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Abstract. Although text-to-speech (TTS) systems have significantly
improved, most TTS systems still have limitations in synthesizing speech
with appropriate phrasing. For natural speech synthesis, it is impor-
tant to synthesize the speech with a phrasing structure that groups
words into phrases based on semantic information. In this paper, we
propose PuaseSpeech, a speech synthesis system with a pre-trained lan-
guage model and pause-based prosody modeling. First, we introduce a
phrasing structure encoder that utilizes a context representation from
the pre-trained language model. In the phrasing structure encoder, we
extract a speaker-dependent syntactic representation from the context
representation and then predict a pause sequence that separates the in-
put text into phrases. Furthermore, we introduce a pause-based word
encoder to model word-level prosody based on pause sequence. Experi-
mental results show PauseSpeech outperforms previous models in terms
of naturalness. Furthermore, in terms of objective evaluations, we can
observe that our proposed methods help the model decrease the distance
between ground-truth and synthesized speech. Audio samples are avail-
able at https://jisang93.github.io/pausespeech-demo/.

Keywords: Text-to-speech · Pre-trained language model · Pause-based
prosody modeling.

1 Introduction

Text-to-speech (TTS) systems aim to generate high-quality and natural speech
from a text. Recently, advancements in generative models [9,33] have led to rapid
progress in TTS systems to model both linguistic features and variations (e.g.,
speaker information, prosody, and background noise). Although TTS systems
have significantly improved, most TTS systems face limitations in synthesizing
speech with proper phrasing structure that groups word into phrases and sepa-
rates the input text with intentional pauses [16]. These limitations usually lead
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Fig. 1. Comparison between the Mel-spectrogram of two different speakers and the
same text. The corresponding text is “Alex Smith has been a massive influence on my
career as well”. Red boxes represent respiratory pause positions. White lines denote
the F0 contour of each utterance.

to a disfluent speech when the TTS systems generate an utterance comprising
multiple sentences or a long sentence. The disfluent speech conveys too much
information at once due to the wrong phrasing structure, resulting in difficult
understanding and perceiving it as unnatural by human listeners. Therefore, it
is important to synthesize speech with appropriate phrasing based on semantic
and syntactic information to enhance comprehensibility [3] and recall [6,16].

Previous studies [10,12,26,42] have considered using context information from
a pre-trained language model (PLM) [4,22] to enhance the naturalness of gener-
ated speech. They have leveraged PLM to improve prosody (e.g., pitch, accent,
and prominence) that is related to context information. Additionally, [1,7,43]
have predicted pauses (also known as phrase breaks) based on extracted seman-
tic meanings to enhance the naturalness and comprehensibility of synthesized
speech. However, these systems have some limitations: 1) They do not consider
that pauses vary according to the speaker. As illustrated in Figure 1, the posi-
tion and duration of each pause vary from person to person even if it is the same
text information. 2) They do not reflect the prosody of surrounding pauses. As
patterns of intonation surrounding pauses are slightly different, the systems have
to consider the variations surrounding pauses.

To address the aforementioned problems, we propose PauseSpeech, a speech
synthesis system utilizing the PLM and pause-based prosody modeling. First, we
introduce a phrasing structure encoder using a context representation from the
PLM. The phrasing structure encoder encodes the context representation into a
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speaker-dependent syntactic representation. In the phrasing structure encoder,
we predict speaker-dependent pauses using both the syntactic representation and
speaker information. Moreover, we propose pause-based prosody modeling to
consider the prosody of surrounding pauses in a pause-based word encoder. The
pause-based word encoder takes the syntactic representation, a segment-level
representation, and word position embedding to extract the pause-based prosody.
Experimental results show that PauseSpeech outperforms previous models in
terms of naturalness. Furthermore, we can observe in the objective evaluations
that our proposed methods help the model decrease the distance between the
ground-truth and synthesized speech audio.

2 Related Works

2.1 Text-to-Speech

Recently, neural TTS systems have significantly improved, resulting in high per-
formance. For speech audio generation, TTS systems predict a pre-defined acous-
tic feature (e.g., Mel-spectrogram) using an acoustic model [31,40], which is
converted into a waveform by a vocoder [15,17], or directly generate a waveform
[5,14,20]. To predict the pre-defined acoustic features, there are two types of
acoustic models: autoregressive (AR) and non-autoregressive (NAR)-TTS sys-
tems. AR-TTS systems [37,40] generate each frame of the Mel-spectrogram con-
ditioned on previous frames to model long-term dependency. However, they suf-
fer from slow inference speed and robustness errors, such as word skipping and
repetition. NAR-TTS systems [13,31,19] have been proposed to handle these
problems. They map the text sequence into the Mel-spectrogram using align-
ment between the text and Mel-frames sequence. These systems can generate
speech faster and more robustly than AR-TTS systems.

For diverse and expressive speech, TTS systems have adopted auxiliary vari-
ation modeling. They use explicit features (e.g., pitch, energy) [18,28,35,21] or
implicit features [29,30] to model prosody. Although these prosody modeling can
improve diversity and expressiveness, they still have limitations in synthesizing
speech with appropriate phrasing structure considering both semantic and syn-
tactic information. In this paper, we use the contextual information from PLM
to learn the proper phrasing structure from the input text sequence.

2.2 Phrase Break Prediction

Previous TTS systems [1,7,16,38,43] have considered predicting phrase breaks
that can be defined as pauses inserted between phrases to learn proper phrasing
structure. Generally, there are two types of pauses: a punctuation-based pause
and respiratory pause. The punctuation-based pause is usually generated at a
punctuation mark in the text sequence. However, the respiratory pause does not
have instructions such as the punctuation mark. Therefore, several TTS systems
[7,16] have predicted the respiratory pause and inserted it into space between
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Fig. 2. (a) Overall architecture of PauseSpeech. The dashed line represents that the
operation only utilizes during training. (b) In a phrasing structure encoder, we convert
subword-level context representation from PLM into word-level context representa-
tion with word-level average pooling. A syntactic encoder takes both the word-level
context representation and speaker embedding to extract a speaker-dependent syntac-
tic representation. (c) A pause predictor takes the syntactic representation to predict
speaker-dependent pauses.

words. However, generated pauses are still inappropriate due to retrieving the
average style in the training dataset.

Several pauses prediction-based TTS systems [1,7,43] have used contextual
representation from PLM. Since the contextual representation contains semantic
and syntactic information, the extracted contextual representation helps the
systems predict the proper positions of the respiratory pause. Inspired by the
previous studies, we adopt the PLM to predict the respiratory pause and utilize
it to predict speaker-dependent pauses. Furthermore, we classify the respiratory
pauses into four categories following [6,43].

3 PauseSpeech

In this paper, we propose a TTS system that uses a pre-trained language model
(PLM) and pause-based prosody modeling for natural and expressive speech.
We propose a phrasing structure encoder using contextual representation from
the PLM to extract syntactic representation and predict pauses. Moreover, we
introduce pause-based prosody modeling in a pause-based word encoder to con-
sider explicit variations surrounding pauses. Furthermore, we adopt adversarial
learning to enhance the quality of the generated Mel-spectrogram. We describe
the details of PauseSpeech in the following subsection.
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3.1 Phrasing Structure Encoder

We introduce the phrasing structure encoder that encodes the context repre-
sentation and speaker information into speaker-dependent syntactic representa-
tion. The phrasing structure encoder comprises a pre-net, syntactic encoder, and
pause predictor as illustrated in Figure 2 (b).

Syntactic encoder We use BERT [4] as the PLM to extract context repre-
sentation. It is well known that the context representation from BERT contains
syntactic information and knowledge of semantic roles [24,34]. In particular,
previous studies [11,23] demonstrated that the context representation from the
middle layer of BERT contained more prominent syntactic and semantic in-
formation than other layers. Therefore, we utilize the syntactic and semantic
information by extracting the self-supervised context representation from the
input text sequence.

The syntactic encoder is designed to extract the speaker-dependent syntac-
tic representation. We supposed that the human speaker’s text cognition varies
from person to person, resulting in varying the position and duration of the
respiratory pause in human speech. Therefore, the syntactic encoder takes both
the context representation and speaker embedding to obtain the syntactic rep-
resentation that contains syntactic information based on the target speaker’s
cognition. As BERT extracts the input text sequence into subword-level con-
textual representation, we process the context representation with word-level
average pooling [30,44] to convert the representation into a word-level sequence.

Pause predictor We define categories of the respiratory pause according to
the pause duration to classify the pause as an intentional/unintentional pause.
We use the Montreal forced aligner [27] to obtain the pause duration. Following
previous studies [6,43], we categorize the pause into four-class: no pause (0−100
ms), short pause (100− 300 ms), medium pause (300− 700 ms), and long pause
(> 700 ms). Moreover, we label each pause class as follows: “0” denotes the
no pause, and “1”, “2”, and “3” represents the short, medium, and long pause,
respectively. In this paper, we also define the short pause as the unintentional
pause and the medium and long pauses as the intentional pause.

The pause predictor takes the syntactic representation to predict the speaker-
dependent pause sequence. The pause predictor comprises two Bi-LSTM layers
and 1D-convolutional networks with ReLU activation, layer normalization, and
dropout as shown in 2 (c). The final linear layer projects hidden representation
into a word-level pause sequence. We encode the pause sequence into trainable
pause embedding ad add it to the output of the syntactic encoder. Furthermore,
we optimize the pause predictor with a cross-entropy loss between a probability
distribution with a softmax function and a target pause label sequence.
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Fig. 3. Input representation for pause-based word encoder. The input representations
are the sum of the word-level syntactic representation, segment-level representation,
and segment-word position embedding.

3.2 Pause-Based Word Encoder

We introduce a pause-based word encoder to model a pause-based prosody that
considers the prosody of word sequence surrounding pauses. For pause-based
prosody modeling, inputs to the pause-based word encoder comprise three com-
ponents as illustrated in Figure 3: an output of the phrasing structure encoder, a
segment-level representation, and word position embedding. The first component
is the summation of the output of the syntactic encoder and pause embedding in
the phrasing structure encoder. For the second component, we process the out-
put of the phrasing structure encoder with segment-level average pooling. For
segmentation, we divide the word sequence into segments with the intentional
pause (medium and long pause), which is defined in subsection 3.1. Addition-
ally, we design that the punctuation-based pause would be assigned to a previous
segment. For the third component, we provide position information within each
segment. We implement the same sinusoidal function for the word position em-
bedding, which is used in BERT.

3.3 Adeversarial Learning

The generated Mel-spectrogram from TTS systems generally suffered blurry and
over-smoothing problems due to using simple optimization functions such as
mean absolute error (MAE), and mean square error (MSE) [32,44]. Following
[41,44], we adopt a multi-length discriminator to improve the quality of the gen-
erated Mel-spectrogram. The multi-length discriminator distinguishes between
the generated and ground-truth Mel-spectrogram, which are randomly sliced by
windows of multi-lengths. Moreover, for robust training, we solely train the gen-



Speech Synthesis via Pre-trained Language Model and Pause-based Prosody 7

erator until 50K steps, and then jointly train with the multi-length discriminator
after 50K steps.

4 Experiment and Results

4.1 Experimental Setup

Datasets We trained PauseSpeech on VCTK1 [39] to synthesize speech. The
VCTK dataset contains approximately 46 hours of audio for 108 English speak-
ers. We divided the VCTK dataset into three subsets: 40,857 samples for training,
1,500 samples for validation, and 1,500 samples for testing.

In addition, we downsampled the audio at 24,000 Hz for training. We trans-
form the raw waveform into the Mel-spectrogram with 128 bins. For the input of
the phoneme encoder, we converted the text sequence into the phoneme sequence
using the open-source grapheme-to-phoneme tool2.

Model configuration PauseSpeech consists of a phoneme encoder, phrasing
structure encoder, pause-based word encoder, variance adaptor, decoder, and
multi-length discriminator. The phoneme and pause-based word encoders and
the decoder comprise four feed-forward Transformer (FFT) blocks [31] with
relative-position encoding [36] following Glow-TTS [13]. For the variance adap-
tor, we adopt the same architecture in FastSpeech 2 [28]. For adversarial learning,
we adopt the multi-length discriminator of SyntaSpeech [44], which comprises
stacked convolutional layers with batch normalization.

In the phrasing structure encoder, we use BERT-base model3 for the PLM.
We utilized the 9th layer of BERT to extract the self-supervised contextual
representation. The phrasing structure encoder consists of a pre-net, syntactic
encoder, and pause predictor. The pre-net comprises two BiLSTM layers and
multiple stacked convolutional layers with ReLU activation, layer normaliza-
tion, and dropout. The syntactic encoder has the same architecture as the other
encoder, which consists of four FFT blocks with relative-position encoding.

Training We trained PauseSpeech using the Adam optimizer [25] with a learn-
ing rate of 2 × 10−4, β1 = 0.8, β2 = 0.99, and weight deacy of λ = 0.01.
PauseSpeech has been trained on two NVIDIA RTX A6000 GPUs with 32 sen-
tences per GPU. It takes 400K steps for training until convergence. In addition,
we use pre-trained HiFi-GAN [17] as the vocoder to convert the synthesized
Mel-spectrogram into raw waveform.

1 https://datashare.ed.ac.uk/handle/10283/3443
2 https://github.com/Kyubyong/g2p
3 https://huggingface.co/bert-base-uncased

https://datashare.ed.ac.uk/handle/10283/3443
https://github.com/Kyubyong/g2p
https://huggingface.co/bert-base-uncased
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Table 1. Performance comparison with different methods. Recon. represents recon-
struction.

Method MOS (↑) PER (↓) WER (↓) MCD (↓) RMSEF0 (↓) DDUR (↓)

GT 3.91 ± 0.03 1.41 3.73 − − −
HiFi-GAN (recon.) 3.90 ± 0.03 2.01 4.78 0.94 21.96 −

FastSpeech 2 3.81 ± 0.03 2.43 5.17 3.60 32.18 0.16
PortaSpeech 3.83 ± 0.03 2.06 4.43 3.55 33.72 0.13

PauseSpeech 3.88± 0.03 1.32 3.44 3.42 27.66 0.13

4.2 Evaluation Metrics

Subjective metrics We conducted the mean opinion score (MOS) evaluation
on the test dataset to evaluate the naturalness of the audio via Amazon Me-
chanical Turk. The MOS test was rated by at minimum of 30 listeners on a scale
of 1-5. The MOS evaluation is reported with 95% confidence intervals.

Objective metrics We calculated various types of distance between the ground-
truth and synthesized audio. We used five objective metrics to evaluate the
quality of synthesized speech: 1) Phoneme error rate (PER); 2) Word error
rate (WER); 3) Mel-cepstral distortion (MCD); 4) F0 root mean square error
(RMSEF0); 5) Average absolute difference of the utterance duration (DDUR)
[45]. For PER and WER evaluations, we used the open-source automatic speech
recognition (ASR) model4, which is trained over wav2vec 2.0 [2]. We calculated
PER and WER between the ASR prediction and target text. For MCD and
RMSEF0 evaluations, we applied dynamic time warping between the ground-
truth and synthesized audio.

4.3 Performance

We compared the audio generated by PauseSpeech with the outputs of the fol-
lowing systems: 1) GT, the ground-truth audio; 2) HiFi-GAN [17], where we
reconstructed the audio from the ground-truth Mel-spectrogram using the pre-
trained vocoder; 3) FastSpeech 2 [28], 4) PortaSpeech [30]. We converted the
synthesized Mel-spectrogram from the acoustic models into a raw waveform us-
ing the pre-trained HiFi-GAN.

The results are shown in Table 1. We observed that PauseSpeech outper-
formed the previous systems in terms of naturalness. Moreover, our proposed
model significantly reduced the PER and WER. This indicates that PauseSpeech
generates speech with accurate pronunciation. Furthermore, our model achieved
better performance in terms of MCD and RMSEF0. These observations sug-
gest that PauseSpeech can reduce the distance between the ground-truth and
synthesized audio.

4 https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self

https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self
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Fig. 4. Visualization of the Mel-spectrogram with varying systems: (a) GT, (b) Fast-
Speech 2, (c) PortaSpeech, and (d) PauseSpeech. The corresponding text is “But I am
in practice”.

We also visualized the Mel-spectrograms of synthesized audio from the vary-
ing systems to compare the systems in Figure 4. In the low-frequency bands of
the Mel-spectrogram, we can observe that PauseSpeech generates a similar pitch
contour, resulting in expressive prosody. Moreover, PauseSpeech generates more
details in the high-frequency bands of the Mel-spectrogram, resulting in natural
sounds. These results demonstrate that PauseSpeech can generate high-quality
and natural speech audio with accurate pronunciation.

Table 2. Experimental results on the context representations from each different layer
of BERT.

Layer MOS (↑) PER (↓) WER (↓) MCD (↓) RMSEF0 (↓) DDUR (↓)

Lower layer (1st) 3.91 ± 0.03 1.43 3.56 3.42 26.66 0.14
Middle layer (9th) 3.98± 0.03 1.32 3.44 3.42 27.66 0.13
Higher layer (12th) 3.93 ± 0.03 1.35 3.59 3.44 26.59 0.13

4.4 Analysis of Self-supervised Representations

Previous studies [11,23] have shown that the middle layer of BERT contains
the most prominent syntactic information. In addition, [8] demonstrated that
the 8th and 9th layers of pre-trained BERT showed the best subject-verb agree-
ment. Therefore, we divided the layers of BERT into three parts to verify the
effectiveness of each part in TTS tasks and selected one layer of each part: the
1st layer of the lower layer, the 9th layer of the middle layer, and the 12th layer of
the higher layer. Then, we extracted the self-supervised representation from each
layer as an input of the phrasing structure encoder to compare the performance.

As shown in Table 2, the representation of the 9th layer of BERT has better
performance than the others in terms of naturalness. Moreover, the representa-
tion of the 9th layer of BERT showed the lowest error distance in the most of
objective evaluations. In particular, the representation of the 9th layer of BERT
significantly decreased PER and WER. These results demonstrate that the mid-
dle layer of BERT contains rich information, resulting in improvement in the
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performance of the TTS system. Additionally, the higher subject-verb agree-
ment may help the TTS model synthesize speech with accurate pronunciation.
Hence, we used the representation from the 9th layer of BERT for the phrasing
structure encoder.

Table 3. Ablation study of PauseSpeech. PW and PS encoder denotes the pause-based
word encoder and the phrasing structure encoder, respectively. Adv. learning represents
adversarial learning.

Layer MOS (↑) MCD (↓) RMSEF0 (↓) DDUR (↓)

PauseSpeech 3.98± 0.03 3.42 27.66 0.13

w/o PW encoder 3.94 ± 0.03 3.46 27.64 0.13
w/o PS encoder 3.93 ± 0.03 3.50 28.94 0.14

w/o adv. learning 3.92 ± 0.03 3.48 33.48 0.14

4.5 Ablation Study

We conducted an ablation study to demonstrate the effectiveness of each module
in PauseSpeech. We compared PauseSpeech with that without the pause-based
word encoder and that without the phrasing structure encoder. The results are
presented in Table 3. We observed that removing encoders degraded the natural-
ness of synthesized audio. Moreover, PauseSpeech without the pause-based word
and phrasing structure encoders significantly degraded the objective evaluations.
These results indicate that our proposed modules are necessary to synthesize
natural speech. Furthermore, we trained PauseSpeech without adversarial learn-
ing. We observed that removing the adversarial learning significantly degraded
the performance. These results indicate that adversarial learning enhances the
performance of the system, resulting in synthesizing high-quality and natural
speech.

5 Conclusions

In this study, we presented a TTS model, PauseSpeech, which can learn and
synthesize speech with a proper phrasing structure using a pre-trained language
model and pause-based prosody modeling. PauseSpeech uses the contextual rep-
resentation from the pre-trained BERT and then models pause-based prosody
based on predicted pauses. We also adopted a multi-length discriminator for ad-
versarial learning. Our experimental results show that PauseSpeech outperforms
previous TTS models in terms of naturalness and significantly enhances the pro-
nunciation of synthesized speech. We also conducted ablation studies to verify
the effectiveness of each component in PauseSpeech. In future works, we will
verify the effectiveness of PauseSpeech in multilingual scenarios and attempt to
control more diverse variations of speech.
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18.  Lańcucki, A.: FastPitch: Parallel Text-to-Speech with Pitch Prediction. In:
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). pp. 6588–6592. IEEE (2021)

19. Lee, J.H., Lee, S.H., Kim, J.H., Lee, S.W.: PVAE-TTS: Adaptive Text-to-Speech
via Progressive Style Adaptation. In: ICASSP 2022-2022 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP). pp. 6312–6316.
IEEE (2022)

20. Lee, S.H., Kim, S.B., Lee, J.H., Song, E., Hwang, M.J., Lee, S.W.: HierSpeech:
Bridging the Gap between Text and Speech by Hierarchical Variational Inference
using Self-supervised Representations for Speech Synthesis. Advances in Neural
Information Processing Systems 35, 16624–16636 (2022)

21. Lee, S.H., Yoon, H.W., Noh, H.R., Kim, J.H., Lee, S.W.: Multi-SpectroGAN: High-
diversity and High-fidelity Spectrogram Generation with Adversarial Style Combi-
nation for Speech Synthesis. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 35, pp. 13198–13206 (2021)

22. Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoy-
anov, V., Zettlemoyer, L.: BART: Denoising Sequence-to-Sequence Pre-Training
for Natural Language Generation, Translation, and Comprehension. arXiv preprint
arXiv:1910.13461 (2019)

23. Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic Knowl-
edge and Transferability of Contextual Representations. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
pp. 1073–1094 (2019)

24. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
Zettlemoyer, L., Stoyanov, V.: RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. arXiv preprint arXiv:1907.11692 (2019)

25. Loshchilov, I., Hutter, F.: Decoupled Weight Decay Regularization. arXiv preprint
arXiv:1711.05101 (2017)

26. Makarov, P., Abbas, A.,  Lajszczak, M., Joly, A., Karlapati, S., Moinet, A., Drug-
man, T., Karanasou, P.: Simple and Effective Multi-Sentence TTS with Expressive
and Coherent Prosody. arXiv preprint arXiv:2206.14643 (2022)

27. McAuliffe, M., Socolof, M., Mihuc, S., Wagner, M., Sonderegger, M.: Montreal
Forced Aligner: Trainable Text-Speech Alignment Using Kaldi. In: Interspeech.
vol. 2017, pp. 498–502 (2017)

28. Ren, Y., Hu, C., Tan, X., Qin, T., Zhao, S., Zhao, Z., Liu, T.Y.: FastSpeech 2:
Fast and High-Quality End-to-End Text to Speech. In: International Conference
on Learning Representations (2021)

29. Ren, Y., Lei, M., Huang, Z., Zhang, S., Chen, Q., Yan, Z., Zhao, Z.: ProsoSpeech:
Enhancing Prosody with Quantized Vector Pre-Training in Text-to-Speech. In:
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). pp. 7577–7581. IEEE (2022)

30. Ren, Y., Liu, J., Zhao, Z.: PortaSpeech: Portable and High-Quality Generative
Text-to-Speech. Advances in Neural Information Processing Systems 34, 13963–
13974 (2021)

31. Ren, Y., Ruan, Y., Tan, X., Qin, T., Zhao, S., Zhao, Z., Liu, T.Y.: FastSpeech: Fast,
Robust and Controllable Text to Speech. In: Proceedings of the 33rd International
Conference on Neural Information Processing Systems. pp. 3171–3180 (2019)



Speech Synthesis via Pre-trained Language Model and Pause-based Prosody 13

32. Ren, Y., Tan, X., Qin, T., Zhao, Z., Liu, T.Y.: Revisiting Over-Smoothness in
Text to Speech. In: Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). pp. 8197–8213 (2022)

33. Rezende, D., Mohamed, S.: Variational Inference with Normalizing Flows. In: In-
ternational Conference on Machine Learning. pp. 1530–1538. PMLR (2015)

34. Rogers, A., Kovaleva, O., Rumshisky, A.: A Primer in BERTology: What We
Know about How BERT Works. Transactions of the Association for Computational
Linguistics 8, 842–866 (2021)

35. Seshadri, S., Raitio, T., Castellani, D., Li, J.: Emphasis Control for Parallel Neural
TTS. arXiv preprint arXiv:2110.03012 (2021)

36. Shaw, P., Uszkoreit, J., Vaswani, A.: Self-attention with Relative Position Repre-
sentations. arXiv preprint arXiv:1803.02155 (2018)

37. Shen, J., Pang, R., Weiss, R.J., Schuster, M., Jaitly, N., Yang, Z., Chen, Z., Zhang,
Y., Wang, Y., Skerrv-Ryan, R., et al.: Natural TTS Synthesis by Conditioning
Wavenet on Mel spectrogram Predictions. In: 2018 IEEE international conference
on acoustics, speech and signal processing (ICASSP). pp. 4779–4783. IEEE (2018)

38. Székely, É., Henter, G.E., Beskow, J., Gustafson, J.: Breathing and Speech Plan-
ning in Spontaneous Speech Synthesis. In: ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 7649–7653.
IEEE (2020)

39. Veaux, C., Yamagishi, J., MacDonald, K., et al.: Superseded-CSTR VCTK Corpus:
English Multi-Speaker Corpus for CSTR Voice Cloning Toolkit (2016)

40. Wang, Y., Skerry-Ryan, R., Stanton, D., Wu, Y., Weiss, R.J., Jaitly, N., Yang,
Z., Xiao, Y., Chen, Z., Bengio, S., et al.: Tacotron: Towards End-to-End Speech
Synthesis. Proc. Interspeech 2017 pp. 4006–4010 (2017)

41. Wu, J., Luan, J.: Adversarially Trained Multi-Singer Sequence-to-Sequence Singing
Synthesizer. arXiv preprint arXiv:2006.10317 (2020)

42. Xu, G., Song, W., Zhang, Z., Zhang, C., He, X., Zhou, B.: Improving Prosody
Modelling with Cross-utterance BERT Embeddings for End-to-End Speech Syn-
thesis. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). pp. 6079–6083. IEEE (2021)

43. Yang, D., Koriyama, T., Saito, Y., Saeki, T., Xin, D., Saruwatari, H.: Duration-
Aware Pause Insertion Using Pre-Trained Language Model for Multi-Speaker Text-
to-Speech. arXiv preprint arXiv:2302.13652 (2023)

44. Ye, Z., Zhao, Z., Ren, Y., Wu, F.: SyntaSpeech: Syntax-Aware Generative Adver-
sarial Text-to-Speech. arXiv preprint arXiv:2204.11792 (2022)

45. Zhang, J.X., Ling, Z.H., Liu, L.J., Jiang, Y., Dai, L.R.: Sequence-to-Sequence
Acoustic Modeling for Voice Conversion. IEEE/ACM Transactions on Audio,
Speech, and Language Processing 27(3), 631–644 (2019)


	PauseSpeech: Natural Speech Synthesis via Pre-trained Language Model and Pause-based Prosody Modeling

