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Abstract. Assessing the condition and visibility of veins is a crucial
step before obtaining intravenous access in the antecubital fossa, which
is a common procedure to draw blood or administer intravenous thera-
pies (IV therapies). Even though medical practitioners are highly skilled
at intravenous cannulation, they usually struggle to perform the proce-
dure in patients with low visible veins due to fluid retention, age, over-
weight, dark skin tone, or diabetes. Recently, several investigations pro-
posed combining Near Infrared (NIR) imaging and deep learning (DL)
techniques for forearm vein segmentation. Although they have demon-
strated compelling results, their use has been rather limited owing to
the portability and precision requirements to perform venipuncture. In
this paper, we aim to contribute to bridging this gap using three strate-
gies. First, we introduce a new NIR-based forearm vein segmentation
dataset of 2,016 labelled images collected from 1,008 subjects with low
visible veins. Second, we propose a modified U-Net architecture that
locates veins specifically in the antecubital fossa region of the exam-
ined patient. Finally, a compressed version of the proposed architecture
was deployed inside a bespoke, portable vein finder device after test-
ing four common embedded microcomputers and four common quan-
tization modalities. Experimental results showed that the model com-
pressed with Dynamic Range Quantization and deployed on a Rasp-
berry Pi 4B card produced the best execution time and precision bal-
ance, with 5.14 FPS and 0.957 of latency and Intersection over Union
(IoU), respectively. These results show promising performance inside a
resource-restricted low-cost device. The full implementation and data are
available at: https://github.com/EdwinTSalcedo/CUBITAL

Keywords: Vein detection · Deep learning · NIR Imaging · Edge AI

1 Introduction

Venipuncture is a necessary procedure applied by medical staff, either to draw
a blood sample, start an intravenous infusion, or instil a medication. While this
procedure can be applied to several regions of the anatomy, doctors prefer the
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antecubital fossa due to the higher visibility and stability of veins there. Initially,
physicians identify and ascertain suitability of the median cubital (MC), cephalic
(C) and basilic (B) veins in the antecubital fossa, as depicted in Figure 1b. It is
worth mentioning that the median cubital vein is usually referred as the best site
to perform catheterization [14][6]. However, people who do not have good vein
visibility might require longer pre-inspection times, which can cause an early
start of a trial-and-error venipuncture process to localize a suitable vein. This
is the case for children, elderly people, dark-skinned people, and people with
overweight or diabetes. Palpation, warm water, tourniquets, NIR vein finders
are among some well-known good practices to improve vein visibility. Yet, if
veins are still not noticeable, the need for health professionals to assist the next
patients might cause bruises, pain, and bleeding to the current one.

(a) NIR light penetration through skin
layers until reaching the subcutaneous tis-
sue where veins and arteries locate.

(b) Samples of vein distributions in the
arm region with the antecubital fossa
marked in green (adapted from [6]).

Fig. 1: Anatomy of forearm veins in the antecubital region.

Since the beginning of the 2010s, several companies started commercializ-
ing hand-held vein finders based on ultrasound, transillumination, or infrared
light to facilitate venipuncture. Nowadays, these devices’ features range from
basic vein visualization enhancement to simultaneous detection and mapping
of veins in any part of the body (e.g. AccuVein AV400 and AV500). However,
the widespread adoption of these devices has been rather limited owing to their
high cost and closed software. Recently, in response to these limitations, several
proposal systems based on Computer Vision, Deep Learning, and Near Infrared
imaging (NIR) have emerged as promising approaches for vein visualization en-
hancement [19][17][7][4]. Nevertheless, they are usually designed to improve vein
visualization in the entire forearm region, so healthcare professionals must still
choose the most suitable region or vein with which they should work. Also, most
recent algorithms are oriented to run in a central server, instead of being de-
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ployed to portable devices. So, there is still room for research to develop better
AI-based devices that recommend which vein or region to select for venipuncture
in real-time and on-site.

Deep learning at the edge can be applied not only for more precise NIR
imaging-based vein segmentation, but also to identify which region to choose for
venipuncture. Therefore, our proposal aims to extend this body of work with
the following contributions:

– A new dataset containing 2,016 NIR images with low visible veins in arms
is introduced, in tandem with their respective ground truth vein segmenta-
tion masks. The dataset also comprises bounding box, centroid and angle
annotations for antecubital fossa localization inside the images.

– We test five DL-based semantic segmentation models and perform a thor-
ough comparison, from which we select and modify the best one to also act
as a regression model for antecubital fossa localization and arm direction
prediction.

– We test the resulting model on four common microcomputers (Raspberry
Pi 4B, Raspberry Pi 3B+, Khadas VIM3, and NVIDIA Jetson Nano) and
using four common quantization modalities (dynamic range quantization,
full-integer quantization, integer quantization with float fallback, and float16
quantization). The best combination is finally implemented in a bespoke,
portable device that shows suitable veins in the antecubital fossa.

The remainder of the paper is structured as follows. Section 2 presents the
state of the art on vein image acquisition approaches, as well as new DL and Edge
AI-related tendencies for vein localization. Section 3 describes the prototyping
process of the end device as well as the implemented DL models and metrics.
Then, in Section 4, we present the experimental results in terms of prediction
accuracy and inference time. Finally, Section 5 offers conclusions and discusses
potential future research threads.

2 Literature Review

Many image acquisition, processing, and visualization techniques have been pro-
posed and released to the market to enhance subcutaneous vein localization.
By way of illustration, AccuVein vein finders feature simultaneous localization
and mapping using light projections towards the skin. Nevertheless, their prices
range from 1,800 USD to 7,000 USD per unit [5], which keeps them inaccessi-
ble to many medical centers in developing countries. In the current section, we
present a review on the main technologies and research trends on open-source
vein detectors development.

2.1 Image acquisition approaches

Two image acquisition approaches can be clearly distinguished for forearm vein
localization: transillumination-based and reflectance-based methods. The first
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ones are more extended in the literature because of their portability and low-cost.
They mainly transmit light through the skin and tissue of a body sector, which
is then followed and captured by a light sensitive camera at a given wavelength.
While regular RGB cameras capture light in the human visible spectrum (400-
700 nm), transillumination-based techniques such as multi-spectral imaging or
hyper-spectral imaging aim to capture illumination in different ranges of the
electromagnetic spectrum, e.g. the ultraviolet range or the infrared range. This
approach was widely explored by investigators. For instance, Shahzad et al. [18]
propose an illumination wavelength selection algorithm for vein detection using
a multi-spectral camera, such that the system can recommend what wavelength
to use for a patient based on his skin-tone.

Table 1: Summary of recent forearm vein distribution detector proposals from
2018 to present.

Year & Ref. Imaging
method &
Camera

Detection
method

End device Key metrics

2022 [12] NIR & US U-Net PC 0.83 IoU
2022 [11] NIR, Pi NoIR 2 Image

Processing
PCB &

VideoCore-IV
74.93 % SSIM

2022 [10] NIR, OV5647
Omnivision

U-Net Raspberry Pi
4B

0.68 DSC

2022 [17] NIR, JAI &
DALSA X64-CL

Pix2Pix 0.96 DSC

2021 [19] NIR & RGB,
JAI & DSLR

FCNN Nvidia Jetson
TX2

0.78 Accuracy

2021 [4] NIR & US, Pi
NoIR 2 & US

Probe

semi-ResNext-
U-Net

Raspberry Pi
4B

0.81 DSC

2018 [1] NIR & Pi NoIR Image
Processing

Raspberry Pi 2 0.84 Accuracy

Particularly, Near-Infrared light (NIR) has been broadly explored over the
past years as a vein visualization enhancing technique. As shown in Figure 1a,
this requires NIR illumination and a special camera able to capture NIR tran-
sillumination, which in turn generates digital images. NIR light can go through
human skin reaching between 700 nm and 1,200 nm depth depending on the
person’s complexion. Since this range can provide information on a body’s tem-
perature and structure, it makes it suitable to capture vein presence in the
subcutaneous tissue. Furthermore, oxygenated and deoxygenated hemoglobin,
two components of blood, absorb and transmit NIR light better through them.
About NIR capture devices, some common cameras available in the market are
described in Table 1 (under the “Imaging method & Camera” column) from
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where we can conclude Raspberry Pi NoIR 1 and 2 are the most frequented NIR
cameras for research. For instance, academics in [2] proposed a detection device
that combines two NIR cameras to obtain depth information about the subcu-
taneous layer of an arm and overlapped 3D visualizations of veins to enhance
their illustration.

Ultrasound imaging (US) and photoacoustic imaging are amongst the most-
used methods in reflectance-based commercial devices for forearm vascular lo-
calization. While US provides a high-resolution frame-of-reference for identifying
density, flow and perfusion of veins, Photoacoustic Imaging (PI) permits regis-
tering important factors such as oxygen saturation, total hemoglobin and the
microdistribution of biomarkers. Both solve the problem of finding vessels by
reflecting a high frequency sound (US) or non-ionizing light (PI) over a focused
part of a body. Then, the return time travel of the reflected waves is registered
with an imaging probe as electrical signals [8]. These waves, also known as ultra-
sonic waves, are detected by ultrasonic transducers to reconstruct physiological
organs in living beings. In the case of human vessels, hemoglobin concentration
and oxygen saturation are physiological properties that form 2D or 3D images
with distinguishable contrast between skin tissue and vessels due to their dis-
tance concerning the light source. Combining both US and NIR modalities has
recently brought new opportunities for robotic catheterization. For instance, re-
searchers in [4] employed both NIR and US imaging inside a robot to perform
venipuncture autonomously. A similar combination of US and NIR imaging was
brought to a handheld robotic device by Leipheimer et al. in [12], where the
authors propose the use of machine learning models to safely and efficiently
introduce a catheter sheath into a peripheral blood vessel.

2.2 Computer-based vein distribution localization

Venipuncture success of intravenous procedures depends on the timely localiza-
tion of veins. Although a great majority are applied in the antecubital fossa, some
procedures require finding veins in lower arm sections. Thus, semantic segmen-
tation of veins over the forearm region is a crucial task that should be performed
as precisely and timely as possible. Specifically, semantic segmentation aims to
classify each pixel inside a collected image with a label. Most investigations in-
terpret veins anatomically as hollow tube structures that join each other along
an image, and they assume two categories for each pixel: vein pixel and back-
ground pixel. There are two notorious computer vision-based approaches that
are regularly applied for forearm vein segmentation: traditional image processing
methods and deep learning architectures.

Image processing-based methods Segmentation approaches based on tradi-
tional image processing methods for NIR, US, multi-spectral, and hyper-spectral
images usually comprehend steps for contrast and illumination enhancement,
morphological operations, vein structure discovery, and edge detection. For in-
stance, several investigations apply Histogram Equalisation or Contrast-Limit



6 E. Salcedo and P. Peñaloza

Adaptive Histogram Equalisation to enhance the contrast of the input images
[20] [3]. Then, vessel segmentation approaches aim to discriminate regions with
veins from the background. Here, vein segmentation techniques can be also clas-
sified as vein structure-based, region-based, gradient-based, and pixel-based. For
example, Li et al. [13] proposed a convex-regional-based gradient preserving
method that use edge information to enhance the low contrast and reduce the
noise in NIR images for better vein segmentation. By applying a convex func-
tion, they find global minimums as optimal locations to detect veins. Recently,
researchers in [11] proposed an image preprocessing system for existing vein
detection devices to remove hair digitally from NIR images. They achieved an
improvement of 5.04% of Structural Similarity Index (SSIM) with respect to
their original vein segmentation algorithm, which shows the relevance of image
processing methods for newer approaches.

Deep learning-based methods Recently, deep learning has demonstrated
huge success in detection tasks from visual information due to its generalization
power. Recent investigations leverage deep learning-based algorithms to classify
pixels as vein or background inside the collected images. In contrast to image
processing, deep learning models do not require strict controlled environments,
which makes them more suitable to perspective, distance or illumination varia-
tions. U-Net based architectures are amongst the most used approaches for vein
semantic segmentation [10] [4]. Moreover, Shah et al. [17] proposed a forearm
vein segmentation model based on the Pix2Pix architecture to translate NIR
images of arms into their segmented vascular versions. Their architecture con-
sists of a student, which is a U-Net model that learns to generate new vascular
masks from NIR images, and a teacher, which is a PatchGAN-based model that
discriminates each generated image into fake or original images. Combined into
a common architecture, the approach obtained 0.97 of accuracy. This model
outperformed previous methods for forearm vein segmentation.

2.3 Edge AI methods

During the last years, the advent of better microprocessors has increased the
opportunities to bring deep learning models into standalone end devices. Edge
AI and Edge Computing are two paradigms that have attracted much of the
attention recently. While Edge Computing aims to bring information processing
closer to the users, Edge AI is the implementation of artificial intelligence in
an edge computing environment. Edge AI-based environments are usually im-
plemented in embedded systems beside Computer Processing Units, Graphics
Processing Units (GPUs), Tensor Processing Units (TPUs), Vision Processing
Units (VPUs), Field Programmable Gate Arrays (FPGAs), Application-Specific
Integrated Circuits (ASICs), or Systems-on-Chip (SoC) [19]. Specifically, devel-
opment cards such as Nvidia Jetson, Khadas, Neural Computer Stick, or Google
Coral can be of huge help to speed up new Edge-AI based applications.

Hardware implementation and Edge AI are important for the present project
since venipuncture is applied to patients in situ. So far, several investigations
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have proposed forearm segmentation algorithms deployed in portable scanners
or fixed stations, and the host devices range from Raspberry Pi cards [10] [4]
[10] [1] [20] to NVIDIA Jetson cards [19]. An updated publication list on vein
distribution finders is described in Table 1. To the best knowledge of the authors,
the great majority of investigations focus on general forearm vein segmentation
and do not detect specific sites for optimal venipuncture. For instance, Chaoying
et al. [19] proposed one of the first investigations to deploy deep learning-based
forearm vein detectors on an embedded device with meaningful results: 0.78 of
accuracy and 0.31 seconds per processed frame.

The availability increase of low-cost NIR cameras, such as Pi NoIR, Jai,
OV5647, Omnivision, among others, make them suitable for new on-device fore-
arm vein finding applications. For example, Ng. et al [15] proposed a vein de-
tection and visual guidance system to show the location of veins through a
mixed-reality-based interface. They used a HoloLens 2 device and its infrared
emitter to obtain new images, which in turn let them segment and visualize veins
in real time. Their vein segmentation approach was based on the U-Net archi-
tecture with a RegNet-based encoder and achieved 0.89 precision. In the case
of robotized venipuncture, Chen et al. [4] proposed a robotic system solution
named Venibot to determine an optimal area on a forearm and perform punc-
turing autonomously. Their proposal combines US and NIR imaging to control
the movements of the venipuncture robot.

3 Material and Methods

To localize the hidden veins of a patient, we developed a Deep Learning-based
model that processes NIR images of their forearm and segments the present
veins. This model also localizes the antecubital fossa to hide all veins except
the ones located in that zone, such that a healthcare practitioner can only see
the suitable veins for venipuncture. Later, the algorithm was implemented on an
embedded system by applying compression techniques. In the present section, we
describe the complete software and hardware implementation process in detail.

3.1 Forearm Vein Segmentation

Dataset Collection and Preprocessing As stated before, dehydration, young
and old age, overweight, dark skin tone, and diabetes are among some factors
that can affect patients’ veins visibility. Specifically, in the case of young sub-
jects, this series of injections can cause medical trauma, which in turn might
cause future self-medication and conflicting feelings when requiring healthcare
assistance [14]. Therefore, the present research focused on enhancing the visibil-
ity of veins in young patients. 2,016 NIR images were collected from both arms
of 1,008 young subjects during the year 2022. The volunteers, whose age fre-
quency is shown in Figure 2, were students in elementary and secondary schools
in the cities of Sacaba and Santa Cruz, Bolivia. About the setup, each patient
located an arm at a time on a flat surface covered with a white fabric for the
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sake of better contrast. Meanwhile, the initial version of the vein finder depicted
in Figure 5 was located 30 centimeters above using a lamp arm printed in 3D.

Fig. 2: Age distribution of 1,008 subjects who volunteered in the data collection
stage.

Given that collecting information from children also requires parental con-
sent, volunteers’ parents were asked to sign a consent agreement to use the
captured images for research purposes. This resulted in an approximate time of
5 minutes per subject, making a total of 83.8 hours. Data was saved and ad-
ministered in a laptop’s internal memory as CSV files and PNG images using
a bespoke Tkinter application. This had the purpose of registering and manag-
ing NIR images along with the full name, complexion, age, medical condition,
gender, and signed consent agreement of volunteers. To form the final version
of the base dataset, NIR images were converted to grayscale and enhanced us-
ing Contrast-Limit Adaptive Histogram Equalisation (CLAHE). Then, ground-
truth was manually annotated with background, arm, and vein segments using
Roboflow. Finally, the images were normalized to 512 x 512 pixels to obtain pairs
of images and masks suitable for semantic segmentation DL architectures.

To avoid the risk of overfitting, we generated an augmented version of the
base dataset applying sequential randomly-selected augmentation techniques.
We implemented the following techniques from the ImgAug library: flipping im-
ages horizontally, perspective, rotating images in the range of 180◦ and −180◦,
blurring images with Gaussian and average filters, contrasting with gamma func-
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tions, among others. In the end, the augmented version of the dataset contained
8,000 images with their corresponding segmentation masks.

Model Selection and Training The recent progress made on vein subcu-
taneous segmentation based on NIR imaging in [19][17][4] let us understand
the great generalization capabilities of Deep Learning-based (DL) methods with
respect to previous approaches. Thus, we focused on implementing various re-
cently proposed generic architectures for semantic segmentation: U-Net, Segnet,
PSPNet, DeepLabV3+, and Pix2Pix. The models were implemented using Ten-
sorFlow 2.12.0 and Colab Pro+ with NVIDIA A100 GPUs. Besides modelling
with both tools, they let us code a unified data loading and munging pipeline
for the dataset and experiment parallelly with multiple instances per model, so
that optimizing the base code and hyperparameters was completed efficiently.
Both versions of the dataset, the base one and augmented one, were split into
three subsets: 70% for training, 20% for validation, and 10% for testing.

The available resources provided by Colab limited us to use a batch size of
8 instances per step when training each model. Although all models might have
trained longer or shorter times, we made sure to use 10 epochs for a fair compar-
ison. This was also supported by the fact that some models (DeepLabV3+ and
Pix2Pix) started overfitting when training longer. We used Binary Cross Entropy
(BCE) as the unique loss function for all models to measure the dissimilarity be-
tween the ground truth and predicted masks. A mathematical representation of
BCE is shown in Equation 1, where yi and ŷi represents a ground truth binary
classification vector and a predicted binary classification vector, respectively.
Also, in the same equation, T stands for the number of pixels per instance, and
f for the sigmoid activation function, as defined in Equation 2.

BCE = − 1

T

T∑
i=0

yi · log(f(ŷi)) + (1− yi) · log(1− f(ŷi)) (1)

f(si) =
1

1 + e−si
(2)

Our Pix2Pix implementation was inspired on the work proposed by Zaineb
et al. [17], however, we followed the original Pix2Pix architecture proposed by
Isola et al. [9]. This base version contained a generator based on the PatchGAN
model and discriminator module based on the U-Net architecture. Therefore,
we reused our base U-Net architecture and implemented PatchGAN. About the
loss functions, we also applied BCE (as defined in Equation 1) to differentiate
the ground truth and generated masks. Yet the generator required to use Mean
Squared Error (MSE), commonly defined as in Equation 3, where M is the
number of image pairs (ground truth and predicted masks), and N is the number
of pixels per image pair.

MSE =

∑N
i=1(xi − yi)

2

M ∗N
(3)
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To measure the models’ precision, metrics such as Pixel Accuracy, Intersec-
tion over Union (IoU), Dice Score, Pixel F1Score, and Peak signal-to-noise ratio
(PSNR), were calculated according to Equations 4, 5, 6, 7, and 8, respectively.
These metrics required to process ground truth G and predicted P masks first,
with which we quantified the well and wrong classified pixels as True Positive
(TP ), True Negative (TN), False Positive (FP ), or False Negative (FN), as
defined in [16].

Accuracy =
TP + TN

TP+FP+TN+FN
(4)

IoU =
|G ∩ P |
|G ∪ P | (5) DiceScore =

2 ∗ |P ∩G|
|P|+|G| (6)

F1Score =
2 ∗ TP

2 ∗ TP+ FP + FN
(7) PSNR = 10 ∗ log10(

2552

MSE
) (8)

Fig. 3: Angle extraction algorithm.

3.2 Cubital Fossa Localization

Once we found U-Net was the best semantic segmentation architecture for the
task, we continued the investigation by experimenting with methods to localize
the Antecubital Fossa. This required another labelling iteration to enclose the
cubital fossa region with a bounding box in all 2,016 NIR images on Roboflow.
Moreover, we made sure the bounding boxes’ centroids were exactly located
in the fossa, which means the center of the bounding boxes’ coordinates were
located in the median cubital (MC) areas in Figure 1b. It is worth noting that
the fossa location prediction also required the angle of the examined arm to hide
veins out of the antecubital fossa region. So, we labelled the orientation of each
arm synthetically by following the process shown in Figure 3.

As depicted, we worked with the ground truth mask, removed veins, and
converted the arm segment into a shape similar to a line by applying a series
of morphological erosion operations. Then, we used OpenCV’s function Hough
Transform for Lines (HTL) to obtain the polar coordinates of lines from an
accumulator matrix. According to this matrix, the more concur points in an
image, the more probable they depict a line, therefore, HTL obtains a set of θ
and ρ where points frequently concur. Given that we started with a single line
representing the entire arm, we averaged the θ and ρ values and converted them
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to a degree value between 0 degrees and 180 degrees, starting from the very right
in a counterclockwise direction.

Obtaining the final version of the dataset let us model the problem as a com-
bination of semantic segmentation and regression tasks. Thus, we integrated a
neuronal network into the U-Net architecture. The layers, resolution, and chan-
nels of the final architecture are illustrated in Figure 4. Consequently, we created
a multi-task loss function to combine BCE and MSE as defined in Equation 9.
We also included the metric Mean Absolute Error (MAE) in the performance
analysis stage when training and validating the architecture, as defined in Equa-
tion 10.

Fig. 4: Final U-Net architecture implemented with TensorFlow for simultaneous
forearm vein segmentation, forearm localization and arm angle detection.

MutiTaskLoss = BCE +MSE (9)

MAE =

∑N
i=1 |xi − yi|
M ∗N

(10)

Finally, once the model was implemented and tested, we used the compression
methods available in TensorFlow Lite to reduce the size of the model and embed
it inside the final end device. The implemented approaches were Dynamic Range
Quantization, Integer Quantization with Float Fallback, Full Integer Quantiza-
tion and Float 16 Quantization.

3.3 Hardware Development

Device design with its components The availability of 3D printing technol-
ogy and standalone microcomputers has opened new possibilities for innovative
product design and manufacturing. To prototype the vein finder, we integrated
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electronic circuitry design, components assembly and 3D printing techniques.
Most importantly, the device required initially the implementation and param-
eter optimization of the NIR imaging system in order to improve the quality of
acquired NIR images. The initial version of this system is shown in Figure 5.

(a) Initial imaging system (b) 3D printed lamp-shape structure

Fig. 5: Initial prototype used to collect 2006 NIR images

Moving on to the development of the final vein finder device, we aimed to
develop an embedded system to contain a DL architecture for simultaneous vein
segmentation and antecubital fossa localization. Then, the testing and compres-
sion stages of the final architecture carried out on different cards let us define
that the Raspberry Pi 4B card was the best choice for the prototype due to its
good balance with respect to cost, precision, and inference time. Consequently,
it was chosen for on-device image processing and DL model deployment. To en-
hance portability and autonomy, a Xiaomi portable battery of 10000 mah was
connected to the Raspberry Pi 4B card through a micro-USB cable. For im-
age capture, we included a Raspberry NoIR V2 camera to the Raspberry Pi 4B
through a 2-lane MIPI CSI camera port. A touch screen was also installed to pro-
vide a Graphic User Interface (GUI) to the end user. The electronics schematics
are presented in Figure 6.

The illumination matrix of 12 infrared LEDs developed in the initial pro-
totype, as shown in Figure 5, was included on a perforated breadboard, which
was used to assemble the necessary circuits, mainly 100Ω 1/2 W resistors. The
LED matrix was powered by a 9 V battery, considering an appropriate resistor
for each group of 3 LEDs. In addition, a 5 V relay module was implemented to
control the energization of the LED matrix, and an On/Off switch was designed
for the device activation. Moreover, a mechanism was implemented to synchro-
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Fig. 6: Electronics schematics

nize the Raspberry Pi 4B and the relay module’s power, ensuring simultaneous
activation and deactivation.

Manufacturing and Assembly As presented in Figure 7, the design and
implementation of the external case aimed to embed the LED matrix, micro-
computer card, battery, powerbank, and camera using 3D printing technology
and Polylactic Acid filament (PLA). The top and bottom parts of the casing
were printed separately, with careful control of printing parameters to achieve
optimal layer adhesion and surface finish. In addition, the battery slot and cam-
era cover were also printed as separate components to facilitate easy assembly
and maintenance. The 3D-printed ergonomic case was designed with the software
SolidWorks, which let us achieve a lightweight structure and sufficient rigidity,
as well as durability and protection for the electronic components. Most im-
portantly, the camera was mounted at the center of the illumination matrix,
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(a) Isometric view (b) Posterior view

Fig. 7: Vein finder design using the 3D CAD software SolidWorks.

allowing for higher accuracy in vein detection under a frontal annular lighting
setup. The final dimensions of the device are 23 cm x 9.5 cm x 3.5 cm.

4 Experimental Results

The present section reports the results of the two main detection tasks in the
proposal: forearm vein segmentation, and antecubital fossa detection including
forearm vein segmentation.

4.1 Forearm Vein Segmentation

A summary of the quantitative results of the models (Pix2Pix, U-Net, Segnet,
PSPNEt, DeepLabV3+), calculating the metrics defined in Equations 4, 5, 6, 7,
and 8, is shown in Table 2. The numbers in bold define the lowest or highest
performance for each metric. While we aimed to obtain high values for almost
all columns, we identified some models’ weights (shown in the last column) were
higher than others. This was an important factor in choosing one model over
the others. For instance, we identified U-Net as one of the most precise models
requiring fewer kilobytes than Segnet or Pix2Pix.

For the augmented dataset, several metrics were affected heavily due to the
modifications applied to augmented instances. This was an important aspect in
the present research since any portable vein finder should also work in more
challenging environments than the one where the base dataset was collected.
Therefore, we decided to continue the work with the U-Net architecture.
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Table 2: Results comparison for forearm vein segmentation

Model IoU Dice
Score

PSNR Pixel
Accu-
racy

F1-
Score

FPS
(Frames)

Weight
(MBs)

Base
dataset

U-Net 0.986 0.050 70.050 0.992 0.992 5.940 1.600

Segnet 0.987 0.055 70.010 0.993 0.992 4.290 2.100
PSPNet 0.948 0.516 63.590 0.969 0.967 5.630 1.100
DeepLab

v3
0.981 0.120 68.620 0.988 0.989 5.770 4.000

Pix2Pix 0.940 0.700 63.610 0.970 0.960 3.880 7.000

Aug.
dataset

U-Net 0.959 0.120 68.130 0.967 0.950 6.020 1.500

Segnet 0.935 0.076 69.780 0.975 0.992 4.110 2.000
PSPNet 0.911 0.522 60.910 0.928 0.967 5.620 1.200
DeepLab

v3
0.956 0.100 64.670 0.943 0.989 5.380 4.300

Pix2Pix 0.891 0.531 59.600 0.921 0.960 4.230 6.900

Table 3: Results comparison for forearm vein & antecubital region localization
& angle prediction

Model Multitask loss MSE MAE

Modified U-Net &
Dynamic Range
Quantization

0.4± 0.2 42.0± 6.0 57.7± 7.3

Base Modified
U-Net

0.4± 0.2 44.6± 6.6 59.5± 4.7

Modified U-Net &
Integer Quantization
with Float Fallback

0.41± 0.2 58.9± 8.6 73.0± 9.4

Modified U-Net &
Full Integer
Quantization

0.45± 0.2 60.1± 8.3 72.0± 9.7

Modified U-Net &
Float 16

Quantization

0.55± 0.67 76.3± 7.2 82.9± 1.6
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4.2 Antecubital Fossa Localization

The final model performance was measured considering the metrics MSE and
MAE, as defined in Equations 3 and 10, respectively. These results are shown
in Table 3, from where we could identify that the compression method Dynamic
Range Quantization was the best for the model in terms of precision. Conse-
quently, this was the selected model to be deployed in the end device. The final
version of the Graphical User Interface developed with PyQT with the final com-
pressed model inside is shown in Figure 8a. Finally, the final printed device is
shown in Figure 8b.

(a) Graphical User Interface developed with
PyQT

(b) Final printed vein finder

Fig. 8: Final prototype printed in 3D

5 Conclusions and Future Work

In this study, we addressed the challenges associated with venipuncture by
proposing a comprehensive solution that combines Near Infrared (NIR) imaging
and deep learning (DL) techniques for precise vein localization in the antecubital
fossa. The significance of accurate vein assessment before intravenous catheteri-
zation cannot be understated, especially for patients with low visible veins due
to various factors such as fluid retention, age, obesity, dark skin tone, or dia-
betes. Our proposal comprehends three principal contributions. We introduced
a novel dataset comprising 2,016 NIR images of arm veins with limited visibil-
ity, accompanied by meticulous annotations that include ground truth images,
bounding boxes, centroids, and angle information for precise antecubital fossa
identification.

Furthermore, we devised and compared five different deep learning-based
semantic segmentation models, ultimately selecting the most suitable one for
antecubital fossa localization and direction prediction. Thirdly, the integration
of this model into a compact vein finder device, through rigorous testing of
various microcomputers and quantization methods, underlined its feasibility and
efficiency in real-world applications. The experimental results demonstrated that
the compressed model utilizing Dynamic Range Quantization, deployed on a
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Raspberry Pi 4B, achieved optimal performance in terms of execution time and
precision balance. This achievement, with an execution time of 5.14 frames per
second and an Intersection over Union (IoU) of 0.957, showcased the potential
of our approach in a resource-constrained and cost-effective portable device.

For future work, other imaging modalities should be combined. Moreover,
we highlight the importance of recognizing the median cubital vein, as well as
other vascular structures shown in Figure 1b, in future computer vision-based
vein detectors. In addition, suitable vein recommendations according to a given
intravenous procedure should be also considered in future research to enhance
venipuncture procedures and patient care.
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gas, L.M., Zárate Sierra, L.M.: Distribución de los patrones venosos de la
fosa cubital en una muestra de personas nacidas en el departamento de san-
tander, colombia. International Journal of Morphology 32(1), 221–226 (2014).
https://doi.org/10.4067/s0717-95022014000100037

7. Francisco, M.D., Chen, W.F., Pan, C.T., Lin, M.C., Wen, Z.H., Liao,
C.F., Shiue, Y.L.: Competitive Real-Time Near Infrared (NIR) Vein Finder
Imaging Device to Improve Peripheral Subcutaneous Vein Selection in
Venipuncture for Clinical Laboratory Testing. Micromachines 12(4), 27–35
(2021). https://doi.org/10.3390/mi12040373, https://www.mdpi.com/2072-666X/
12/4/373

8. Fronheiser, M.P., Ermilov, S.A., Brecht, H.P.F., Conjusteau, A., Su, R., Mehta, K.,
Oraevsky, A.A.: Real-time optoacoustic monitoring and three-dimensional map-
ping of a human arm vasculature. Journal of Biomedical Optics 15(2), 21305
(2010). https://doi.org/10.1117/1.3370336, https://doi.org/10.1117/1.3370336

https://doi.org/10.1109/ELECSYM.2018.8615501
https://doi.org/10.1364/BOE.7.002565
https://opg.optica.org/boe/abstract.cfm?URI=boe-7-7-2565
https://www.redalyc.org/articulo.oa?id=61950989005
https://www.redalyc.org/articulo.oa?id=61950989005
https://aimvein.com/blogs/news/compare-model-av500-vs-vs500-vs-pro-2-0
https://aimvein.com/blogs/news/compare-model-av500-vs-vs500-vs-pro-2-0
https://doi.org/10.4067/s0717-95022014000100037
https://doi.org/10.3390/mi12040373
https://www.mdpi.com/2072-666X/12/4/373
https://www.mdpi.com/2072-666X/12/4/373
https://doi.org/10.1117/1.3370336
https://doi.org/10.1117/1.3370336


18 E. Salcedo and P. Peñaloza
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