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Abstract. In practical applications, we can rarely assume full observ-
ability of a system’s environment, despite such knowledge being impor-
tant for determining a reactive control system’s precise interaction with
its environment. Therefore, we propose an approach for reinforcement
learning (RL) in partially observable environments. While assuming that
the environment behaves like a partially observable Markov decision pro-
cess with known discrete actions, we assume no knowledge about its
structure or transition probabilities.

Our approach combines Q-learning with IoAlergia, a method for learn-
ing Markov decision processes (MDP). By learning MDP models of the
environment from episodes of the RL agent, we enable RL in partially ob-
servable domains without explicit, additional memory to track previous
interactions for dealing with ambiguities stemming from partial observ-
ability. We instead provide RL with additional observations in the form
of abstract environment states by simulating new experiences on learned
environment models to track the explored states. In our evaluation we
report on the validity of our approach and its promising performance
in comparison to six state-of-the-art deep RL techniques with recurrent
neural networks and fixed memory.

Keywords: Reinforcement Learning - Automata Learning - Partially
Observable Markov Decision Processes - Markov Decision Processes.

1 Introduction

Reinforcement learning (RL) enables the automatic creation of controllers in
stochastic environments through exploration guided by rewards. Partial observ-
ability presents a challenge to RL, which naturally arises in various control prob-
lems. Unreliable or inaccurate sensor readings may provide incomplete state
information, e.g., static images provided by visual sensors do not capture the
agent’s movement trajectory and speed. Formally, partial observability occurs
when observations of the environment do not allow to deduce the environment
state directly. In such settings, optimal control based on observations only is
generally not possible.
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For this reason, RL methods often include some form of memory to cope with
partial observability, such as the hidden state in recurrent neural networks [10]
or fixed-size memory obtained by concatenating previous observations [I8]. In
this paper, we propose a method for RL in partially observable environments
that combines Q-learning [23] with IOALERGIA [I5], a technique for learning
deterministic labeled Markov decision processes (MDPs). With IOALERGIA, we
regularly learn and update MDPs based on the experiences of the RL agent. The
learned MDPs approximate the dynamics of the partially observable Markov de-
cision process (POMDP) underlying the environment and their states extend
the observation space of Q-learning. To enable this extension, we trace every
step of the RL agent on the most recently learned MDP and add the explored
MDP state as an observation. Hence, we provide memory by tracking learned
environmental states. With this approach, we follow the tradition of state esti-
mation in RL under partial observability [6/16]. In comparison to earlier work,
we overcome strict assumptions on the underlying POMDP, such as knowledge
about the number of states, e.g., criticized by Singh et al. [21].

Our contributions comprise: (1) an approach for RL under partial observ-
ability aided by automata learning, which we term QA-learning, (2) an imple-
mentation of the approach in an environment conforming to the OpenAl gym
interface [2], and (3) its evaluation against three baseline deep RL methods with
fixed memory and three RL methods with LSTMs providing memory.

Structure. In Sect. 2] we introduce preliminaries like passive learning of
stochastic automata. We present our method for reinforcement learning in par-
tially observable environments in Sect. [3] followed by a corresponding evaluation
in Sect. [ After discussing related work in Sect. [5] we conclude by summarizing
our findings and providing an outlook on future work in Sect. [6]

2 Preliminaries

2.1 Models

In RL, we commonly assume that the environment behaves like an MDP (see
Def. . An agent observes the environment’s state and based on that reacts by
choosing from a given set of actions—causing a probabilistic state transition.

Definition 1 (Markov decision processes (MDPs)). A Markov decision
process (MDP) is a tuple M = (S, so, A, ), where S is a finite set of states,
S0 € S is the initial state, A is a finite set of actions, § : S x A — Dist(S) is a
probabilistic transition function.

Please note that for a simplified presentation, we assume MDPs to support all
actions in all states, s.t. § is total. In our work, we consider settings where the
agent cannot observe the environment directly, but where it has only limited
information—like a room’s number, but not its position in the room (see Fig. |4)
—and where we assume discrete states as well as finite action and state spaces.
Such scenarios are commonly modeled as partially observable Markov decision
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Fig.1. A POMDP producing hot beverages.

processes (POMDPs) (Def. [2)), see, e.g., Bork et al. [I]. Alternative POMDP
definitions including probabilistic observation functions can also be handled [5].

Definition 2 (Partially observable Markov decision processes). A par-
tially observable Markov decision process (POMDP) is a triple (M, Z,0), where
M = (S, 5s0,A,0) is the underlying MDP, Z is a finite set of observations and
O : S — Z is the observation function.

Ezample 1 (Hot Beverage POMDP). Fig. |1 shows a POMDP of a vending ma-
chine that, depending on parameterized probabilities, produces either tea or
coffee. For the individual states s;, we show the respective observation in curly
braces. For each probabilistic transition reported (for brevity we ommit the tran-
sitions from s3 and s4, but they would loop back to sg for any action) we show a
corresponding edge, labeled by the action and the transition’s probability. While
the parameterized probabilities will become more important later on, let us for
now assume p; = 0.5, p.. = 0.9, and p;z = 0.1. In the initial state sg, for the
action coin, we would now progress to either s; or ss, but where the resulting
observation would be beep for both. Pressing a button, we would then move to
s3 or s4 receiving either a coffee or tea. Alternatively, we can add another coin
to move to s; with a probability of 0.9 for increasing the chances to get a coffee.

Paths, Traces €& Policies. The interaction of an agent with its environment can
be described by a path that is defined by an alternating sequence of states and
actions sg - aj - S1, -+ , S, starting in the initial state. We denote the set of
paths in an MDP M by Pathsa. For partially observable scenarios, traces
basically replace the states in a path with the corresponding observations. We
correspondingly lift observation functions O to paths, applying O on every state
to derive trace O(p) = L(so)-a1 - L(s1) from path p = s¢-a; -s1. An agent selects
actions based on a policy that is a mapping from Pathsaq to distributions over
actions Dist(A). If a policy o depends only on the current state, we say that o
is memoryless. With policies relating to action choices, an MDP controlled by a
policy defines a probability distribution over paths.

Rewards define the crucial feedback an agent needs during learning for judg-
ing whether the actions it chose were “good or bad”. That is, the goal is to learn a
policy that maximizes the reward. To this end, we consider a reward function R :
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S — R that returns a real valueﬂ For a path p = sg-a1-s1, - , Sp, we can define a
discounted cumulative reward at time step t as Ret(p,t) = S ' 4 R(s¢1iv1),
taking a (time) discount factor v into account. For a memoryless policy o, we can
define a value function for a state s as v,(s) = E, [Ret(p,t) | s¢ = s]. To accom-
modate partial observability, we define reward-observation traces that extend
traces with rewards, e.g., 1t = RO(p) = O(so)-R(s0)-a1-O(s1)-R(s1), -+, O(sy)-
R(sy,) for path p=sg- a1 - $1, "+, Sn.

Note that in RL, we usually consider memoryless policies—enabled by the as-
sumption of a Markovian environment (modeled as MDP) which guarantees that
there is an optimal, memoryless policy for maximizing the reward. With partial
observability it is impossible to precisely identify the current state (consider the
Hot Beverage example and s1 vs. s2), meaning that creating optimal policies for
POMDPs entails taking the history of previous actions into account—rendering
the problem non-Markovian. Alternatively, deriving policies under partial ob-
servability can be approached by creating belief-MDPs from POMDPs [4].

Belief-MDPs & Deterministic Labeled MDPs. Deterministic Labeled MDPs
(DLMDPs) feature an observation function and adhere to a specific determin-
ism property that guarantees that any possible (observation) trace reaches ex-
actly one state. Belief MDPs (BMDPs) are special DLMDPs that represent the
dynamics of a POMDP and are defined over so-called belief states. These be-
lief states (beliefs for short) describe probability distributions over states in a
POMDP, i.e., over those states that the paths relating to a trace would reach in
the POMDP. That is, for any given trace, a BMDP progresses to a unique state
that in turn defines a distribution over possible POMDP states.

Definition 3 (Deterministic Labeled MDPs). A deterministic labeled MDP
is a triple (M, Z,0), where M = (S, so, A, 0) is the underlying MDP, Z is a set
of observations, and O is an observation function, satisfying

Vs, s',s" € S,Va € A: 6(s,a,8") > 0A(s,a,s") >0N0(s") =O(s")
= s =4s".

We introduce BMDPs with some auxiliary definitions: Let P = (M, Z,0) be
a POMDP over an MDP M = (S, sg, A,9). This defines the beliefs as the set
B = {b € Dist(S5)|Vs,s" € supp(b) : O(s) = O(s')}, where supp() returns the
support of a probability distribution. Then the probability of observing z € Z
after executing a € A in s € S is defined as P(s,a,2) = 35 0(s)=. 6(5,a, )
and in a belief (state) b it is P(b,a,z) = > s b(s) - P(s,a,z). If O(s") = z, the
subsequent belief update is defined as [b|a, z](s") = W.
Definition 4 (Belief MDPs). The BMDP for a POMDP P as of Def.[d s a
DLMDP (Mg, Z,0g) over an MDP Mp = (B, sop,A,05), with B as defined
above, sop = {so — 1}, Op(b) = O(s) for an s € supp(b), and

ses

P(b,a,0(b")) if b’ = [bla,O(M')],

0 otherwise.

5B(b,a,b’) = {

3 Alternative definitions including actions are possible as well.
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Fig. 3. An infinite BMDP for the POMDP from Fig. [I] for parameters p; = 0.2, py =
0.2, and p.. = 1. For brevity reasons, we do not show transitions from b3 and by.

BMDPs allow to synthesize policies under partial observability, i.e., it was shown
that an optimal policy for a BMDP is optimal also for the corresponding
POMDP [4]. Since they are Markovian, there are furthermore methods for syn-
thesizing memoryless policies. Please note that while in principle there are finite
BMDPs (e.g., Fig. [2), in general they are of infinite size [I] (see, e.g., Fig. [3).

Ezample 2 (Hot Beverage BMDPs). Let us consider again the POMDP from
Fig. [1] and parameters p; = 0.1 and py = pe. = 0.5. The corresponding finite
BMDP is shown in Fig. 2l Now suppose that we get a reward for observing tea,
i.e., when reaching bs. The BMDP then supports a memoryless policy where we
choose the actions coin in by and by, and button in by. That is, unless v is very
small (like 0) s.t. choosing button in by would be optimal for maximizing the
immediate reward. A second, infinite BMDP for parameters p; = 0.2, p;y = 0.2
and p.. = 1 is shown in Figure

2.2 Learning MDPs

We learn MDPs using the IOALERGIA algorithm [I5]. [OALERGIA takes samples
T, which is a multiset of traces, and an €,;, controlling the significance level of a
statistical check as inputs and returns a deterministic labelled MDP.
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Fig. 4. Fully and partially observable Office World. With full observations (left), the
(z,y) coordinates can be observed, otherwise (right) it is only the room’s number.

The algorithm first creates an input/output frequency prefix tree acceptor
(IOFPTA) from T, a tree where common prefixes of traces are merged. Every
node of the tree is labeled with an observation and every edge is labeled with
input and a frequency. The frequency denotes the multiplicity of the trace prefix
in 7 that corresponds to the path from the root node to the edge. After creat-
ing a tree, IOALERGIA creates an MDP by merging nodes that are compatible
and promoting nodes to MDP states that are not compatible with other states.
Initially, the root node is promoted to be the initial MDP state and labeled red.
Then, the algorithm performs a loop comprising the following steps. All immedi-
ate successors of red states are labeled blue. A blue node b is selected and checked
for compatibility with all red states. If there is a compatible red state r, b and r
are merged and the subtree originating in b is folded into the currently created
MDP. Otherwise, b is labeled red, thus being promoted to an MDP state. The
loop terminates when there are only red states.

Nodes b and r are compatible if their observation labels are the same and
the probability distributions of future observations conditioned on actions are
not statistically different. The latter check is also performed recursively on all
successors of b and r. The statistical difference is based on Hoeffding bounds [12],
where a parameter €,; controls significance. A data-dependent ¢,; guarantees
convergence in the limit to an MDP isomorphic to the canonical MDP underlying
the distribution of traces. For finite sample sizes, we can use €,;, to influence the
MDP size. For more information, we refer to Mao et al [15].

3 QA-learning: RL Assisted by Automata Learning

In this section, we present Q*-learning, an approach to reinforcement learning
under partial observability. First, we describe the setting and the general intu-
ition behind the approach. Then, we present the state space perceived by the
learning agent, followed by a presentation of the complete approach.
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3.1 Overview

Setting. We consider reinforcement learning in partially observable environments.
That is, we assume that the environment behaves like a POMDP, where we
cannot observe the state directly. Moreover, we do not assume to have a POMDP
model of the environment. Initially we only know the available actions and as
we learn, we learn more about the available observations and the environment
dynamics and refine our policy.

Interface. We formalize the setting via an interface comprising two operations
through which the RL agent interacts with the environment: (1) reset and (2)
step. Following the conventions of OpenAl gym [2], the reset operation resets
the environment into its initial state. The step operation takes an action as
input, performs the actions, which changes the environment state, and returns
the immediate reward, a Boolean flag done, and the observation in the new state.
The flag done indicates whether a goal state was reached.

Ezecution & Traces. The agent learns in episodes, where it traverses a finite
path in each episode. We want to note again that the agent cannot see the state
that it visited. Each executed path yields a finite reward-observation trace rt
consisting of observations, immediate rewards, and the performed actions. We
store these reward-observation traces in a multiset R7T .

3.2 Extended State Space

The @-table in Q-learning is a function @ : S x A — R, where S are the ob-
servable states of the environment. Since we only observe observations from a
set Z, we cannot use this function definition directly. As individual observa-
tions are insufficient to facilitate learning, we extend the observation space with
states of a learned MDP leading to an extended state space. Suppose we are in
episode i, we combine Z with the states of the last labeled MDP (M;, Z, O;),
with M; = (S;, S04, 4, ;), learned via IOALERGIA. During training, we continu-
ously simulate the observation traces perceived by the RL agent on the learned
automaton and use the visited states from S; as additional observations. Since
a learned MDP may not define transitions for all action-observation pairs, we
represent the current state of M, as a pair (s,d) € S; x {T, L}, where the first
element encodes the last visited state of M; and the second element denotes
whether the simulation encountered an undefined transition. To work with these
state pairs, we define two functions, where for a € A and o € O:

resetToInitial() = (S04, T)

stepTo((s,d), 4,0) — {(s’, ) ifd=TAdils,a)(s) > 0N 0i(s) = o
(s, 1)  otherwise
The extended state space uses these state pairs, i.e., the Q-function is defined
as Q: 5§ x A — Rwith S§ =0 x S; x {T,L}. Due to M, being deterministic,
s’ in the above definition is either uniquely defined or not defined at all, denoted
by L. Once we reach undefined behavior, we remember the last visited state
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Algorithm 1 Algorithm implementing Q*-learning

Input: reinforcement learning environment env, fully configured partially observable
agent agent, update interval updatelnterval, number of training episodes maxEp

Output: trained agent implementing the policy for the env

1: agent.Sg < env.O X agent.model.states x {T, L} > Init. extended state space
2: agent.A < env.A > Get action state space from env
3: agent.Q(s,a) = 0,Vs € Sg,a € A > Initialize the Q-table
4 RT «+{} > Multiset of traces
5: for trainingFEpisode < 0 to maxrFxp do

6: initialObs, initial Rew < env.reset()

7 rt « (initialObs, initial Rew) > Trace of a single episode
8: agentState < agent.model.resetTolnitial()

9: epDone < False

10: while not epDone do

11: > Select an action using e-greedy policy and extended state space
12: act < agent.getAction(agent.state)

13: > Record all observed (state, action,reward, newState) pairs
14: obs, reward, done, newObs <+ env.step(act)

15: agentState <— agent.model.step To(agentState, act, newQObs)

16: update@ Values(agent, obs, act, reward, newObs)

17: rt < rt - (act, reward, newObs)

18: RT <+ RT wrt

19: if trainingEpisode > agent.freeze Automaton then > Freeze automaton
20: | continue
21: if trainingEpisode mod updatelnterval = 0 then
22: agent.model <— runlOAlergia(RT) > Learn the new environment model
23: agent.Sg < agent.Smi X agent.model.states x {T, L}
24: agent.Q(s,a) = 0,Vs € Sg,a € A > Reinitialize the extended Q-table
25: for episode € RT do
26: agentState < agent.model.reset Tolnitial()
27: for obs, action, reward, newObs € episode do
28: agentState < agent.model.step To(agentState, act, newObs)
29: update@ Values(agent, obs, action, reward, newObs)

30: return agent

and leave it unchanged. The intuition is that when behavior is encountered after
reaching some (s, 1) is important for RL performance, due to achieving high
reward, this will be reflected in updates of the Q-function. As a result, learning
will be directed towards s. This leads to more sampling in the vicinity of s s.t.
subsequently learned MDPs are more accurate in this region. Consequently, pre-
viously undefined behavior will eventually become defined in the learned MDP.

3.3 Partially Observable Q-Learning

We apply tabular, e-greedy Q-learning [23] combined with MDP learning. De-
terministic labeled MDPs learned by IOALERGIA provide the Q-learning agent
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with additional information in order to make the learning problem Markovian
despite partial observability.

We regularly learn new MDPs via IOALERGIA from the growing sample of
reward-observation traces, where we discard the rewards, so that at each episode
1 there is an approximate MDP M; with states S;. To take information from M;
into account during RL, we extend the Q-table with observations corresponding
to the states S;. At every step performing action a and observing o during RL,
we simulate the step in M;. This yields a unique state in S; due to M; being
deterministic, which we feed to the RL agent as an additional observation.

We actually perform two stages of learning. First, we perform Q-learning
while regularly updating M;. In the second stage, we fix the final MDP M,
referred to freezing below, and perform Q-learning without learning new MDPs
with TOALERGIA. We term the resulting learning approach Q*-learning.

Algorithmimplements this learning approach, i.e., training of a Q*-learning
agent. For a more detailed view of the training algorithm and agent parameter-
ization, we point an interested reader to the implementation El

Algorithm [I| assumes that the Q*-learning agent interacts with the envi-
ronment env as described in Section. The parameter mazFEp defines the
maximum number of training episodes. The other parameter updatelnterval de-
fines how often the agent recomputes the model, thus extending the state space
perceived by the learning agent and the Q-table.

Lines([T}j2] initialize the extended state space and set the actions of the agent to
those of the environment. For the state-space initialization, we assume an initial
approximate MDP to be given. In our implementation, we learn such an MDP
from a small number of randomly generated traces. Alternatively, the extended
state space Sg can be initialized to the observation space of the environment. It
will in any case be extended as the algorithm progresses. Line |3| initializes the
Q-table with the initial observation space and action space.

Training progresses until the maximum number of episodes is reached. In the
implementation, we have added an early stopping criterion to end the training
as soon as the agent achieves satisfactory performance on a predefined number
of test episodes. Lines show the steps taken in a single training episode. At
the beginning of each episode, the environment and the agent’s internal state
are reset to their initial states (Lines |§| and . Until an episode terminates,
either by reaching a goal or exceeding the maximum number of allowed steps,
the Q*-learning agent selects an action using an e-greedy policy and executes it
in the environment (Lines . Based on the selected action act and received
observation newObs, the agent updates its current model state by tracing the
pair (act, newObs) in the learned MDP (Line [I5). After performing a step, the
agent updates the values in the Q-tables based on observations and received
reward. Alg. [2] describes the process of updating Q-values. It follows the same
procedure as in standard Q-learning with the notable difference of using a state
space extended with learned MDP states instead of the observation space of the
environment. The extended state space is discussed in more detail in Sect.

4 |nttps://anonymous.4open.science/r/Q-learning-under-Partial- Observability-4BEC


https://anonymous.4open.science/r/Q-learning-under-Partial-Observability-4BEC

10 Muskardin et al.

In Line [I9] we check whether the automaton should be frozen. Freezing of
the automaton prevents further updates of the model and extensions of the state
space. This way once the automaton is frozen, the Q-table will continue to be
optimized with respect to the current extended state space. Automaton freezing
operates under the assumption that once a model is computed that is “good
enough”, computing a new model in the next update interval is unnecessary and
might even be detrimental to the performance of the agent (in the short term).

If the automaton freezing is not enabled or its episode threshold has not yet
been reached, we proceed with the update of the model and the Q-table (Lines
. This update happens every updatelnterval episodes. [OALERGIA com-
putes a new model that conforms to the sample R7T with rewards discarded. In
Line we extend the state space with state identifiers of the learned model.
After that, we recompute the Q-table by initializing it with the extended state
space and action space (Line . To recompute the values in the extended
Q-table we perform an experience replay [8] with all traces in RT (Lines .

Demonstrating Example. We use

a simple OfficeWorld example to Table 1. Non-extended Q-table.
demonstrate state extension. In this |State\Action|Up |Down|Left |Right
example, an agent selects one of four |[Rooml -0.35|-0.35 |-0.45 |-0.39
actions: {up, down, left, right} to move |Room2 -0.671-0.67 |-0.32|-0.66
into the given direction. The agent |Room3 4.68 [4.65 |5.21 |5.25
may also slip into a different direction |Room4 24.72|24.45 123.26(24.79
with a location-specific probability.

Whereas [20013] use Office World in Table 2. Extended Q-table.

a non-Markovian reward setting under State\Action |Up _|Down|Left|Right

full observability, we modify the Of- |(Rooml, s0) |-0.35]-0.35 |0.75]-0.39
ficeWorld layout as shown in Fig. (Rooml, s1) |-0.33]-0.35 |0.90]-0.36
to introduce partial observability. On (Room1, s2) |-0.31)-0.31 |1.06|-0.30
the right-hand side of Fig. [4] abstrac- (Rooml, s3) [0.4 |-0.41 |0.06/-0.35
tion is applied over the state space. [
The reinforcement learning agent can (Room2, s0) |0 0 0 |0
only observe in which room he is lo- [(Room2, s5) |-0.67|1.23 |1.07|-0.66
cated, but not the z and y coordi- |(Room2,s6) |-0.67|1.42 |0.4 |-0.66
nates, which would truly identify a |...
Markov state. Note that each obser- |(Roomd4, s10)[97.3 |74.1 |78.2(93.8
vation, e.g. Rooml, is shared by nine |(Room4, s11)|97.9 |74.7 |78.8/92.1
different POMDP states identified by  |(Room5, s12)[98.3 |75.2 |79.2(95.3
their z, y coordinates, each with dif-
ferent future and stochastic behavior.

Table [I] shows a Q-table obtained from observations only. The Q-values in-
dicate that the Q-learning agent is unable to find optimal actions due to partial
observability. Table [2| shows an extended Q-table, but we do not include the
definedness flag from {T, L} for brevity. Each observation is extended with a
learned MDP state as discussed in Sect. We observe that each (observation,




Reinforcement Learning in Partially Observable Environments 11

Algorithm 2 Algorithm implementing update of Q-values of the agent.

Input: Q*-learning agent, environment state, reward, reached environment newState
1: extendedNewState < agent.model.stepTo(action, newState)
2: oldValue < agent.Q(extendedState, action)
3: mazxNextState Value + maz(agent.Q(extended NewState))
4: agent.Q(extendedState, action) <+ (1 — «) * oldValue + «a * (reward + v *
mazNextStateV alue)

state) pair approximates the underlying BMDP to such an extend that every
such pair has a clear optimal action defined by the Q-values. For example, in
states (Rooml, s0) and (Rooml, s1) the agent needs to perform a left action,
whereas in state (Rooml, s3) the agent needs to move up. We can also observe
that the Q-values of the state (Room?2, s0) are set to zero. This results from s0
being unreachable while observing Room?2.

3.4 Correctness

Q”-learning learns an optimal policy in the limit, when the number of episodes
tends to infinity, if the BMDP of the POMDP environment is finite.

This property follows from the convergence of IOALERGIA and Q-learning.
We sample traces from a POMDP that, by assumption, is equivalent to a finite
BMDP. The BMDP itself is a deterministic labeled MDP. IOALERGIA in the
limit learns an MDP isomorphic to the canonical deterministic labeled MDP
producing the traces when every action always has a non-zero probability to be
executed, as has been shown by Mao et al. [15]. That is, every pair of belief-state
and action would be explored infinitely often in the limit.

This also ensures convergence of Q-learning in a Markovian environment [23].
The environment is Markovian once we learned the BMDP and add its current
state to the observations of the Q-learning agent. Hence, we will learn an optimal
policy for the BMDP and thus the POMDP in the limit.

When the BMDP is not finite and for finite sample sizes, we learn an ap-
proximation of the BMDP. For instance, in the example shown in Fig. [3] we
might learn the three belief states labeled with beep, but beyond that the prob-
ability of observing teqa is likely too small to detect additional states. As we will
demonstrate in the evaluation, such approximate MDPs encode sufficient infor-
mation to aid reinforcement learning. The learned automaton and its states can
be thought of as providing memory to the reinforcement learning agent.

4 Evaluation

To evaluate the proposed method we have implemented Q”-learning in Python.
The implementation uses AALPY’s [19] IOALERGIA implementation and it in-
terfaces OpenAl gym [2]. The implementation can be used on all gym envi-
ronments with discrete action and observation space. We have evaluated QA-
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learning by comparing its performance on four partially observable environ-
ments with multiple state-of-the-art RL algorithms implemented in OpenAI’s
stable-baselines [I1], considering: non-recurrent policies with a stacked history
of observations and LSTM-based policies.

Stacked history of observations. In a first set of experiments, we have com-
pared Q*-learning with DQN [I8], A2C [I7], and ACKTR. [24]. To aid those
algorithms to cope with partial observablility, we encoded the history of obser-
vations as a stacked frame. Stacked observation frames encode an observation
history by using the last n observations observed during training and evaluation.
By using stacked observations, we extend the observation space from initially ¢
observations to (i + 1)™ observations El For all experiments we have set the size
of stacked frames to 5. A similar approach was, e.g., used in [I8] as a method to
encode movement in ATARI games.

LSTM-based policies. Deep-recurrent Q-learning [I0] has been used to solve
ATARI games without stacking the history of observations. Hausknecht and
Stone [10] show that recurrence is a viable alternative to frame stacking, and
while no significant advantages were noticed during training of the agent, LSTM-
based policies were more adaptable in the evaluation phase in the presence of
previously unseen observations.

Setup. All experiments were conducted on a laptop with an Intel® Core™i7-
11800H at 2.3 GHz, 32 GB RAM, and an NVIDIA RTX™3050 Ti graphics card
using Python3.6. For all experiments we have set the maximum number of train-
ing episodes to 30,000. A training episode ends if an agent reaches a goal or the
maximum number of steps is exceeded. The training performance was periodi-
cally evaluated and training was halted when reaching satisfactory performance.

Table [3| summarizes the results of the experiments. There are columns for
each partially observable environment, where the first shows the average number
of actions required to reach a dedicated goal with the best policy found by RL,
and the second column shows the number of training episodes needed to learn
a policy. The symbol X denotes that no policy was found that reaches the goal
within the allotted maximum number of steps. The rows correspond to: the
optimal policy, the policy found by Q*-learning, the three RL approaches with
stacked observations, and the three approaches with LSTM-based policies. All
experiments were repeated multiple times and we chose the best training run as a
representative for each approach. As the agent performance was evaluated on 100
episodes, the average number of steps to reach a goal was rounded to the closest
integer. In the remainder of this section, we will explain the partially observable
environments on which the agents were trained and discuss the obtained results.

The OfficeWorld domain is depicted on the right of Fig. 4l Q*-learning was
able to find an optimal policy in this environment, but with a higher total number
of training episodes compared to LSTM-based approaches. Stacked-frame based
approaches also performed well, but were not able to find an optimal policy. This
environment was solvable by all approaches despite its partial observability as
each room has two actions which when executed repeatedly will lead the agent

5 41 due to the padding observation present in the first n steps of each training episode
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into the next room (e.g., in Room?2 the agent needs to repeatedly perform down
and right actions).

ConfusingOffice World found on the left-hand side of Fig. [6]is a variation of
the OfficeWorld. ConfusingOfficeWorld is harder to solve as the agent receives
the same observations in the upper right and the lower left rooms, likewise
in the upper left and the lower right rooms. The rooms labeled with Room1
and have two sets of opposite actions that need to be taken, depending on the
actual agent location. The same holds for Room2. Q*-learning was able to find
a solution for this world in 16 thousand episodes, while other approaches failed
due to insufficient state differentiation.

GravityDomain was inspired by the environment discussed in [13]. In Gravi-
tyDomain, gravity will pull the agent down in each state with 50% probability.
By reaching a toggle indicated by a blue switch in Fig. |5 gravity is turned off
and the environment becomes deterministic. We observed that both stacked-
frame and LSTM-based approaches learned a policy in which they repeatedly
performed the up action, thus reaching the goal in only 50% of the test episodes
within the maximum number of 100 steps. Q*-learning was able to learn an
optimal strategy in which it first reached the blue toggle and then proceeded
to the goal, depicted by a cookie. Note that the approach presented in [13] is
generally not able to solve the GravityDomain.

ThinMaze is depicted on the left-hand side of Fig. [f] In ThinMaze, the only
observations are “cookie” and “wall”, which signals that the agent performs an
action that is blocked by a wall. Due to the lack of observations both stacked-
frame and LSTM-based approaches failed to find a solution to ThinMaze. Q*-
learning was able to find a non-optimal solution in 27 thousand training episodes.
This is due to the fact that IOALERGIA requires a high number of traces to
approximate the underlying belief-MDP with sufficient accuracy.

Runtime. We only briefly comment on runtime, considering Office World
for a fair comparison, as all approaches found a decent policy. Other results
might be skewed due to different training lengths. Stacked-frame DQN, A2C,
and ACKTR, require 312s, 373s, and 48s, respectively. Stopping after only 1k
episodes, the LSTM-backed ACER, A2C, and ACKTR take 51s, 74s, and 80s,
respectively. Our approach is considerably faster, finishing after about 3s. The
reason is that we apply tabular Q-learning and IOALERGIA adds very little run-
time overhead. The automata-learning technique has cubic worst-case runtime
in the sample size, but has been reported to have linear runtime in practice [3].

5 Related Work

In recent years, different forms of automata learning have been applied in combi-
nation with RL. Automata learning can aid RL by providing a stateful memory.
This memory can be exploited either to further differentiate environment states
or to capture steps required for non-Markovian rewards.

Early work closely related to our approach is [G/I6]. Both techniques com-
bine model learning and Q-learning for RL under partial observability, but they
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Fig. 6. ConfusingOfficeWorld (left) and partially observable ThinMaze (right).

Table 3. Representative evaluation results.

- Confusing ST . ST
OfficeWorld OfficeWorld GravityDomain ThinMaze
Aleorith # Steps to|# Training|# Steps to|# Training|# Steps to|# Training|# Steps to|# Training
gorithm Goal Episodes |Goal Episodes |Goal Episodes |Goal Episodes
Optimal Solution 12 - 12 - 18 - 20 -

QA-learning 12 3k 18 16k 18 2k 32 27k
DQN 17 2k X 30k 75 30k X 30k
bsvtadfi?l A2C 2 12k x 30k 75 30k X 30k
OPSCIVAHON IAERTR| 14 2k X 30k 75 30k X 30k
, ACER 12 1k X 30k 75 30k X 30k
LSTI\'Ilfl?ased A2C 2 Tk X 30K 75 30K X 30k
POUCY  [ACKTR[ 12 1k X 30k 75 30k X 30Kk

place stricter assumptions on the environment, like knowledge about the num-
ber of environmental states. More recently, Toro Icarte et al. [I4] described
optimization-based learning of finite-state models, called reward machines, to
aid RL. However, they require a labeling function on observations that meets
certain criteria and generally cannot handle changes in the transition probabili-
ties, when observations stay the same. DeepSynth [9] follows a similar approach,
but focuses on sparse rewards rather than partial observability. They learn au-
tomata via satisfiability checking to provide structure to complex tasks, where
they also impose requirements on a labeling function.

Learning of reward machines has also been proposed to enable RL with non-
Markovian rewards [25]26l20], where the gained rewards depend on the history
of experiences rather than the current state and actions. In this context, different
approaches to automata learning are applied to learn Mealy machines that keep
track of previous experiences in an episode. Velasquez et al. [22] extend reward-
machine learning to a setting with stochastic non-Markovian rewards. Our ap-
proach could be extended to non-Markovian rewards by adding rewards to the
observations. Subgoal automata inferred by Furelos-Blanco et al. [7] through an-
swer set programming serve a similar purpose as reward machines, by capturing
interaction sequences that need to occur for the successful completion of a task.
Brafman et al. [§] learn deterministic finite automata that also encode which in-
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teractions lead to a reward in RL with non-Markovian rewards. Similarly to our
approach, the states of learned automata are used as additional observations.

6 Conclusion

We propose an approach for reinforcement
learning under partial observability. For
this purpose, we combine Q-learning with
the automata learning technique IO ALER-
GIA. With automata learning, we learn
hidden information about the environ-
ment’s state structure that provides addi-
tional observations to Q-learning, thus en-
abling this form of learning in POMDPs.
We evaluate our approach in partially ob-
servable environments and show that it
can outperform the baseline deep RL ap-
proach with LSTMs and fixed memory.
For future work, we plan to general-
ize our approach to other (deep) RL ap-
proaches by integrating explored learned
MDP states as observations. Approaches
already including experience replay natu-
rally lend themselves to such extensions,
since we merely need to change the replay

Qg:§> o

@ k|| @ ik

Fig. 5. Fully and partially observable
gravity domain. Once the button in the
lower right corner is reached, gravity is
turned off. Please note that for concise-
ness, we show a width of three, while we
used six states in our evaluation.

mechanism and execute it after updating the learned MDP. To scale the proposed
approach to larger environments, we intend to explore and develop automata-
learning techniques that can model high-dimensional data.
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