ≥ 1, which is true since A contains at least one node v such that
w(v) = 1. ⊓⊔

Moreover, observe that the set of influencers returned by our algorithm has a size that does not exceed
the budget, and hence feasible. We next show that it returns a constant approximation of the optimal seed
set whenever the view of all voters coincides with candidates’ real positions and the campaign for the target
candidate does not advantage more other candidates than the target itself. Specifically, let X(S) be the
expected maximum – among all candidates c ̸= c∗ – of the number of voters that do not vote for c and they
will do after receiving a message supporting candidate c∗ starting from nodes in S (where the expectation
is taken over the probabilities of receiving this message). Then we have the following theorem.

Theorem 1. The set of influencers Ŝ ⊆ V returned by our algorithm is such that E[∆MoV (Ŝ)] +X(Ŝ) ≥
1
3 ·
(
1− 1

e

)
· maxSE[∆MoV (S)] whenever xv

c = xc for each v ∈ V and each c ∈ C. Hence, our algorithm
returns a constant approximation whenever X(Ŝ) = O(E[∆MoV (Ŝ)]).

Proof. Given G = (V,E, p), the corresponding live graph is a graph G′ over V in which each edge e ∈ E
belongs to G′ with probability p(e). Observe that there are 2|E| possible live graphs, and let us denote with
G the set containing all these live graphs. Moreover we can associate a distribution P : G → [0, 1] to these
live graphs, with P(Gi) =

∏
e∈G′ p(e)

∏
e/∈G′(1 − p(e)) for each Gi ∈ G. Given a live graph Gi and a seed

set S, we denote with f(S, i) the number of nodes reachable from the seed set S in the live graph Gi. It is
immediate to see that the expected number of influenced nodes in the graph, starting the diffusion from the
seed set S, is simply f(S) = EP [f(S, i)].

6

Recall that M is the set of voters that do not vote for c∗ but will do if influenced. Let Vc be the set of
voters that vote for candidate c before the manipulation, and M c be those voters that do not vote for c, but
they will vote for c if they receive a message supporting c∗, i.e., if they move their belief of at most δ towards
xv
c∗ . Note that Mc ∩ Vc∗ must be empty, since it is impossible to make a voter that prefers c∗ to change her

mind through a message supporting c∗.
Moreover, let Ŝ be the seed set returned by our algorithm, and S∗ be an optimal solution maximizing

the expected change of margin of victory.
After the manipulation due to the influencers Ŝ, the increment in the margin of victory between c∗ and

any other candidate ci ̸= c∗ can be expressed (considering the diffusion over the graph Gy) as gc∗(Ŝ, y, ci)
and observe that ∑

v∈M−Vci

χ(v, Ŝ, y) + 2
∑

v∈M∩Vci

χ(v, Ŝ, y) ≥

gc∗(Ŝ, y, ci) ≥
∑

v∈M−Vci

χ(v, Ŝ, y) + 2
∑

v∈M∩Vci

χ(v, Ŝ, y)

−
∑

v∈Mci

χ(v, Ŝ, y)

≥
∑

v∈M−Vci

χ(v, Ŝ, y) + 2
∑

v∈M∩Vci

χ(v, Ŝ, y)−max
c̸=c∗

∑
v∈Mc

χ(v, Ŝ, y),

where χ(v, Ŝ, y) is 1 if node v is reachable from nodes in Ŝ in the live graph Gy, else 0. The change of margin
of victory in the live graph Gy is then

∆MoV (Ŝ, y) = min
cj ̸=c∗

{
gc∗(Ŝ, y, cj)− |Vcj |+ max

ci ̸=c∗
|Vci ||

}
and the expected change of margin of victory is Ey

[
∆MoV (Ŝ, y)

]
. Note that∑

v∈M−Vci

χ(v, Ŝ, y) + 2
∑

v∈M∩Vci

χ(v, Ŝ, y) = f(Ŝ, y,M) + f(Ŝ, y,M ∩ Vci),

where f(S, y,A) is the number of nodes in A reachable from S in the live graph Gy. Then we have that

f(Ŝ, y,M) + min
cj ̸=c∗

[
f(Ŝ, y,M ∩ Vcj)− |Vcj |+ max

ci ̸=c∗
|Vci |

]
≥

∆MoV (Ŝ, y) ≥ f(Ŝ, y,M)

+ min
cj ̸=c∗

[
f(Ŝ, y,M ∩ Vcj)− |Vcj |+ max

ci ̸=c∗
|Vci |

]
−max

c ̸=c∗

∑
v∈Mc

χ(v, Ŝ, y).

(2)

By definition, our algorithm greedily maximizes the submodular function Ey [f(·, y,M)]. In fact, it maxi-
mizes the expected sum of the weights of the influenced nodes in the derived influence maximization problem;
but weights are defined such that the expected sum of influenced nodes is exactly the expected number of
influenced nodes in M , that is Ey [f(·, y,M)]. Hence, if S′ = argmaxA Ey [f(A, y,M)], then

E
y

[
f(Ŝ, y,M)

]
≥
(
1− 1

e

)
· E
y
[f(S′, y,M)]

≥
(
1− 1

e

)
· E
y
[f(S∗, y,M)]

(3)

where the first inequality holds because of the guarantees of the algorithm solving weighted influence maxi-
mization, whereas the second inequality holds because S′ maximizes Ey [f(·, y,M)] by definition.

7

Let c(Ŝ, y) = argminci f(Ŝ, y,M∩Vci)−|Vci | be the candidate achieving the minimum in the definition of
∆MoV (Ŝ, y) in (2). Note that for any candidate ci, f(Ŝ, y,M) ≥ f(S, y,M ∩Vci), simply because M ∩Vci ⊆
M . Hence, for S ∈ {S∗, Ŝ}

E
y
[f(S∗, y,M)] ≥ E

y

[
f(S∗, y,M ∩ Vc(S,y))

]
(4)

By (4) we get

E
y
[f(S∗, y,M)] ≥ 1

3

(
E
y
[f(S∗, y,M)]

+ E
y

[
f(S∗, y,M ∩ Vc(S∗,y))

]
+ E

y

[
f(S∗, y,M ∩ Vc(S,y))

]) (5)

Moreover,
E
y

[
f(Ŝ, y,M) + f(Ŝ, y,M ∩ Vc(Ŝ,y))

]
≥ E

y

[
f(Ŝ, y,M)

]
≥ 1

3

(
1− 1

e

)
·
(
E
y
[f(S∗, y,M)] + E

y

[
f(S∗, y,M ∩ Vc(S∗,y))

]
+E

y

[
f(S∗, y,M ∩ Vc(S,y))

]) (6)

where the first inequality holds because the left hand side includes an extra non-negative term, and the
second inequality derives from inequalities 5 and 3. Also note that Ey

[
maxc̸=c∗

∑
v∈Mc

χ(v, Ŝ, y)
]
= X(Ŝ).

We can bound the margin of victory of Ŝ as follows (for simplicity, we will write “mincj ” for “mincj ̸=c∗ ”, and
the same for “maxcj ”):

E
y

[
∆MoV (Ŝ, y)

]
+X(Ŝ)

≥ E
y

[
f(Ŝ, y,M) + min

cj

(
f(Ŝ, y,M ∩ Vcj)− |Vcj |

)
+max

ci
|Vci |

]
(by (2))

= E
y

[
f(Ŝ, y,M) + f(Ŝ, y,M ∩ Vc(Ŝ,y))

]
+ E

y

[
max
ci

|Vci | − |Vc(Ŝ,y)|
]

(by definition of c(Ŝ, y))

≥ 1

3

(
1− 1

e

)
· E
y

[
f(S∗, y,M) + f(S∗, y,M ∩ Vc(S∗,y))

+ f(S∗, y,M ∩ Vc(Ŝ,y))

]
+ E

y

[
max
ci

|Vci | − |Vc(Ŝ,y)|
]

(by (6))

≥ 1

3

(
1− 1

e

)
· E
y

[
f(S∗, y,M) + f(S∗, y,M ∩ Vc(S∗,y))

+ f(S∗, y,M ∩ Vc(Ŝ,y)) + max
ci

|Vci | − |Vc(Ŝ,y)|
]

(1/3(1-1/e) multiplies every term)

=
1

3

(
1− 1

e

)
· E
y

[
f(S∗, y,M) + f(S∗, y,M ∩ Vc(S∗,y))

+ f(S∗, y,M ∩ Vc(Ŝ,y)) + max
ci

|Vci | − |Vc(Ŝ,y)|+ |Vc(S∗,y)| − |Vc(S∗,y)|
]

(add and subtract the same quantity)

=
1

3

(
1− 1

e

)
· E
y

[
f(S∗, y,M) + min

cj

(
f(S∗, y,M ∩ Vcj)− |Vcj |

)
+ f(S∗, y,M ∩ Vc(Ŝ,y)) + max

ci
|Vci | − |Vc(Ŝ,y)|+ |Vc(S∗,y)|

]
(by definition of c(S∗, y))

8

≥ 1

3

(
1− 1

e

)
·
(
E
y
[∆MoV (S∗, y)] + E

y

[
f(S∗, y,M ∩ Vc(Ŝ,y))

+ |Vc(S∗,y)| − |Vc(Ŝ,y)|
])

(by (2))

By definition of c(S∗, y), f(S∗, y,M ∩ Vc(S∗,y))− |Vc(S∗,y)| ≤ f(S∗, y,M ∩ Vc(Ŝ,y))− |Vc(Ŝ,y)|, and hence

|Vc(S∗,y)| − |Vc(Ŝ,y)| ≥ f(S∗, y,M ∩ Vc(S∗,y))− f(S∗, y,M ∩ Vc(Ŝ,y)) (7)

We can conclude that

E
y
[∆MoV (Ŝ, y)] +X(Ŝ)

≥ 1

3

(
1− 1

e

)
·
(
E
y
[∆MoV (S∗, y)] + E

y

[
f(S∗, y,M ∩ Vc(Ŝ,y))

+ f(S∗, y,M ∩ Vc(S∗,y))− f(S∗, y,M ∩ Vc(Ŝ,y))

])
(by (7))

=
1

3

(
1− 1

e

)
·
(
E
y
[∆MoV (S∗, y)] + E

y

[
f(S∗, y,M ∩ Vc(S∗,y))

])
≥ 1

3

(
1− 1

e

)
· E
y
[∆MoV (S∗, y)] (since f is non-negative)

Thus if X(Ŝ) = O(Ey[∆MoV (Ŝ, y)]), then there is a constant c such that X(Ŝ) ≤ c · Ey[∆MoV (Ŝ, y)],
and thus

E
y
[∆MoV (Ŝ, y)] ≥ 1

3(c+ 1)

(
1− 1

e

)
· E
y
[∆MoV (S∗, y)],

and thus a constant approximation. ⊓⊔
Note that in case of nearly-single-peaked electorates the algorithm still works, but its performances in

terms of ∆MoV (·) depend on the amount of noise: the higher the noise, the more the inconsistency between
reality and blurred views of the voters, the lower the effectiveness of the manipulation since the manipulator
estimates wrong weights w(v) for each voter v ∈ V .

4 The Heuristics

The approximation algorithm presented in the previous section provides a formal guarantee of the quality
of the solution. However, it inherits from the weighted influence maximization algorithm used as black box
the computational drawbacks of being computationally expensive, even if it is polynomial in the size of the
input. Specifically, the proposed algorithm requires a large number of simulations in order to estimate the
marginal influence of each node (see Proposition 1). Even if faster algorithms have been proposed for the
influence maximization algorithm (see, e.g., [14]), the influence maximization algorithm is often solved in
practice through fast heuristics based only on the structure of the network: they, indeed, assign scores to
the nodes in the graph defining their “importance”, and then they simply return the nodes with the highest
scores.

In this work, we propose to extend this approach in order to encompass the problem of election manipu-
lation. Specifically, this work introduces several heuristics in that sense: they are based on both the structure
of the networks and centrality metrics adapted to the election context. We next present in details these
heuristics.

The core idea involves computing the distance on the political spectrum of a voter from the target
candidate. Among the supporters of candidates other than the target c∗, the closer is this voter to c∗, the
higher is the importance of this voter for manipulation purposes. However, the score must also take into
account social influence and the ability of a (possibly useless for manipulation purposes) voter to influence
other (useful for manipulation purposes) voters. These ideas lead to two different classes of heuristics that
we will describe below, and whose performances are described in the next section.

9

Scoring-based Heuristics. The first proposed class of heuristics considers the nodes in the neighbourhood
N(v) of each voter v and their inclination to support the target candidate. Different heuristics in this class
can be distinguished by how the neighborhood N(v) is defined. For example,

– we can consider in N(v) only neighbours up to a given distance. For instance, setting this limit to 1, we
consider only v’s friends; setting it to 2, we consider v’s friends and, in turn, their friends, too.

– N(v) can be limited by a maximum number of nodes to consider, regardless of the distance. One can
consider the neighbours at increasing distances from v, as long as the number of neighbours does not
exceed a given threshold.

– we can limit N(v) by both the constraints above.

Given N(v), the higher the number of friends of v, the higher is the probability of exerting social influence.
Clearly, this probability also depends on the distance from v, since neighbors of v only require that influence
from v is successful, while for a friend of a friend u of v we require that not only the influence of v but
also the influence of u is successful. These considerations justify the definition of a first score sG(v) =∑

u∈N(v) 1/d(v, u) for the node v purely based on the structure of the network G, where d(v, u) is the length
of the shortest path linking v to u.

We also consider political information about voters in the neighbourhood of v: indeed, we define sP (v) =∑
u∈N(v)∪{v}:F [dP (u,c∗)]=1 w(v, u) ·1/dP (u, c∗) for the node v, where dP (u, c

∗) is a political distance function,
that measures the distance on the political spectrum between c∗ and voter u; F [·] is a custom filter function,
allowing to discard nodes depending on the distance dP (e.g., we may discard nodes u such that dP (u, c∗) = 0,
which means that they already vote for c∗); w(v, u) is the product of the probabilities of the edges along the
shortest path from v to u. In this way, nodes that are more likely to be influenced by v are assigned a high
weight. We assume that w(v, v) = 1. Hence, sP (v) is high when the neighbourhood of v is large, neighbours’
political positions are not too far from c∗’s, and v is likely to influence his neighbourhood, as desired.

We can then achieve different heuristics by combining these two scores in different ways. The following
are possible combinations:

– s1(v) = (sG(v), sP (v))
– s2(v) = (sP (v), sG(v))
– s3(v) = αŝP (v) + (1− α)ŝG(v)

where ŝG(v) is sG(v) divided by the standard deviation of sG(u) over all the nodes u ∈ V ; similarly for ŝP (v).
By using s(v) = (X,Y), we mean that when comparing the scores of two nodes u and v, the comparison is
performed on the value of X, whereas Y breaks ties. Having defined the score of the nodes, the algorithm
greedily chooses the B nodes v with the highest score s(v).

PageRank-based Heuristics. Motivated by the fact that PageRank is a fast heuristic that embodies the
structure of the whole network, this work also suggests a second fast heuristic based on a special version of
PageRank specifically thought for the problem of election manipulation. In particular, we observe that while
the original PageRank shares the importance of a node among all its neighbors with probability 1− s, and
among all nodes with probability s, this does not makes really sense in our setting, since we already known
that there are nodes that are more useful to the goal (i.e., the ones that may be lead to vote for c∗), and
others that are less useful to this purpose (i.e., the ones that already vote for the desired candidate or the
ones that cannot be made to vote for c∗).

Our idea is to share the rank of node u, by first assigning to each neighbor v a weight zu(v) ≥ 0,
quantifying how strongly v positively influences other nodes to switch to c∗, and to share the PageRank of
u among its neighbors proportionally to their weight. It is not hard to check that this modification does not
affect the Markovian nature of PageRank computation, and hence the fact that it eventually converges to a
stable set of values.

How should the weights be selected? Scores defined above already provide a measure of how much
the social influence of the node serves to the purpose of the manipulator. Hence, we can for example set
zu(v) = s3(v) for a specific value of α. Another variant of this heuristics, can be achieved by including in the
weight zu(v) also information related to the diffusion probabilities, i.e., zu(v) = s3(v) · p(u, v).

10

In this way, this heuristics tends to assign a high score to nodes:

– generally important for the diffusion in the network (inheriting PageRank properties about influence
maximization), and

– with a high probability of influencing their neighbourhood, and
– whose neighbourhood does not already support c∗ (need to choose an appropriate filter function F [·]),

and
– whose neighbourhood contains nodes that are not too far from the target candidate on the political

spectrum (thus, they are willing to change their mind in favour of c∗).

The Full List of Heuristics. Based on the above ideas, we next describe the heuristics that we considered in
this work.

All heuristics adopting the neighbourhood score use the following distance function:

dP (u, c
∗) =

{
0 if u votes for c∗ before the manipulation
|xu − xc∗ | otherwise

This highlights the reasons for which this heuristics should perform worse in nearly-single-peaked scenarios:
when η ̸= 0, xc∗ ̸= xv

c∗ and the value of dP (u, c∗) does not reflect the distance from c∗ perceived by the voter
u (and the manipulator could also guess that a voter votes for c∗ when he does not actually do).

In addition, all the versions of the algorithms adopting the neighbourhood score use the following filter
function:

F [a] =

{
1 if a > 0

0 otherwise

This means that when computing the political scores sP (v), the algorithms discard all the voters that already
vote for c∗ in the neighbourhood N(v).

The neighbourhood N(u) was limited to consider (1) friends of node u or (2) friends of u and friends of
u’s friends. No limit was applied to the size of the neighbourhood. Moreover, the variants of the algorithms
consider three ways of combining scores sP and sG to obtain the score s, namely s = (sG, sP), s = (sP , sG),
s = αŝP + (1− α)ŝG.

In conclusion, the algorithms based on the neighbourhood heuristic are:

– SPoutdeg. The neighbourhood of a node only considers its friends; the combined score is s = (sG, sP).
– SPoutdeg_rev. The neighbourhood of a node only considers its friends; the combined score is s = (sP , sG).
– SPoutdeg_merge0.5. The neighbourhood of a node only considers its friends; the combined score is

s = 0.5 · ŝP + 0.5 · ŝG.
– SPneig2. The neighbourhood of a node considers its friends and friends of friends (2 is the maximum

number of hops to reach the nodes in the neighbourhood); the combined score is s = (sG, sP).
– SPneig2_rev. The neighbourhood of a node considers its friends and friends of friends; the combined

score is s = (sP , sG).
– SPneig2_merge0.5. The neighbourhood of a node considers its friends and friends of friends; the combined

score is s = 0.5 · ŝP + 0.5 · ŝG.

We can now present the variants of the weighted PageRank algorithm that use the neighbourhood score
when sharing PageRank among nodes. These are the PageRank heuristics that use the previously defined
distance function dP and the previously defined filter function F :

– SPpagerank1.0_pos. The scores s use the neighbourhoods considering only the friends of the nodes. In
particular, s = 0 · ŝG + 1 · ŝP = ŝP . pos stands for positive filter F .

– SPpagerank0.5_pos. The scores s use the neighbourhoods considering only the friends of the nodes. In
particular, s = 0.5 · ŝG + 0.5 · ŝP . pos stands for positive filter F .

11

– SPpagerank1.0_hop2_pos. The scores s use the neighbourhoods considering the friends of the nodes and
the friends of friends. In particular, s = 0 · ŝG + 1 · ŝP . pos stands for positive filter F . hop2 stands for
the maximum number of hops to build the neighbourhood.

In addition, there are other two algorithms based on PageRank. Recall that M has been defined as the
set of voters that, if influenced, will vote for c∗. Then we have the following algorithms:

– SPpagerank1.0_manip_eq1. The scores s use the neighbourhoods considering only the friends of the
nodes. In particular, s = ŝP . The distance function assigns 1 to manipulable nodes (namely the ones in
M), 0 to voters that already vote for c∗, and ∞ to the rest of the voters (this represents the fact that
nodes are not manipulable in favour of c∗). The filter function is

F [a] =

{
1 if a = 1

0 otherwise

In the friendly name, manip stands for manipulable and eq1 is a short name for the filter function.
– SPpagerank1.0_manip*_pos. The scores s use the neighbourhoods considering only the friends of the

nodes. In particular, s = ŝP . The distance function assigns 1 to manipulable nodes (namely the ones in
M), 0 to voters that already vote for c∗, and

|xv − xc∗ |
|xv − xc∗ | − |x̂v − xc∗ |

to the rest of the voters v, where x̂v is the position of voter v if he was influenced. manip* stands for
the fact that the algorithm works as SPpagerank1.0_manip_eq1 does but considers the gain (in getting
closer to xc∗) of non-manipulable voters.

Complexity of Heuristics. To analyze the complexity of the neighbourhood heuristics, Algorithm 1 sketches
the main required steps. We assume that the function dP (u, c

∗) finds the most preferred candidate of voter

Algorithm 1 Neighbourhood heuristic
Require: the graph of voters G = (V,E), the target candidate c∗

for v in V do
// Perform a BFS traversal not violating the constraints on the limit of the neighbourhood
N(v) = BFS(v)
sG(v) =

∑
u∈N(v) 1/d(v, u)

// β is the weight function combining F and w
sP (v) =

∑
u∈N(v) β(u, v)/dP (u, c

∗)
end for
// Standardize the scores for each v ∈ V
ŝG(v) = sG(v)/STD(sG(·))
ŝP (v) = sP (v)/STD(sP (·))
// Combine ŝG(v) and ŝP (v) for each v ∈ V
s(v) = ... ▷ Depends on the specific score
return s

u. In this way, dP (u, c∗) can be 0 if u votes for c∗, even if the distance between u and c∗ is not 0. Hence
the complexity of dP (u, c∗) is O(m), where m is the number of candidates. As explained above, most of the
experiments are performed considering that N(v) contains only the friends of v; hence sG(v) = outdeg(v)
and can be computed in O(1) time with an appropriate representation of the graph. Similarly, sP (v) can be
computed in O(outdeg(v) ·m). The total cost to compute sG and sP is∑

v∈V

O(outdeg(v) ·m) = O(|E| ·m)

12

The standardization costs O(|V |); hence, the total cost to compute the neighbourhood heuristic is O(|V |+
m · |E|).

Compared to the standard algorithm, the weighted version of the PageRank algorithm does not require
any substantial extra cost. Thus, for simplicity, the calculations of the computational complexity to compute
the PageRank heuristic are based on the original PageRank algorithm. Algorithm 2 sketches the main steps
required to calculate PageRank values of the nodes of a given graph. The update rule for all the nodes

Algorithm 2 PageRank - computational complexity: O(k · (|E|+ |V |))
Require: the graph of nodes G = (V,E), the number of iterations k, the scaling factor s

r(v) = 1/|V |, ∀v ∈ V
for i = 1, ..., k do

r∗(v) = 0, ∀v ∈ V
for v in V do

// Apply the update rule
for u in out-neighbours of v do

r∗(u) += r(v)/outdeg(v) · s
end for
r∗(v) += (1− s)/|V |

end for
r(v) = r∗(v), ∀v ∈ V

end for
return r

requires ∑
v∈V

∑
u∈N+

v

O(1) =
∑
v∈V

O(outdeg(v)) = O(|E|)

where N+
v is the set of out-neighbours of node v. At each iteration, an additional cost O(|V |) is required to

manage r and r∗. Since the update rule is applied k times to converge to stable values, the total computational
complexity is O(k · (|E| + |V |)). Note that this is a naive implementation of the PageRank algorithm. It is
presented here only to pose an upper bound to the computational complexity of the PageRank heuristics.
In fact, solving the problem by finding a particular eigenvector of a matrix related to the graph can speed
up the computations. In fact, the implementation used for the experimental phase relies on scipy ’s methods
to compute eigenvectors, which are based on ARPACK, a library specifically designed for solving large scale
eigenvalue problems. Hence, the actual performances of the algorithm can be much better than implementing
Algorithm 2. Moreover, optimized implementations of PageRank can surely scale up to large graphs.

5 Experimental Results

Experimental Setting. We run extensive experiments to evaluate the algorithms described above both in terms
of the effectiveness of the manipulation, as measured by the margin of victory MoV and the change of margin
of victory ∆MoV resulting from the simulated manipulations, and the execution time of the algorithms. As
for the valuation of the running time, we used the following software and hardware equipment:

– Windows 10 (listed here for reproducibility of the execution times);
– Python 3.8.10;
– scipy, version 1.8.1 (listed here for reproducibility of the PageRank algorithm).

The details of the hardware environment are:

– RAM: 8 GB;

13

– CPU: i5-6400, 2.70 GHz.

We stress that we compare Python implementations run on a single core, without any code optimization.
In general we compared different algorithms in election scenarios with a set of voters of sizes 20, 50, and

100. All experiments involved five candidates. Both voters and candidates were assigned positions in the
range [−1,+1] chosen uniformly at random. This should create scenarios in which all the parties are almost
equally supported by the voters. When dealing with nearly-single-peaked electorates, the noise was chosen
to be independent of the positions of the candidates, namely η(xc) = η. Specifically, we considered uniform
noise η = U(−0.2; 0.2); Gaussian noise with low variance η = N (0; 0.08); and Gaussian noise with high
variance η = N (0; 1). These values were chosen to test different levels of nearly single-peaked average swap
distances. In fact, when normalized with respect to the number of voters, for an election with 20 voters and
5 candidates randomly placed on the political spectrum, the average distances from single-peaked scenarios
are ∼ 0.5, ∼ 1, and ∼ 2 swaps (see also Figure 2).

Fig. 2: Distributions of k-global swaps distances (normalized with respect to 20 voters) for three different
noises. Data of the distributions derive from 10000 elections involving 20 voters and 5 candidates placed
on the political spectrum uniformly at random. The plots show the average k-swap distance (red) and the
deviation from the mean (orange).

As for the parameters describing the power of the manipulator, we consider budget B such that B
|V | ∈

{5%, 10%, 15%}; the maximum number of manipulation campaigns was set to 10; the parameter δ that
represents the influenceability of the electorate has been chosen in {0.1, 0.2, 0.3, 0.4}; the target candidate
of the manipulation process was chosen randomly among all the candidates {c0, c1, c2, c3, c4} unless stated
differently.

Monte-Carlo simulations necessary for the approximation algorithm have been repeated 300 times (cor-

responding to λ =
√

0.1
2 and ϵ = 0.05 ·

√
2 in Proposition 1). Moreover, estimates of ∆MoV have been

evaluated over a number of simulation sufficient to achieve statistical guarantee. Specifically, the number of
simulation have been selected according to the following results.

14

Proposition 2. Let X1, . . . , XT be i.i.d random variables such that a ≤ Xi ≤ b with probability 1, ∀i ∈
{1, ..., T}. Let µ = E[X1] = ... = E[XT].

The average µ̂ = 1/T ·
∑T

i=1 Xi is an approximation to µ with an error smaller than ϵ, with probability
at least 1− 2λ2, if

T ≥
(
b− a

ϵ

)2

ln

(
1

λ

)
Proof. Let X =

∑T
i=1 Xi. Applying Hoeffding’s inequality we get:

Pr (|X − E[X]| ≥ γ) ≤ 2 exp

(
− 2γ2∑T

i=1 (b− a)2

)
∀γ > 0 (8)

Rearranging the left side of (8) we get

Pr

(
|X
T

− µ| ≥ γ

T

)
= Pr

(
|µ̂− µ| ≥ γ

T

)
Choosing γ = Tϵ and rearranging the right side of (8) we get

Pr (|µ̂− µ| ≥ ϵ) ≤ 2exp

(
− 2γ2∑T

i=1 (b− a)2

)
= 2exp

(
− 2

T (b− a)2
T 2ϵ2

)
by substituting γ

= 2exp

(
− 2

(b− a)2
Tϵ2
)

≤ 2exp

(
−2ln

(
1

λ

))
by substituting T

= 2λ2 ⊓⊔

Corollary 1. With
(

|V |−|Vc∗ |+|Vc̄|
ϵ

)2
ln
(
1
λ

)
simulations, where |Vc∗ | is the number of votes for c∗ before the

manipulation and |Vc̄| is the number of votes for the best opponent of c∗ before the manipulation, we can
evaluate the expected ∆MoV with an error smaller than ϵ, with probability at least 1− 2λ2

Proof. Proposition 2 can be used to compute the number of simulations needed to approximate the statistical
mean of ∆MoV . The definition of the increment of the margin of victory of the target candidate c∗ is reported
here for convenience:

∆MoV = |V ∗
c∗ | − |V ∗

ĉ | − (|Vc∗ | − |Vc̄|) (9)

where

– |V ∗
c∗ | is the number of votes for c∗ after the manipulation;

– |V ∗
ĉ | is the number of votes for the best opponent of c∗ after the manipulation;

– |Vc∗ | is the number of votes for c∗ before the manipulation; it does not depend on the manipulation
algorithm;

– |Vc̄| is the number of votes for the best opponent of c∗ before the manipulation; it does not depend on
the manipulation algorithm.

The worst result of the manipulation algorithm is that the MoV does not change at all since supporters of
c∗ cannot negatively change their idea. The best possible result of the manipulation algorithm is |V ∗

c∗ | = |V |
and |V ∗

ĉ | = 0, i.e., the whole electorate supports c∗. Hence, in a generic simulation of the manipulation,
∆MoV is bounded

0 ≤ ∆MoV (·) ≤ |V | − |Vc∗ |+ |Vc̄|

15

So, E[∆MoV (·)] can be estimated by averaging the results of repeated simulations, and the number of
such simulations can be computed by using Proposition 2 with a = 0 and b = |V | − |Vc∗ | + |Vc̄|, for some
fixed values of ϵ and λ. ⊓⊔

Hence, the number of simulation run for estimating ∆MoV has been set as suggested by Corollary 1 with
λ =

√
0.1
2 and ε = 0.05.

All the variants of the models and algorithms described above have been tested against both synthetic and
real-world networks. Specifically, we used: (i) Watts-Strogatz graphs [35] with nodes uniformly distributed

in the 2D square whose side is
√

|V |
20 (thus, the density of the nodes remains the same increasing the size of

the electorate); strong ties with a radius r = 0.13; k = 2 weak ties distributed inversely to the distance with
a power law of exponent q = 2. Since the density does not change when the number of nodes increases, the
degree of each node remains almost the same. (ii) Preferential attachment graphs [10], created by setting the
probability of linking preferentially to 0.25 and 0.75.

For these networks, tests were performed on several combinations of parameters. Specifically, for each
pair (|V |, B/|V |) ∈ {20, 50, 100} × {0.05, 0.10, 0.15}, the simulated scenarios involved (in all the possible
combinations): 8 random placements of voters and candidates on the political spectrum; 10 randomly gen-
erated graphs (Watts-Strogatz or preferential attachment models); 10 randomly generated sets of diffusion
probabilities on edges. This led to 8 × 10 × 10 = 800 electoral scenarios. Due to the large running time
of our approximation algorithm, it has been tested only with: 31 random placements of voters and candi-
dates; 5 randomly generated graphs (Watts-Strogatz models only); 5 randomly generated sets of diffusion
probabilities. This led to 775 random elections.

The real case study involves a snapshot of the Facebook social network [30] available at SNAP [31]. The
network consists of 4039 nodes and 88234 undirected edges. It was adapted to the purposes of this work by
associating each node with a random position on the political spectrum and assigning a random diffusion
probability to each edge. However, generated data were not totally random: the testing phase considered the
structure of the graph to create plausible data. The net was first partitioned using the Louvain Method, a
greedy algorithm to detect the communities the net consists of. Other approaches were tested, too; however,
the Louvain algorithm returned the best partition. By measuring some standard quality metrics, the Louvain
partitions obtained:

– modularity 0.83. It lies in [−1/2,+1] and represents the concentration of edges within the communities
compared to random distributions of the edges; the higher the value, the better the partition;

– coverage 0.96; it is the ratio of the number of intra-community edges to the total number of edges of the
graph;

– performance 0.92; it is the number of intra-community edges plus inter-community non-edges divided by
the total number of potential edges. The higher the value, the better the partition.

The algorithm returned 16 communities (the distribution of the nodes is shown in Table 1; Figure 3 also
reports a pictorial representation of the communities).

Community ID Number of nodes Community ID Number of nodes
0 19 8 237
1 19 9 323
2 25 10 350
3 60 11 423
4 73 12 432
5 117 13 446
6 206 14 535
7 226 15 548

Table 1: Sizes of the communities detected by the Louvain method on the Facebook network.

16

Fig. 3: The Facebook network used for the experiments. Positions of the nodes were computed by using the
Fruchterman-Reingold algorithm. The colours of the nodes represent the (Louvain) community they belong
to.

Once the graph had been partitioned, communities were used to create reasonable diffusion probabilities
of the edges. In particular, edges connecting nodes in the same group were assigned probabilities chosen
uniformly at random in the range [0.6, 1]; edges connecting nodes in different communities were assigned
probabilities chosen uniformly at random in the range [0, 0.4]. This should reflect the fact that people in the
same circle of friends are more likely to share ideas, whereas nodes in distinct communities are less likely to
do that.

The political parties of the experiment were equally spaced on the political spectrum. In particular, the
candidates are (sorted from left to right) c0, c1, c2, c3, and c4, from −1 to +1. The target candidate is c2.
To test algorithm SPpagerank1.0_pos in the worst case for the target candidate, voters were placed on the
spectrum as follows:

– voters in the communities 0, 1, 2, 3, 4, 5, 6 (i.e., the smallest ones) were placed uniformly at random in
the range [−0.25,+0.25]. These voters vote for c2.

– the other voters were placed uniformly at random in the ranges [−1,−0.25] and [0.25, 1]. These voters
do not vote for c2.

Trying to impersonate the manipulator facing a real election manipulation problem, the experiment involves
a single set of random diffusion probabilities and a single random electorate. Three noises were tested: η = 0,
η = N (0; 1), and η = N (0; 0.08). δ was set to 0.1 and 0.3; the budget was set to 5% of the nodes. The test
assumed that the manipulator was under the limited-knowledge hypothesis. Since the graph is quite large,
like the simulations of the approximation algorithm, the test was repeated 300 times, guaranteeing an error
of 0.5

√
2 of the maximum ∆MoV with probability 90% on the estimation of E[∆MoV].

17

Among all the tested algorithms, the best one (considering both manipulation performances and com-
putational complexity) was tested in terms of scalability on very large graphs. The experiment is exe-
cuted on Watts-Strogatz graphs built as explained above. The tested number of nodes of the graphs are
[200, 500, 1000, 2000, 5000, 10000, 20000]. The algorithm is allowed to run for three hours for each graph size,
repeatedly generating random graphs and elections. This experiment was repeated for η = 0, η = N (0; 0.08),
η = N (0; 1).

Results. We start by comparing the different heuristics on Watts-Strogatz networks, in order to find the one
that guarantees the best performances. In Figure 4 we show the performances of a subset of some of the
heuristics that we designed. We can check (see also numerical results in Table 2) that the algorithm with

Fig. 4: Performances of the algorithms.

the best performances is SPpagerank1.0_pos, because it considers the whole network, while almost every
other ones focus on local properties of the graph. To stress this aspect, we next provide further comparisons
between PageRank based heuristics.

Let us compare SPpagerank1.0_pos with other PageRank based heuristics. In particular, we will focus
on SPpagerank1.0_manip_eq1, that somehow uses the same weights as the ones defined in the greedy al-
gorithm proposed in Section 3, i.e., considers only nodes that will vote for c∗ if manipulated and do not
already vote for c∗. One may hope that SPpagerank1.0_manip_eq1 should inherit some good properties
of the approximation algorithm and outperform SPpagerank1.0_pos. Our results (see Table 2) show that
SPpagerank1.0_manip_eq1 actually achieves better performances in the first manipulation campaigns; after
a few manipulations, SPpagerank1.0_pos achieves higher ∆MoV s. This means that if the manipulator has
a low budget, then he should use SPpagerank1.0_manip_eq1 to achieve the best results (at least consid-
ering only the heuristics analyzed so far). Moreover, the additional cost required to estimate if a voter is
manipulable does not increase the computational complexity concerning SPpagerank1.0_pos.

The fact that SPpagerank1.0_manip_eq1 performs better only for the first rounds suggests that it is “too
good” at hiring the best influencers as soon as possible, but this leads to conditions in which the manipulation
problem is harder to solve. The problem is that the algorithm is excessively eager to increase the ∆MoV
in the first campaigns and does not consider the possibility of influencing the electorate in a higher number
of campaigns. Algorithm SPpagerank1.0_manip*_pos was specifically designed to overcome this issue. In
fact, when computing the distance function (as shown in the definition of the algorithm), the weights of non-
manipulable voters consider how much the voter will get closer to c∗ (on the political axis) if influenced; this

18

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9 Round 10
Alg δ B

PR1+ 0.1 5% 0.074±0.053 0.133±0.068 0.190±0.090 0.240±0.112 0.286±0.127 0.325±0.135 0.362±0.142 0.399±0.149 0.434±0.157 0.472±0.162
10% 0.084±0.057 0.149±0.071 0.216±0.097 0.271±0.122 0.321±0.135 0.362±0.141 0.404±0.145 0.445±0.152 0.484±0.161 0.529±0.164
15% 0.091±0.059 0.161±0.073 0.233±0.104 0.291±0.130 0.344±0.143 0.387±0.144 0.433±0.148 0.476±0.156 0.519±0.167 0.570±0.168

0.3 5% 0.182±0.094 0.310±0.124 0.421±0.153 0.528±0.160 0.616±0.160 0.689±0.154 0.745±0.146 0.788±0.136 0.823±0.126 0.851±0.116
10% 0.208±0.102 0.351±0.128 0.475±0.156 0.596±0.153 0.690±0.146 0.765±0.132 0.819±0.119 0.860±0.107 0.891±0.095 0.916±0.085
15% 0.226±0.108 0.377±0.131 0.511±0.162 0.644±0.150 0.740±0.138 0.816±0.116 0.867±0.099 0.905±0.085 0.932±0.072 0.952±0.061

N2rev 0.1 5% 0.076±0.052 0.135±0.066 0.192±0.086 0.242±0.107 0.288±0.123 0.328±0.133 0.365±0.141 0.402±0.149 0.437±0.156 0.473±0.162
10% 0.083±0.056 0.148±0.070 0.211±0.092 0.266±0.116 0.314±0.132 0.356±0.141 0.397±0.148 0.437±0.156 0.475±0.163 0.516±0.168
15% 0.089±0.058 0.157±0.072 0.225±0.097 0.282±0.123 0.333±0.138 0.376±0.145 0.420±0.152 0.462±0.160 0.502±0.168 0.548±0.172

0.3 5% 0.181±0.092 0.309±0.122 0.419±0.149 0.523±0.160 0.612±0.161 0.687±0.156 0.748±0.148 0.797±0.138 0.836±0.127 0.867±0.116
10% 0.198±0.098 0.340±0.126 0.460±0.154 0.576±0.160 0.671±0.157 0.749±0.146 0.808±0.132 0.853±0.117 0.889±0.103 0.916±0.089
15% 0.212±0.103 0.362±0.129 0.489±0.159 0.614±0.159 0.711±0.151 0.789±0.134 0.845±0.116 0.887±0.099 0.920±0.084 0.944±0.069

degrev 0.1 5% 0.076±0.052 0.136±0.065 0.191±0.084 0.240±0.104 0.285±0.120 0.324±0.131 0.361±0.140 0.396±0.148 0.430±0.154 0.465±0.160
10% 0.086±0.056 0.153±0.069 0.216±0.093 0.271±0.116 0.318±0.132 0.360±0.142 0.402±0.148 0.441±0.155 0.478±0.162 0.518±0.167
15% 0.094±0.059 0.166±0.071 0.235±0.099 0.293±0.125 0.344±0.141 0.389±0.147 0.434±0.152 0.476±0.159 0.516±0.167 0.562±0.170

0.3 5% 0.179±0.091 0.303±0.121 0.411±0.146 0.512±0.158 0.601±0.161 0.677±0.158 0.739±0.150 0.790±0.140 0.830±0.129 0.863±0.118
10% 0.202±0.099 0.345±0.126 0.465±0.152 0.580±0.159 0.675±0.155 0.752±0.144 0.811±0.129 0.856±0.114 0.892±0.100 0.919±0.086
15% 0.222±0.104 0.376±0.129 0.505±0.158 0.630±0.157 0.728±0.146 0.805±0.127 0.860±0.108 0.901±0.090 0.931±0.075 0.953±0.061

PRmanip 0.1 5% 0.080±0.050 0.134±0.067 0.184±0.089 0.228±0.110 0.268±0.127 0.303±0.138 0.335±0.145 0.366±0.151 0.395±0.158 0.425±0.164
10% 0.094±0.054 0.154±0.069 0.212±0.095 0.263±0.118 0.308±0.134 0.348±0.141 0.385±0.146 0.421±0.151 0.457±0.158 0.493±0.164
15% 0.102±0.057 0.167±0.072 0.231±0.101 0.286±0.125 0.335±0.138 0.377±0.143 0.418±0.146 0.458±0.152 0.498±0.160 0.540±0.165

0.3 5% 0.183±0.094 0.306±0.126 0.414±0.153 0.512±0.165 0.596±0.168 0.665±0.164 0.720±0.156 0.763±0.147 0.797±0.137 0.824±0.127
10% 0.213±0.101 0.352±0.130 0.473±0.156 0.583±0.163 0.672±0.158 0.743±0.147 0.795±0.134 0.834±0.121 0.863±0.108 0.886±0.097
15% 0.233±0.107 0.381±0.132 0.511±0.158 0.632±0.157 0.724±0.146 0.793±0.129 0.841±0.112 0.875±0.098 0.900±0.085 0.919±0.075

Table 2: Results about the normalized ∆MoV of the algorithms under the limited-knowledge hypothesis for
20 voters, η = 0, 5 candidates. Each cell shows the average performance and the standard deviation. PR1+,
N2rev, degrev, and PRmanip respectively stand for SPpagerank1.0_pos, SPneig2_rev, SPoutdeg_rev, and
SPpagerank1.0_manip_eq1.

property should give the algorithm the capability of foreseeing the manipulated electorate at the following
manipulation campaign. Of course, these are only intuitive conjectures. However, since the algorithms are
based on heuristics, there is no way to formally prove the efficacy of these intuitions. The comparison of the
algorithms SPpagerank1.0_pos, SPpagerank1.0_manip_eq1, and SPpagerank1.0_manip*_pos is shown in
Figure 5. Results show that SPpagerank1.0_manip*_pos performs better than SPpagerank1.0_manip_eq1.
Anyway, it does not outperform SPpagerank1.0_pos. Since SPpagerank1.0_manip*_pos is computationally
more expensive, we conclude that the best algorithm using fast heuristics in the perfectly single-peaked
scenario is SPpagerank1.0_pos.

We next compare the best heuristic method and the approximation algorithm. Since the approximation
algorithm is computationally heavy (see below), the tests only use the following subset of parameters: δ ∈
{0.1, 0.3} and B/|V | ∈ {5%, 10%}. Moreover, in the 75% of the considered instances the approximation
algorithm is guaranteed to achieve a constant approximation (i.e., in these instances no candidate is more
advantaged than the target candidate by messages in favour of the latter). Performances are graphically
shown in Figure 6 (see also Table 3).

19

Fig. 5: Performances of SPpagerank1.0_pos against SPpagerank1.0_manip_eq1 and SPpager-
ank1.0_manip*_pos with 20 voters, η = 0, and 5 candidates. Each plot shows both the ∆MoV and
the MoV .

20

Fig. 6: Performances of SPpagerank1.0_pos and of the approximation algorithm.

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9 Round 10
Alg δ B

APX 0.1 5% 0.048±0.043 0.076±0.053 0.101±0.059 0.129±0.068 0.159±0.078 0.189±0.091 0.217±0.105 0.247±0.116 0.279±0.124 0.308±0.135
10% 0.051±0.058 0.088±0.063 0.123±0.065 0.163±0.081 0.201±0.094 0.245±0.102 0.282±0.118 0.321±0.129 0.361±0.141 0.402±0.151

0.3 5% 0.116±0.050 0.218±0.084 0.315±0.111 0.408±0.133 0.495±0.146 0.573±0.151 0.638±0.151 0.692±0.145 0.735±0.138 0.770±0.131
10% 0.155±0.058 0.283±0.099 0.403±0.127 0.522±0.143 0.628±0.141 0.714±0.131 0.777±0.119 0.821±0.107 0.852±0.097 0.875±0.090

PR1+ 0.1 5% 0.036±0.047 0.073±0.057 0.111±0.060 0.149±0.071 0.186±0.084 0.223±0.096 0.257±0.107 0.293±0.116 0.328±0.124 0.364±0.133
10% 0.040±0.051 0.084±0.058 0.127±0.063 0.172±0.075 0.214±0.092 0.255±0.104 0.295±0.116 0.337±0.125 0.378±0.133 0.420±0.142

0.3 5% 0.108±0.055 0.215±0.092 0.321±0.117 0.429±0.136 0.528±0.144 0.612±0.145 0.681±0.140 0.737±0.133 0.782±0.124 0.819±0.114
10% 0.124±0.061 0.250±0.103 0.374±0.126 0.497±0.139 0.607±0.139 0.698±0.133 0.768±0.123 0.822±0.112 0.864±0.100 0.895±0.089

Table 3: Results about the normalized ∆MoV of the algorithms under the limited-knowledge hypothesis for
20 voters, η = 0, 5 candidates. Each cell shows the average performance and the standard deviation. PR1+

and APX respectively stand for SPpagerank1.0_pos and Approximation algorithm.

Results show that the approximation algorithm actually performs better than SPpagerank1.0_pos only in
the initial campaigns. For a higher number of rounds, SPpagerank1.0_pos performs better, and on average,
after ten campaigns, it gets approximately more votes for the target candidate (see Table 4 for a more
detailed comparison).

21

Round 1 R. 2 R. 3 R. 4 R. 5 R. 6 R. 7 R. 8 R. 9 R. 10
B δ

5% 0.1 # (APX > PR) % 62 % 52 % 39 % 25 % 21 % 19 % 19 % 16 % 16 % 18 %
max (APX − PR) % 10 % 20 % 11 % 13 % 11 % 13 % 13 % 12 % 16 % 18 %
mean (APX − PR) % 1 % 0 % 0 % -2 % -2 % -3 % -3 % -4 % -4 % -5 %

0.3 # (APX > PR) % 54 % 53 % 43 % 29 % 19 % 12 % 9 % 8 % 6 % 6 %
max (APX − PR) % 15 % 16 % 15 % 9 % 7 % 6 % 7 % 7 % 8 % 9 %
mean (APX − PR) % 0 % 0 % 0 % -2 % -3 % -3 % -4 % -4 % -4 % -4 %

10% 0.1 # (APX > PR) % 57 % 58 % 51 % 45 % 43 % 44 % 45 % 42 % 45 % 46 %
max (APX − PR) % 15 % 13 % 11 % 14 % 9 % 19 % 18 % 21 % 24 % 26 %
mean (APX − PR) % 1 % 0 % 0 % 0 % -1 % -1 % -1 % -1 % -1 % -1 %

0.3 # (APX > PR) % 83 % 84 % 80 % 77 % 74 % 71 % 64 % 52 % 36 % 25 %
max (APX − PR) % 23 % 19 % 19 % 20 % 15 % 18 % 16 % 12 % 11 % 10 %
mean (APX − PR) % 3 % 3 % 2 % 2 % 2 % 1 % 0 % 0 % -1 % -2 %

Table 4: Detailed comparison of the approximation algorithm (named APX) and SPpagerank1.0_pos (named
PR). The experiments are the same as in Table 3. The first row of the table shows the number of times
the approximation algorithm achieves better (normalized) ∆MoV than SPpagerank1.0_pos. The second and
third rows show the maximum and average difference of the normalized ∆MoV between the approximation
algorithm and the heuristic considering the 775 elections they were tested on.

Results in Figure 7 (and in Table 5) show the performances of algorithm SPpagerank1.0_pos in nearly
single-peaked scenarios. Note that the blurred views of the voters make the initial MoVs of the simulations
different from the initial MoVs in the perfectly single-peaked cases. For this reason, comparisons based on
MoV cannot be made. While it may appear that blurred views increase the performances, this only depends
on the initial conditions of the simulated scenarios being different. However, this only happens when the noise
has low variance: with η = N (0; 1), performances are definitely worse than the single-peaked case (even if
the initial MoV is higher). Nevertheless, even with η = N (0; 1) and η = N (0; 0.08) that are very strong
noises, performances are not that much worse than the ones in single-peaked scenarios. For this reason, our
heuristics has been tested also with specific noises not having the peak of the probability distribution function
in 0, namely η2 = 1

2N (−0.7; 1) + 1
2N (+0.7; 1). The corresponding plots in Figure 7 show that performances

slightly drop when the peak of the distribution of the noise is not 0.

22

Fig. 7: Performances of SPpagerank1.0_pos for η = N (0; 0.08) and η = N (0; 1) and η = 1
2N (−0.7; 1) +

1
2N (+0.7; 1).

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9 Round 10
η δ B

0 0.1 5% 0.074±0.053 0.133±0.068 0.190±0.090 0.240±0.112 0.286±0.127 0.325±0.135 0.362±0.142 0.399±0.149 0.434±0.157 0.472±0.162
10% 0.084±0.057 0.149±0.071 0.216±0.097 0.271±0.122 0.321±0.135 0.362±0.141 0.404±0.145 0.445±0.152 0.484±0.161 0.529±0.164
15% 0.091±0.059 0.161±0.073 0.233±0.104 0.291±0.130 0.344±0.143 0.387±0.144 0.433±0.148 0.476±0.156 0.519±0.167 0.570±0.168

0.3 5% 0.182±0.094 0.310±0.124 0.421±0.153 0.528±0.160 0.616±0.160 0.689±0.154 0.745±0.146 0.788±0.136 0.823±0.126 0.851±0.116
10% 0.208±0.102 0.351±0.128 0.475±0.156 0.596±0.153 0.690±0.146 0.765±0.132 0.819±0.119 0.860±0.107 0.891±0.095 0.916±0.085
15% 0.226±0.108 0.377±0.131 0.511±0.162 0.644±0.150 0.740±0.138 0.816±0.116 0.867±0.099 0.905±0.085 0.932±0.072 0.952±0.061

N (0; 1) 0.1 5% 0.051±0.058 0.099±0.081 0.146±0.096 0.195±0.108 0.246±0.118 0.292±0.127 0.335±0.137 0.375±0.143 0.417±0.146 0.454±0.149
10% 0.056±0.062 0.109±0.085 0.160±0.101 0.215±0.112 0.270±0.120 0.319±0.129 0.365±0.136 0.407±0.140 0.452±0.140 0.492±0.142
15% 0.059±0.064 0.114±0.088 0.168±0.104 0.227±0.114 0.285±0.121 0.335±0.129 0.382±0.136 0.426±0.139 0.475±0.137 0.515±0.139

0.3 5% 0.145±0.090 0.286±0.121 0.414±0.138 0.521±0.145 0.608±0.145 0.679±0.139 0.732±0.132 0.771±0.125 0.799±0.118 0.821±0.112
10% 0.160±0.096 0.314±0.124 0.451±0.133 0.565±0.134 0.654±0.131 0.727±0.120 0.776±0.112 0.809±0.106 0.832±0.101 0.850±0.096
15% 0.167±0.099 0.331±0.125 0.473±0.131 0.591±0.129 0.682±0.124 0.754±0.110 0.801±0.103 0.830±0.098 0.851±0.094 0.866±0.090

N (0; 0.08) 0.1 5% 0.055±0.056 0.118±0.074 0.173±0.089 0.227±0.104 0.282±0.114 0.334±0.124 0.380±0.132 0.425±0.140 0.468±0.146 0.507±0.149
10% 0.061±0.060 0.131±0.079 0.191±0.095 0.250±0.109 0.309±0.115 0.364±0.125 0.412±0.132 0.460±0.138 0.505±0.143 0.546±0.144
15% 0.064±0.062 0.139±0.082 0.201±0.098 0.264±0.112 0.325±0.116 0.382±0.126 0.432±0.132 0.482±0.137 0.528±0.142 0.570±0.142

0.3 5% 0.172±0.085 0.332±0.118 0.463±0.138 0.571±0.145 0.654±0.140 0.719±0.131 0.765±0.122 0.798±0.114 0.823±0.106 0.842±0.100
10% 0.192±0.092 0.363±0.120 0.502±0.135 0.613±0.138 0.697±0.128 0.760±0.115 0.802±0.105 0.830±0.098 0.850±0.093 0.865±0.088
15% 0.202±0.095 0.381±0.120 0.525±0.135 0.639±0.135 0.724±0.121 0.786±0.105 0.824±0.095 0.849±0.089 0.867±0.084 0.880±0.081

Table 5: Results about the normalized ∆MoV of algorithm SPpagerank1.0_pos under the limited-knowledge
hypothesis for 20 voters, 5 candidates, for single-peaked and nearly-single-peaked electorates. Each cell shows
the average performance and the standard deviation.

Until now, the shown experiments only involved electorates made up of 20 voters. We now analyze how
performances change when testing electorates of 20, 50, and 100 voters. The algorithms were only tested with
a single, medium budget: 10% of the electorate. Moreover, the target candidate was fixed to the right-most
one on the political spectrum. Figure 8 illustrates the results. Note that performances increase when the
number of voters increases.

We next show that similar results hold also in the case of noisy single-peaked preferences. Moreover,
related experiments address an important issue arising when introducing noise. As visible in Figure 7, noisy
scenarios are characterized by higher initial MoVs. Trying to understand the reasons for this effect, results
show that it partially depends on randomness; however, a simple way to reduce the effect is to change the

23

Fig. 8: Performances of SPpagerank1.0_pos in perfectly single-peaked scenarios.

target candidate. Remember that the previously shown experiments randomly select the target candidate.
Instead, the following experiments use the right-most candidate as the target. In this way, the initial MoV
does not change too much, and noisy and clear scenarios are more comparable, too. This partially solves the
problem highlighted in the results of Figure 7. Figure 9 displays the tests in this new scenario; it is clear
that the initial MoV in noisy electorates is almost identical to the one in single-peaked electorates, with
a deviation of only one vote on average in the worst case for 20-voters electorates. The figure also shows
the performances on larger graphs. In general, by changing the target candidate as described, performances
with and without noise are much more divergent, proving that the manipulator struggles to increase the
margin of victory in very noisy settings. This confirms that the election is easier to manipulate in perfectly
single-peaked electorates (Table 6 shows numerical average performances and standard deviations for such
experiments).

24

Fig. 9: Performances of the algorithms SPpagerank1.0_pos in nearly-single-peaked scenarios. The plots show
both the normalized ∆MoV and the MoV . The target candidate of the simulated elections is the right-most
one on the political spectrum. 25

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9 Round 10
|V | η δ B

20 0 0.1 10% 0.049±0.055 0.109±0.062 0.158±0.059 0.198±0.067 0.245±0.094 0.296±0.102 0.353±0.110 0.409±0.118 0.458±0.127 0.505±0.139
0.3 10% 0.149±0.057 0.294±0.096 0.451±0.124 0.583±0.131 0.692±0.128 0.773±0.120 0.832±0.110 0.875±0.098 0.907±0.085 0.932±0.073

N (0; 0.08) 0.1 10% 0.044±0.069 0.097±0.083 0.153±0.103 0.205±0.104 0.257±0.105 0.310±0.110 0.361±0.114 0.411±0.122 0.463±0.135 0.510±0.138
0.3 10% 0.156±0.098 0.315±0.104 0.466±0.127 0.597±0.129 0.696±0.122 0.759±0.114 0.801±0.106 0.831±0.099 0.852±0.093 0.869±0.088

N (0; 1) 0.1 10% 0.044±0.056 0.090±0.078 0.127±0.086 0.165±0.090 0.206±0.094 0.250±0.098 0.287±0.103 0.324±0.108 0.356±0.111 0.388±0.116
0.3 10% 0.125±0.077 0.248±0.093 0.352±0.106 0.441±0.117 0.511±0.125 0.555±0.127 0.586±0.129 0.606±0.130 0.621±0.130 0.632±0.130

50 0 0.1 10% 0.064±0.042 0.131±0.049 0.177±0.058 0.232±0.071 0.283±0.086 0.330±0.096 0.393±0.103 0.454±0.118 0.509±0.133 0.557±0.145
0.3 10% 0.171±0.058 0.327±0.092 0.501±0.131 0.634±0.135 0.747±0.117 0.825±0.101 0.878±0.086 0.916±0.072 0.942±0.058 0.961±0.046

N (0; 0.08) 0.1 10% 0.055±0.039 0.106±0.054 0.165±0.063 0.220±0.070 0.270±0.080 0.323±0.087 0.377±0.091 0.428±0.099 0.478±0.107 0.525±0.114
0.3 10% 0.167±0.061 0.325±0.085 0.474±0.106 0.605±0.110 0.702±0.103 0.767±0.093 0.809±0.084 0.839±0.077 0.861±0.071 0.877±0.066

N (0; 1) 0.1 10% 0.046±0.038 0.092±0.051 0.137±0.059 0.179±0.067 0.221±0.072 0.262±0.076 0.299±0.078 0.337±0.082 0.373±0.085 0.405±0.088
0.3 10% 0.137±0.057 0.261±0.073 0.369±0.083 0.457±0.089 0.526±0.094 0.575±0.095 0.608±0.094 0.631±0.094 0.647±0.094 0.658±0.094

100 0 0.1 10% 0.059±0.031 0.136±0.046 0.192±0.053 0.253±0.069 0.309±0.088 0.360±0.101 0.422±0.110 0.481±0.122 0.534±0.138 0.583±0.147
0.3 10% 0.188±0.052 0.355±0.098 0.525±0.136 0.668±0.132 0.780±0.107 0.856±0.082 0.904±0.066 0.936±0.053 0.957±0.041 0.971±0.031

N (0; 0.08) 0.1 10% 0.069±0.032 0.132±0.040 0.194±0.055 0.254±0.063 0.311±0.074 0.370±0.083 0.427±0.090 0.481±0.098 0.531±0.106 0.578±0.112
0.3 10% 0.194±0.055 0.372±0.082 0.528±0.102 0.655±0.106 0.751±0.089 0.814±0.072 0.853±0.061 0.880±0.054 0.898±0.049 0.912±0.045

N (0; 1) 0.1 10% 0.051±0.027 0.103±0.034 0.151±0.038 0.196±0.041 0.237±0.047 0.276±0.053 0.314±0.057 0.351±0.063 0.386±0.065 0.420±0.066
0.3 10% 0.150±0.034 0.273±0.052 0.381±0.063 0.473±0.068 0.542±0.071 0.591±0.071 0.623±0.071 0.643±0.071 0.657±0.071 0.668±0.071

Table 6: Results about the normalized ∆MoV of algorithm SPpagerank1.0_pos under the limited-knowledge
hypothesis for 20, 50, and 100 voters, 5 candidates, for single-peaked and nearly-single-peaked electorates.
Each cell shows the average performance and the standard deviation. The target candidate of the simulated
elections is the right-most one on the political spectrum.

By analyzing the variances of the performances, we can see that standard deviations decrease when the
number of voters increases, especially in noisy environments. This means that the variability of the solution
tends to decrease compared to the size of the electorate.

Fig. 10: Performances of SPpagerank1.0_pos for η = 0 and p ∈ {0.25, 0.75}.

Next we evaluate whether results showed above are robust against different graphs. We first present the
experiments that were performed on preferential attachment graphs. Tests were performed with η = 0, |V | ∈
{20, 50, 100}, δ ∈ {0.1, 0.3}. The target candidate is the right-most one. Since results for different sizes of the
electorates were almost identical, only the ones for |V | = 50 are displayed. Figure 10 displays the normalized
∆MoV and the MoV . Observe that the manipulator benefits from the rich-get-richer phenomenon.

26

Finally we show how our heuristics performs on the real Facebook network. The results of the experiment
are shown in Figure 11. Plots only show the margin of victory; ∆MoV can be plotted by simply shifting
the curve up, such that the value before the first manipulation campaign is 0. Note that candidates are in

Fig. 11: Average margin of victory for the test on the Facebook network.

{−1,−0.5, 0, 0.5, 1}, and voters are initially placed such that c2 (at position 0) loses the election; in fact,
his margin of victory is negative. Nevertheless, in single-peaked electorates, the algorithm only needs two
campaigns (when δ = 0.1) or one campaign (when δ = 0.3) to make c2 win the election. Moreover, when voters
are easily manipulable, the algorithm reaches unanimity in a few campaigns. Even in nearly-single-peaked
electorates, the manipulator can make c2 win, although performances are worse.

Visualizing communities as in Figure 3 allows us to better understand how the algorithm works by
analyzing the influencers it chooses for the manipulation.

27

Fig. 12: Facebook network. Evolution of the electorate after the first two manipulation campaigns.

Remember that nodes in the same community are tightly connected, while voters in different communities
have lower chances of sharing information with each other. Hence, the algorithm should spend the budget
to choose nodes in different communities to reach as many nodes as possible. However, since this is an
election manipulation problem and not an influence maximization one, the algorithm searches for focused
influence, discarding nodes that already vote for the target c2 as they do not impact the margin of victory.
All these considerations are actually internalized by algorithm SPpagerank1.0_pos, as revealed in Figure
12. The plots show the evolution of the electorate and the influencers chosen by the algorithm under the

28

following conditions: η = 0, δ = 0.3, B/|V | = 5%. Data concerns a single execution, as it would be in a
real scenario: no averages were performed. The first row of the figure shows the Louvain communities as a
reference and the initial state of the electorate (voters are coloured according to their political position on
the spectrum; see the legend in the plot). It is clear that only a small subset of voters supports c2, namely
the communities on the right and some communities in the middle of the plot that are not clearly visible.
The second row shows the influencers chosen by the algorithm and the state of the electorate after the first
manipulation campaign. Interestingly, the influencers (represented as red dots) are distributed all over the
communities to reach as many nodes as possible (represented as haloed, blue shadows). However, there is no
influencer in the right part of the plot since such communities already supported c2: choosing influencers in
these communities would be a pointless waste of budget. The state of the electorate is represented by lighter
colours which means that many voters changed their minds to support c2. The same considerations apply to
the second manipulation campaign (third row of the plot), after which much more nodes vote for the target
candidate.

We finally evaluate the timing performances (numerical results are showed in Table 7).

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9 Round 10
Alg

PR1+ 0.00242 s 0.00235 s 0.00228 s 0.00221 s 0.00214 s 0.00207 s 0.00202 s 0.00197 s 0.00194 s 0.00192 s
±8.52e-05 ±8.35e-05 ±8.26e-05 ±8.15e-05 ±7.81e-05 ±7.78e-05 ±7.81e-05 ±7.28e-05 ±6.69e-05 ±6e-05

APX 7.51 s 4.09 s 4.6 s 3.65 s 2.79 s 1.81 s 1.26 s 0.89 s 0.759 s 0.693 s
±5.45 ±2.37 ±3.02 ±2.5 ±1.51 ±0.886 ±0.732 ±0.672 ±0.694 ±0.715

Table 7: Simulation times of the fast heuristics and the approximation algorithms for 20 voters, η = 0, 5
candidates. Each cell shows the average execution time and the standard deviation in seconds. PR1+ and
APX respectively stand for SPpagerank1.0_pos and Approximation algorithm.

Execution times show that the approximation algorithm is thousands of times slower than the fast
heuristic.

Finally, we tested the scalability of SPpagerank1.0_pos on networks up to 20000 nodes as described above
(the numerical results of this experiment are shown in Table 8).

η |V | = 200 500 1000 2000 5000 10000 20000

0 14743 7558 3842 1613 210 59 15
N (0; 0.08) 13204 6848 3495 1490 193 56 14
N (0; 1.0) 12693 6699 3443 1473 190 55 15

Table 8: Number of simulations of algorithm SPpagerank1.0_pos running on electorates of increasing sizes
for three hours.

Interestingly, on a common PC, the algorithm can be executed 15 times in three hours on graphs of 20000
nodes. Since simulations require additional code to prepare the electoral setting and include 10 manipulation
campaigns, the number of tests runnable in three hours is even higher. This means that a manipulator would
not face any problem executing the proposed algorithm on large graphs.

The plot in Figure 13 analyzes the same results of Table 8 from a different perspective: it shows the
average values of the total execution times, the execution times to compute the scores z(v) of the nodes v,
and the execution times to compute the weighted PageRank based on such scores. The plot considers only

29

the first manipulation campaign since related execution times are surely not altered, unless unanimity in
favour of the target candidate is reached (and thus the simulation is stopped).

Fig. 13: Execution times of the algorithms SPpagerank1.0_pos in perfectly-single-peaked scenarios. The plot
shows the average execution times to run the algorithm, compute the weights z(·), and compute PageRank
values. The dashed line confirms that execution times grow according to a power law.

We can see that the cost of the algorithm is basically the one of PageRank, as the cost to compute z(·)
is negligible. We know that search engines use it constantly on graphs of millions of nodes. Therefore, the
algorithm is surely runnable on real problem instances involving millions of voters. The plot intentionally
uses logarithmic scales for both the x-axis and the y-axis. In fact, it is clear that the execution times of the
PageRank algorithm approximately follow a straight line proving that execution times grow according to a
power law.

6 Conclusion

In this work we considered the problem of election manipulation through social influence when agents have
single-peaked or nearly single-peaked preferences. For this purpose, we first propose a new manipulation
model that intrinsically generates single-peaked preferences of the voters. We provided an algorithm with
constant approximation guarantees whenever there is no agent that is more advantaged than the target
candidate by a campaign in favour of the latter. We also provided an heuristics that has been proved to
perform very well in simulations and to be computable very efficiently. These results highlight the huge risk
of election manipulation in the single-peaked setting.

It would be desirable to further extend and deepen our analysis. Moreover, it would be interesting to
design efficient and effective counter-measures against manipulation. Our analysis, by highlighting those
aspects that simplify or complicate the manipulation, may be an useful starting point in this direction.

30

References

1. Abouei Mehrizi, M., Corò, F., Cruciani, E., D’Angelo, G.: Election control through social influence with voters’
uncertainty. Journal of Combinatorial Optimization 44(1), 635–669 (2022)

2. Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. Journal of economic perspectives
31(2), 211–236 (2017)

3. Anshelevich, E., Bhardwaj, O., Elkind, E., Postl, J., Skowron, P.: Approximating optimal social choice under
metric preferences. Artificial Intelligence 264, 27–51 (2018)

4. Auletta, V., Caragiannis, I., Ferraioli, D., Galdi, C., Persiano, G.: Minority becomes majority in social networks.
In: WINE. pp. 74–88 (2015)

5. Auletta, V., Caragiannis, I., Ferraioli, D., Galdi, C., Persiano, G.: Information retention in heterogeneous majority
dynamics. In: WINE. pp. 30–43 (2017)

6. Auletta, V., Caragiannis, I., Ferraioli, D., Galdi, C., Persiano, G.: Robustness in discrete preference games. In:
AAMAS. pp. 1314–1322 (2017)

7. Auletta, V., Ferraioli, D., Fionda, V., Greco, G.: Maximizing the spread of an opinion when Tertium Datur Est.
In: AAMAS. pp. 1207–1215 (2019)

8. Auletta, V., Ferraioli, D., Greco, G.: Reasoning about consensus when opinions diffuse through majority dynamics.
In: IJCAI. pp. 49–55 (2018)

9. Auletta, V., Ferraioli, D., Greco, G.: On the effectiveness of social proof recommendations in markets with
multiple products. In: ECAI. pp. 19–26 (2020)

10. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. science 286(5439), 509–512 (1999)
11. Bartholdi, J.J., Tovey, C.A., Trick, M.A.: The computational difficulty of manipulating an election. Social Choice

and Welfare 6, 227–241 (1989)
12. Bartholdi III, J.J., Orlin, J.B.: Single transferable vote resists strategic voting. Social Choice and Welfare 8(4),

341–354 (1991)
13. Bartholdi III, J.J., Tovey, C.A., Trick, M.A.: How hard is it to control an election? Mathematical and Computer

Modelling 16(8-9), 27–40 (1992)
14. Borgs, C., Brautbar, M., Chayes, J., Lucier, B.: Maximizing social influence in nearly optimal time. In: SODA.

pp. 946–957 (2014)
15. Brandt, F., Brill, M., Hemaspaandra, E., Hemaspaandra, L.A.: Bypassing combinatorial protections: Polynomial-

time algorithms for single-peaked electorates. Journal of Artificial Intelligence Research 53, 439–496 (2015)
16. Bredereck, R., Elkind, E.: Manipulating opinion diffusion in social networks. In: Proceedings of the International

Joint Conference on Artificial Intelligence (IJCAI). pp. 894–900 (2017)
17. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Computer networks and ISDN

systems 30(1-7), 107–117 (1998)
18. Bruno, M., Lambiotte, R., Saracco, F.: Brexit and bots: characterizing the behaviour of automated accounts on

twitter during the uk election. EPJ Data Science 11(1), 17 (2022)
19. Castiglioni, M., Ferraioli, D., Gatti, N., Landriani, G.: Election manipulation on social networks: seeding, edge

removal, edge addition. Journal of Artificial Intelligence Research 71, 1049–1090 (2021)
20. Corò, F., Cruciani, E., D’Angelo, G., Ponziani, S.: Exploiting social influence to control elections based on

positional scoring rules. Information and Computation 289, 104940 (2022)
21. Erdélyi, G., Lackner, M., Pfandler, A.: Computational aspects of nearly single-peaked electorates. Journal of

Artificial Intelligence Research 58, 297–337 (2017)
22. Faliszewski, P., Gonen, R., Kouteckỳ, M., Talmon, N.: Opinion diffusion and campaigning on society graphs.

Journal of Logic and Computation 32(6), 1162–1194 (2022)
23. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: How hard is bribery in elections? Journal of artificial

intelligence research 35, 485–532 (2009)
24. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: The complexity of manipulative attacks in nearly single-

peaked electorates. In: TARK. pp. 228–237 (2011)
25. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: The shield that never was: Societies with

single-peaked preferences are more open to manipulation and control. In: TARK. pp. 118–127 (2009)
26. Ferrara, E.: Disinformation and social bot operations in the run up to the 2017 french presidential election. First

Monday (2017)
27. Giglietto, F., Iannelli, L., Rossi, L., Valeriani, A., Righetti, N., Carabini, F., Marino, G., Usai, S., Zurovac, E.:

Mapping Italian news media political coverage in the lead-up to 2018 general election. Available at SSRN 3179930
0 (2018)

31

28. Habib, M., McDiarmid, C., Ramirez-Alfonsin, J., Reed, B.: Probabilistic methods for algorithmic discrete math-
ematics, vol. 16. Springer Science & Business Media (1998)

29. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: KDD. pp.
137–146 (2003)

30. Leskovec, J., Mcauley, J.: Learning to discover social circles in ego networks. Advances in neural information
processing systems 25 (2012)

31. Leskovec, J., Sosič, R.: Snap: A general-purpose network analysis and graph-mining library. ACM Transactions
on Intelligent Systems and Technology (TIST) 8(1), 1–20 (2016)

32. Matsa, K.E., Shearer, E.: News use across social media platforms 2018 (2018)
33. Sina, S., Hazon, N., Hassidim, A., Kraus, S.: Adapting the social network to affect elections. In: AAMAS. pp.

705–713 (2015)
34. Walsh, T.: Uncertainty in preference elicitation and aggregation. In: AAAI. p. 3–8 (2007)
35. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)
36. Wilder, B., Vorobeychik, Y.: Controlling elections through social influence. In: AAMAS. pp. 265–273 (2018)
37. Wu, J., Estornell, A., Kong, L., Vorobeychik, Y.: Manipulating elections by changing voter perceptions. In: IJCAI

(2022)

32

	Election Manipulation in Social Networks with Single-Peaked Agents

