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Abstract. This work leverages neural radiance fields and remote sensing for
forestry applications. Here, we show neural radiance fields offer a wide range
of possibilities to improve upon existing remote sensing methods in forest mon-
itoring. We present experiments that demonstrate their potential to: (1) express
fine features of forest 3D structure, (2) fuse available remote sensing modalities
and (3), improve upon 3D structure derived forest metrics. Altogether, these prop-
erties make neural fields an attractive computational tool with great potential to
further advance the scalability and accuracy of forest monitoring programs.
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1 Introduction

With approximately four billion hectares covering around 31% of the Earth’s land area
[7], forests play a vital role in our ecosystem. The increasing demand for tools that
help maintain a balanced and healthy forest ecosystem is challenging due to the com-
plex nature of various factors, including resilience against disease and fire, as well as
overall forest health and biodiversity [25]. Active research focuses on the development
of monitoring methods that synergistically collect comprehensive information about
forest ecosystems and utilize it to analyze and generate predictive models of the charac-
terizing factors. These methods should ideally be capable of effectively and efficiently
cope with the dynamic changes over time and heterogeneity. The goal is to provide the
tools with such properties for improved planning, management, analysis, and more ef-
fective decision-making processes [1]. Traditional tools for forest monitoring, such as
national forest inventory (NFI) plots, utilize spatial sampling and estimation techniques
to quantify forest cover, growing stock volume, biomass, carbon balance, and various
tree metrics (e.g., diameter at breast height, crown width, height) [23]. However, these
surveying methods consist of manual field sampling, which tends to introduce bias and
poses challenges in terms of reproducibility. Moreover, this approach is economically
costly and time-consuming, especially when dealing with large spatial extents.

Recent advancements, driven by the integration of remote sensing, geographic in-
formation and modern computational methods, have contributed to the development of
more efficient, cost/time effective, and reproducible ecosystem characterizations. These
advancements have unveiled the potential of highly refined and detailed models of 3D
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forest structure. Traditionally, the metrics collected through standard forest inventory
plot surveys have been utilized as critical inputs in applications in forest health [15],
wood harvesting [13], habitat monitoring [24], and fire modeling [16]. The efficacy
of these metrics relies in their ability to quantitatively represent the full forest’s 3D
structure including its vertical resolution: from the ground, sub-canopy to the canopy
structure. Among the most popular remote sensing techniques, airborne LiDAR scan-
ning (ALS) has gained widespread interest due to its ability to rapidly collect precise
3D structural information over large regional extents [6]. Airborne LiDAR, equipped
with accurate position sensors like RTK (Real-Time Kinematic), enables large-scale
mapping from high altitudes at spatial resolutions ranging from 5-20 points per square
meter. It has proven effective in retrieving important factors in forest inventory plots
[11]. However, it faces challenges in dense areas where the tree canopy obstructs the
LiDAR signal, even with its advanced full-waveform-based technology. In-situ terres-
trial laser scanning (TLS) on the other hand provides detailed vertical 3D resolution
from the ground, sub-canopy and canopy structure informing about individual trees,
shrubs, ground surface, and near-ground vegetation at even higher spatial resolutions
[10]. Recent work by [20] has demonstrated the efficiency and efficacy of ecosystem
monitoring using single scan in-situ TLS. The technological advances of such models
include new capabilities for rapidly extracting highly detailed quantifiable predictions
of vegetation attributes and treatment effects in near surface, sub-canopy and canopy
composition. However, these models have only been deployed across spatial domains
of a few tens of meters in radius due to the existing inherited limitations of TLS spa-
tial coverage [20]. On the other side of the spectrum, image based photogrammetry for
3D structure extraction offers the potential of being both scalable and the most cost
efficient. Existing computational methods for the extraction of 3D structure in forest
ecosystems, however, have not been as efficient. Aerial photogrammetry methods re-
sult in 3D structure that contains very limited structural information along the vertical
dimension and have encountered output spatial resolutions that can be at most only on
par with those from ALS [25].

Our contribution seeks to fuse the experimental findings across remote sensing do-
mains in forestry; from broad-scale to in-situ sensing sources. The goal is the ability
to achieve the performance quality of in-situ sources (e.g., TLS) in the extraction of
3D forest structure at the scalability of broad sources (e.g., ALS, aerial-imagery). We
propose the use of neural radiance field (NERF) representations [17] which account
for the origin and direction of radiance to determine highly detailed 3D structure via
view-consistency. We observe that such representations enable both the fine description
of forest 3D structure and also the fusion of multi-view multi-modal sensing sources.
Demonstrated experiments on real multi-view RGB imagery, ALS and TLS validate
the fine resolution capabilities of such representations as applied to forests. In addi-
tion, the performance found in our experiments of 3D structure derived forest factor
metrics demonstrate the potential of neural fields to improve upon the existing forest
monitoring programs. To the best of our knowledge, the demonstrations conducted in
this research, namely, the application of neural fields for 3D sensing in forestry, is novel
and has not been shown previously. In the following, Sec. 2 provides a brief overview of
neural fields. Sec. 3 includes experiments illustrating the feasibility of neural fields to
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represent fine 3D structure of forestry while Section 4 demonstrates the effectiveness of
fusing NERF with LiDAR data by enforcing LiDAR point cloud priors. Finally, Section
5 presents results that show the efficacy of NERF extracted 3D structure for deriving
forest factor metrics, which are of prime significance to forest managers for monitoring.

2 Background

2.1 Neural Radiance Fields

The idea of neural radiance fields (NERF) is based on classical ray tracing of volume
densities [12]. Under this framework, each pixel comprising an image is represented
by a ray of light casted onto the scene. The ray of light is described by r(t) = o +
td with origin o ∈ R3, unit ℓ2-norm length direction d ∈ R3 (i.e., ∥d∥2 = 1) and
independent variable t ∈ R representing a relative distance. The parameters of each ray
can be computed through the camera intrinsic matrix K with inverse K−1, the 6D pose
transformation matrix Tm→0 of image m as in Eq. (1)

(o,d) =

(
T

(4)
m→0,

d′

∥d′∥ℓ2

)
with

d′ = T−1
m→0K

−1

u′

v′

1

− T
(4)
m→0 (1)

where u′, v′ are vertical and horizontal the pixel locations within the image and the sub-
script (i) denotes the i-th column of a matrix. Casting rays r ∈ R into the scene from all
pixels across all multi-view images provides information of intersecting rays that can be
exploited to infer 3D scene structure. Such information consists on sampling along a ray
at distance samples {ti}Mi=1 and determine at each sample if the color ci ∈ [0, .., 255]3

of the ray coincides with those from overlapping rays. If it does not coincide then it
is likely that the medium found at that specific distance sample is transparent whereas
the opposite means an opaque medium is present. With such information, compositing
color can be expressed as a function of ray r as in Eq. (2) by:

Ĉ(r) =

N∑
i=1


i−1∏

j=1

exp(−σjδj)


︸ ︷︷ ︸

transparency so far

(1− exp(−σiδi))︸ ︷︷ ︸
opacity

ci

 (2)

where σi ∈ R and δi = ti+1 − ti are the volume densities and differential time steps at
sample indexed by i, respectively. In Eq. (2) the first term in the summation represents
the transparent samples so far while the second term is an opaque medium of color ci
present at sample i. Reconstructing a scene in 3D can then be posed as the problem of
finding the sample locations ti where each ray intersects an opaque medium (i.e., where
each ray stops ) for all rays casted into the scene. Those intersections are likely to oc-
cur at the sample locations where the volume densities are maximized; in other words,
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where ti = argmaxi{σ}. Accumulating, all rays casted into the scene and estimating
the locations ti’s where volume density is maximized overall rays, renders the 3D ge-
ometry of the scene. The number of rays required per scene is an open question; the
interested reader can go to [3] where a similar problem but for LiDAR sensing deter-
mines the number of pulses required for 3D reconstruction depending on a quantifiable
measure of scene complexity.

The problem in Eq. (2) is solved by learning the volume densities that best explains
image pixel color in a 3D consistent way. Learning can be done through a multilayer
perceptron (MLP) by rewriting Eq. (2) as in Eq. (3) as:

Ĉ(r) =

N∑
i=1

wici (3)

where the weights w ∈ RN encode transparency or opacity of the N samples along a
ray and ci is its associated pixel color. Learning weights is performed in an unsuper-
vised fashion through the optimization of a loss function using a training set of M pairs
of multi-view RGB images and its corresponding 6D poses {(ym,Tm)}Mm=1, respec-
tively. This loss function f : RL → R is the average ℓ2-norm error between ground
truth color and estimation by compositing described as in Eq. (4):

LC(Θ) =
∑
r∈R

[
∥C(r)− Ĉ(r,Θ)∥2ℓ2

]
(4)

Optimization by back-propagation yields the weights that gradually improves upon the
estimation of the volume densities. Other important parameters of NERF are distance
ẑ(r) which can be defined using the same weights from Eq.(2) but here expressed in
terms of distance as:

ẑ(r) =

N∑
i=1

ωiti, ŝ(r)2 =

N∑
i=1

ωi(ti − ẑ(r))2 (5)

and ŝ(r) defined as the standard deviation of distance. One key issue affecting 3D re-
construction resolution is on the way samples {ti}Ni=1 for each ray r ∈ R are drawn.
A small number of samples N results in low resolution and erroneous ray intersection
estimations while sampling vastly results in much higher computational complexities.
To balance this trade-off, the work in [17] uses two networks one at low-resolution
to coarsely sample the 3D scene and another fine-resolution one used subsequently to
more finely sample only at locations likely containing the scene.

3 Are neural fields capable of extracting 3D structure in forestry?

The high capacity of deep learning (DL) models to express data distributions with high
fidelity and diversity offers a promising avenue to model heterogenous 3D forest struc-
tures in fine detail. The specific configuration of the selected DL model aims to provide
a representation that naturally allows the combination of data from multiple sensing
modalities and view-points. Neural fields [17] under the DL rubric have proven to be a
highly effective computational approach for addressing such problems. However, their
application has been only demonstrated for indoor and urban environments.
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3.1 Terrestrial Imagery.

Expanding on the findings of neural fields in man-made environments, we conducted
additional experiments to demonstrate its effectiveness in representing fine 3D structure
details in forest ecosystems. Figs. 1 and 2 shows the extracted 3D structure of a Pon-
derosa pine tree in New Mexico, captured using standard 12-megapixel camera phone
images collected along an elliptical trajectory around the tree. Fig. 1a shows a few of
the input example terrestrial multi-view RGB images collected. Figs. 1b and1c presents
the image snapshot trajectory represented as red rectangles, along with two 3D structure
views derived from a traditional structure from motion (SFM) method [22] applied to
the multi-view input images. Note that the level of spatial variability detail provided by
this SFM method is significantly low considering the resolution provided by the set of
input images.

(a) Terrestrial RGB multi-view imagery of Ponderosa Pine Tree.

(b) SFM reconstruction view-1 (c) SFM reconstruction view-2

Fig. 1: Even though SFM reconstruction is capable of extracting the 3D structure of
tree, its recontruction suffers from sparsity. Such sparsity limits the spatial variability
of structure that can be captured thorugh such models.

Can the representational power of modern AI models do better than classical 3D
structure extraction methods in Forestry? We extract 3D structure by neural fields using
the same input images and obtain the result shown in Fig.2. Note that much finer spatial
variability details can be resolved across the 3D structure including the ground, trunk,
branches, leaves. Even fine woody debris as shown in Figs2c-.2d and, bark can be re-
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solved as shown in Figs.2e-2f in contrast to the result of traditional SFM in Fig.1. Note
that even points coming from images degraded by sun-glare as shown in Fig.1a landed
in the tree within reasonable distances as shown in Fig.2a, this is significant specially
considering the severity of the glare effects present in the 2D RGB images. In general,
terrestrial multi-view imagery based NERF can be used to extract fine 3D spatial reso-
lution along the vertical dimension of a tree stand with a level of detail similar to TLS
and with the additional advantage of providing color for every 3D point estimate.

(a) Side views illustrating high 3D spatial detail along the vertical tree stem

(b) Tree 3D structure view-5 (c) Fine 3D resolution of forest floor structure

(d) Forest floor 3D structure (e) Tree trunk view-1 (f) Tree trunk view-2

Fig. 2: Neural field models are capable of extracting fine 3D structure from terrestrial
multi-view images in forestry. Reconstructions demonstrate their potential to represent
fine scale variability in heterogeneous forest ecosystems.
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4 Neural Radiance Fields: A framework for remote sensing fusion
in forestry

Neural fields, have also demonstrated their ability to provide representations suitable for
combining data from multiple sensing modalities in as long as these are co-registered
or aligned. The neural fields framework, which extracts 3D structure from multi-view
images, enables direct fusion of information with 3D point cloud sources through point
cloud prior constraints [21]. Here, we consider the case of fusing multi-view images
from an RGB camera and point clouds from LiDAR. The difficulty in fusing camera
and LiDAR information is that camera measures color radiance while LiDAR measures
distance [5]. Fortunately, the framework of neural radiance fields can be used to extract
3D structure from images thus enabling direct fusion of information from LiDAR. This
can be done though a learning function that extracts a 3D structure promoting consis-
tency between the multi-view images as leveraged by standard NERF [17] subject to
LiDAR point cloud priors [21] as:

L(Θ) =
∑
r∈R

[
∥C(r)− Ĉ(r,Θ)∥2ℓ2

]
︸ ︷︷ ︸

LC(Θ)

+λ
∑
r∈R

[
∥z(r)− ẑ(r,Θ)∥2ℓ2

]
︸ ︷︷ ︸

LD(Θ)

(6)

where the first term LC(Θ) is the standard NERF learning function promoting a 3D
structure with consistency between image views while the second term LD(Θ) en-
forces the LiDAR point cloud priors with ẑ(r,Θ) given as in Eq.(5). The benefit of
imposing point cloud priors into neural fields is two-fold: (1) it enables expressing rel-
ative distances obtained from standard 3D reconstruction of multi-view 2D images in
terms of real metrics (e.g., meters), and (2) neural fields tend to face challenges in ac-
curately estimating 3D structures at high distances (typically in the order of several
tens of meters), where the LiDAR point cloud priors can serve as a supervisory signal
to guide accurate estimation, especially at greater distances. This can be beneficial, as
distances in aerial imagery are generally distributed around large distances, which may
pose challenges for 3D structure extraction methods.

4.1 Filing in the missing below-canopy structure in ALS data with TLS

In-situ terrestrial laser scanning (TLS) has been demonstrated as a powerful tool for
rapid assessment of forest structure in ecosystem monitoring and characterization. It
is capable of very fine resolution including the vertical direction: surface, sub-canopy
and canopy structure. However, its utility and application is restricted by limited spatial
coverage. Aerial laser scanning (ALS) on the other hand, has the ability to rapidly
survey broad scale areas at the landscape level, but is limited as it sparsely samples the
scene providing only coarse spatial variability details and it also cannot penetrate the
tree canopy. Fig. 3a shows a point cloud example collected using a full-waveform ALS
system which collects ≈ 10 points per meter square. In Fig. 3a note that the sub-canopy
structure is not spatially resolved. In contrast, TLS is finely resolved below the canopy
as observed in Fig.3b.
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(a) ALS side-view (b) TLS side-view

Fig. 3: Forest structure from TLS and ALS: ALS provides sparse spatial information
and is not capable of resolving sub-canopy detail. TLS on the other hand, provides fine
spatial variability and resolution along full 3D vertical stands.

Fortunately, the drawbacks of TLS and ALS scans can be resolved by co-registration
which transforms the data to enable direct fusion. Here, we use the automatic and target-
less based approach of [4]. This was demonstrated to outperform standard methods [2],
[19], [8] in natural ecosystems and to be robust to resolution scales, view-points, scan
area overlap, vegetation heterogeneity, topography and to ecosystem changes induced
by pre/post low-intensity fire effects. It is also fully automatic, capable of self-correcting
in cases of noisy GPS measurements and does not require any manually placed targets
[9] while performing at the same levels of accuracy. All TLS scans where co-registered
into the coordinate system of ALS. Once scans have been co-registered they can be
projected into a common coordinate system. Illustrative example results for two forest
plots where included in Fig.4 where the two sources: ALS and TLS have been color
coded differently, with the sparser point cloud being that of the ALS. Throughout all
cases the co-registration produced finely aligned point clouds. In general, the error pro-
duced by this co-registration method is <6 cm for the translation and <0.1o for the
rotation parameters. The translation error in mainly due to the resolution of ALS at 10
points/meter square.

4.2 Aerial Imagery

Experiments performed on broader forest areas were also conducted. Aerial RGB im-
agery was collected with a DJI Mavic2 Pro drone at 30Hz and a 3840 × 2160 pixel
resolution. Figs. 5a-5f show examples of multi-view aerial image inputs used by the
SFM and neural fields models. The forest 3D structure resulting from running conven-
tional SFM [22] on these images is in Figs.5i-5k illustrating different perspective views.
Again, the sequence of rectangles in red illustrate the drone flight path and the snapshot
image locations. Note that SFM was capable of resolving 3D structure for the entire
scene.
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(a) Co-registration Example 1 (b) Co-registration Example 2

Fig. 4: TLS to ALS co-registration: Forest features are well aligned qualitatively be-
tween both ALS and TLS sensing.

Applying NERF directly into the RGB imagery dataset, did not result in compara-
ble performance as in the case of the Ponderosa pine tree shown in Section 3.1. Without
point cloud constraints, the 3D structure extracted by the neural fields in Fig. 5h shows
the presence of artifacts at large distances. The main reason for these artifacts is that
NERF had difficulties in recovering 3D structures from images with objects distributed
at far distances (e.g., ground surface in aerial scanning). Imposing LiDAR point cloud
priors we hypothesize can help to alleviate this issue. Here, we follow the methodology
of [21] and conduct experiments for fusing camera and LiDAR information through
the learning function in Eq.(6). The LiDAR point cloud uses both co-registered TLS
and ALS data which provides information to constrain both distances in the mid-story
below the canopy and those between the ground surface and the tree canopy. The co-
registration approach used to align ALS and TLS point clouds is the one described in
Section 4.1. Note that TLS information is not available throughout the entire tested for-
est area; rather, only one TLS scan was collected. We found the information provided
by just one single scan was enough to constraint the relative distances in sub-canopy
areas throughout the entire scene. Imposing additional constraints through consistency
with the input point cloud shown in Fig.5g, results in the extracted 3D structure shown
in Figs. 5l-5n. In this case, the point cloud prior imposes constraints that resolve the as-
sociated difficulties at large distances. Note that this reconstruction is significantly less
sparser than those shown in Figs.5i-5j obtained from conventional SFM. NERF+LIDAR
results in improved resolution which in turn enables the detection of a much finer spa-
tial variability, specially important for current existing demands in forest monitoring at
broad scale. This illustrates the capacity of neural fields models not only to represent
highly detailed 3D forest structure from aerial multi-view data but also the possibility
of combining multi-source remotely sensed data (i.e., imagery and LiDAR).
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(a) Image view-1 (b) Image view-2

(c) Image view-3 (d) Image view-4

(e) Image view-5 (f) Image view-6 (g) Point Cloud (h) NERF artifacts

(i) COLMAP view-1 (j) COLMAP view-2 (k) COLMAP view-3

(l) NERF+LIDAR view-1

(m) NERF+LIDAR view-2

(n) NERF+LIDAR view-3

Fig. 5: AI-based extraction of 3D structures from aerial multi-view 2D images + 3D
point cloud data inputs. Imposing point cloud priors into 3D structure extraction im-
proves distance ambiguities in structure and resolves artifact issues likely at far ranges.
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5 Prediction of forest factor metrics

Demonstration of the described capabilities of neural fields on forest monitoring pro-
grams consists here in performance evaluations of 3D forest structure derived metrics.
These can include for example number of trees, species composition, tree height, diam-
eter at breast height (DBH), age on a given geo-referenced area. However, since our fo-
cus is to demonstrate the usefulness of neural radiance fields for representing 3D forest
structure, we only illustrate its potential in prediction of the number of trees and DBH
along geo-referenced areas. The data used includes overlapping TLS+ALS+GPS+aerial
imagery multi-view multi-modal data collected over forest plot units. Each of these
plots represents a location area of a varying size: some of size 20 x 50 m and others at
15 m radius. The sites in which data was collected is in northern New Mexico, USA
(the NM dataset). The vegetation heterogeneity and topography variability of the land-
scape is significantly diverse. The NM site contains high elevation ponderosa pine and
mixed-conifer forest: white fir, limber pine, aspen, Douglas fir and Gambel oak and to-
pography is at high elevation and of high-variation (between 5,000-10,200 ft). The TLS
data was collected using a LiDAR sensor mounted on a static tripod placed at the center
of each plot. The ALS data was collected by a Galaxy T2000 LiDAR sensor mounted
on a fixed-wing aircraft. The number of LiDAR point returns per volume depend on the
sensor and scanning protocol settings (e.g., TLS or ALS, range distribution, number of
scans) and these vary across plots depending on the heterogeneity of the site. Ground
truth number of trees per plot was obtained through standard forest plot field surveying
techniques involving actual physical measurements of live/dead vegetation composi-
tion. Data from a total of 250 plots where collected in the NM dataset. In every forest
plot overlapping ALS, GPS, TLS and multi-view aerial imagery data was collected
along with the corresponding field measured ground truth. Prediction of the number of
trees y1 per plot given point cloud X, was performed following the approach of the GR-
Net [27] [26]. In general, the methodology consists in computing 2D bounding boxes
each corresponding to a tree detection from a birds eye view (BEV). A refinement seg-
mentation approach then follows which projects each 2D bounding box into 3D space.
The resulting points inside each 3D bounding box are then segmented by foliage, upper
stem and lower stem and empty space and this information is used to improve estimates
over the number of trees. This methodology is used independently on several case sce-
narios comparing the performance of a combination of remote sensing approaches: (1)
neural fields (NF) from aerial RGB Images, (2) ALS as in Fig.6b, (3) TLS as in Fig.6a,
(4) ALS+TLS, (5) NF-RGB images + ALS, (6) NF-RGB images + TLS, (7) NF-RGB
Images + TLS + ALS. Note that the TLS, ALS and TLS+ALS prediction results does
not make any use of neural fields. Rather, their performance was included only for com-
parison purposes. Table 1 summarizes the root mean squared error (RMSE) results for
each of the tested cases.

The results in Table 1 corroborate some of the trade-offs between the sensing modal-
ities and in addition some of the advantages gained through the use of neural fields in
forestry. First, the superiority of TLS over ALS data on the number of trees metric
is mainly due to the presence of information in sub-canopy which is characteristic of
in-situ TLS. This in alignment with current demonstrations in the literature which have
motivated the widespread usage of in-situ TLS in forestry applications even though
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(a) In-situ plot-scale TLS has demonstrated to be an effective tool in
estimating plot-level vegetation characteristics

(b) Broad-landscape scale ALS derived prediction, does not have
vertical dimension resolution resulting in underestimate predictions

Fig. 6: LiDAR derived vegetation attribute estimation for single TLS and ALS.

Table 1: RMSE Prediction performance of number of trees per plot in NM dataset.
Method NF-RGB ALS TLS ALS+TLS NF-RGB+ALS NF-RGB+TLS NF-RGB+ALS+TLS

RMSE 10.61 8.44 1.77 1.67 1.41 1.39 1.32

it is not as spatially scalable as ALS is [20]. We would have seen the opposite rela-
tionships between TLS and ALS, however, in cases when the plot size is significantly
higher than the range of a single in-situ TLS scan. A problem which can be resolved
by adding multiple view co-registered TLS scans per plot. This limitation is caused as
the sensor remains static at collection time which makes it more susceptible to occlu-
sions, specially in dense forest areas where trees can significantly reduce the view of
TLS at higher ranges. TLS+ALS overcomes, on the other hand, the limitations of the
individual LiDAR platforms by filling in the missing information characteristic of each
platform. Structure from neural fields using only multi-view RGB images performed
slightly worst than both ALS and TLS. This may be due to the limited number of multi-
view images collected per plot, the performance for deriving structure from NERF or
to the joint performance of NERF in conjunction with the GRNet. Fortunately, fusing
neural fields from multi-view imagery with LiDAR shows a significant improvement
overall fused cases (i.e., NF+ALS, NF+TLS and NF+ALS+TLS). We see that the prior
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supervisory signal imposed by the LiDAR point cloud helps on guiding the resulting
3D structure from NERF to alleviate the artifacts arising at far distances when using
multi-view imagery only. We would like to finalize this discussion by highlighting the
performance of the NF-RGB+ALS method which is marginally similar to the best per-
forming method (i.e., NF-RGB+ALS+TLS). The benefit of using NF-RGB+ALS is that
being both airborne makes the data collection of these two modalities time and cost ef-
ficient, in contrast, to in-situ remote sensing methods such as TLS. This has significant
implications towards achieving both scalable and highly performing forest monitoring
programs. In general, one has to resort to a balance between scalability and performance
performance depending on needs. Our work instead, offers a method which can poten-
tially achieve similar performance as in-situ methods with the benefits of scalability
over the landscape scales through computational methods.

Additional experiments were conducted to explore the ability of neural fields from
terrestrial based multi-view imagery to achieve a performance near that of TLS in met-
rics that depend on sub-canopy information. In this case, we evaluated performance on
the DBH metric for a total of 200 trees. Ground truth DBH was manually measured in
the field for each tree’s stem diameter at a height of 1.3m. A total of 5 co-registered
TLS scans where used per tree, each collected from a different location and viewing
each tree from a different perspective to reduce the effects of occlusion and to remove
the degrading effects of lower point LiDAR return densities at farther ranges. Multi-
view TLS co-registration was obtained using the method of [4]. Terrestrial multi-view
RGB imagery data for NERF was collected around an oblique trajectory around each
tree as exemplified in Fig.1 with 10− 15 snapshot images per tree. Algorithmic perfor-
mance for estimating DBH was compared against TLS, ALS, TLS+ALS and NF-RGB.
The estimation approach of [26] relying on stem geometric circular shape fitting at a
height of 1.3m over the ground was used following their implementation. Performance
is measured as the average error as a percentage of the actual field measured DBH
ground truth, following the work of [26]. Comparison results are reported in Table 2.

Table 2: Comparison of sensing modalities on average error DBH estimation.
Method NF-RGB ALS TLS ALS+TLS

Avg. error % 1.7 % 32.7% 1.3% 3.3%

In table 2 ALS performs the worst DBH estimation due to its inherited limited
sub-canopy resolution. Multi-view TLS on the other hand, performs the best at 1.3%
error consistent with TLS superiority findings in [26] for metrics relying on sub-canopy
information. However, our neural fields approach from terrestrial imagery performs
marginally on par with multi-view TLS, with the additional advantage that RGB camera
sensors are simpler to access commercially and significantly cheaper than LiDAR.

In terms of computational specifications, neural radiance fields were trained using
a set of overlapping 10-50 multi-view images per scene. The fast implementation of
[18] was used with training on the terrestrial and aerial multi-view imagery taking from
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30-60 secs per 3D structure extraction (e.g., per plot in the aerial imagery case, per tree
in the terrestrial imagery case). Adding the LiDAR constraints was done following the
implementation from [21]. The neural radiance architecture is a multilayer perceptron
(MLP) with two hidden layers and a ReLU layer per hidden layer and a linear output
layer as in [18]. Training was performed using the ADAM optimizer [14] with param-
eters β1 = 0.9, β2 = 0.99, ϵ = 10−15 using NVIDIA Tesla V100.

The main limitation of neural fields from aerial multi-view imagery is the presence
of occlusion of sub-canopy structure, specially in densely forested areas. In our case, fu-
sion with TLS data can resolve this problem as terrestrial data provides highly detailed
sub-canopy information. Additionally, when TLS is unavailable, terrestrial imagery can
be used instead. Our 3D structure experiments from terrestrial multi-view information
in Sec.3.1 and the DBH estimation performance results demonstrate that highly detailed
structure along the entire vertical stand direction can be extracted by neural fields when
image information is available. In the absence of multi-view image data, however, neu-
ral fields are not capable of generating synthetic information behind occluded areas and
performance on metrics affected by occlusion are expected to yield large errors. This
problem can be alleviated through multi-view images capturing the desired areas of
interest in the ecosystem.

6 Conclusion

In this work, we proposed neural radiance fields as representations that can finely ex-
press the 3D structure of forests both in the in-situ and at the broad landscape scale. In
addition, the properties of neural radiance fields; in particular, the fact that they account
for both the origin and direction of radiance to define 3D structure enables the fusion
of data coming from multiple locations and modalities; more specifically those from
multi-view LiDAR’s and cameras. Finally, we evaluated the performance of 3D struc-
ture derived metrics typically used in forest monitoring programs and demonstrated the
potential of neural fields to improve performance of scalable methods at near the level
of in-situ methods. This not only represents a benefit on sampling time efficiency but
also has powerful implications on reducing monitoring costs.
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