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Abstract. We present an exact approach to analyze and quantify the
sensitivity of higher moments of probabilistic loops with symbolic param-
eters, polynomial arithmetic and potentially uncountable state spaces.
Our approach integrates methods from symbolic computation, probabil-
ity theory, and static analysis in order to automatically capture sensitiv-
ity information about probabilistic loops. Sensitivity information allows
us to formally establish how value distributions of probabilistic loop vari-
ables influence the functional behavior of loops, which can in particular
be helpful when choosing values of loop variables in order to ensure ef-
ficient/expected computations. Our work uses algebraic techniques to
model higher moments of loop variables via linear recurrence equations
and introduce the notion of sensitivity recurrences. We show that sensi-
tivity recurrences precisely model loop sensitivities, even in cases where
the moments of loop variables do not satisfy a system of linear recur-
rences. As such, we enlarge the class of probabilistic loops for which
sensitivity analysis was so far feasible. We demonstrate the success of
our approach while analyzing the sensitivities of probabilistic loops.
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1 Introduction

Probabilistic programs are imperative programs enriched with the capability to
draw from probability distributions. By supporting native primitives to model
uncertainty, probabilistic programming provides a powerful framework to model
stochastic systems from many different areas, such as machine learning [19],
biology [2], cyber-physical systems [15,30], cryptography [5], privacy [7], and
randomized algorithms [27].

A challenging task in the analysis of probabilistic programs comes from the
fact that values, or even value distributions, of symbolic parameters used within
program expressions over probabilistic program variables are often unknown.
Sensitivity analysis aims to quantify how small changes in such parameters in-
fluence computation results [1,4]. Sensitivity analysis thus provides additional
information about the probabilistic program executions, even if some parame-
ters are (partially) unknown. This sensitivity information can further be used,
among others, in code optimization: sensitivity information quantifies the influ-
ence of parameters on the program variables, allowing to derive cost-effective
estimates and optimize expected runtimes of probabilistic loops.
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(a) (b)

Fig. 1: Two examples of parameterized probabilistic loops, where our ap-
proach automatically derives loop sensitivities ∂p as polynomial expres-
sions depending on the loop counter n and other parameters; for example
infected prob with respect to vax param (Fig. 1a) or that of u with re-
spect to p (Fig. 1b). Using these results, our work shows that, when assum-
ing decline=0.9, contact param=0.7, after n = 10 time steps and currently
having vax param=0.1, then a small change ε in vax param will decrease
infected prob by approximately 1.7ε in the next time step of Fig. 1a.

The sensitivity analysis of probabilistic programs is however hard due to their
intrinsic randomness: program variables are no longer assigned single values but
rather hold probability distributions [6]. Uncountably infinite state spaces and
non-linear assignments are further obstacles to the formal analysis of probabilis-
tic programs. In recent years, several frameworks to manually reason about the
sensitivity of probabilistic programs were proposed [1,4,32]. However, the state-
of-the-art in automated sensitivity analysis mainly focuses on loop-free programs
such as Bayesian networks [13,14,9,31] and statically-bounded loops [21]. The
technique presented in [33] supports loops with variable-dependent termination
times, but can only verify that the sensitivities obey certain bounds. To the best
of our knowledge, up to now, there is no automated and exact method supporting
the sensitivity analysis of (potentially) unbounded probabilistic loops.

In this paper, we propose a fully automatic technique for the sensitivity anal-
ysis of unbounded probabilistic loops. The crux of our approach lies within the
integration of methods from symbolic computation, probability theory and static
analysis in order to automatically capture sensitivity information about proba-
bilistic loops. Such an integrated framework allows us to also characterize a class
of loops for which our technique is sound and complete.
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Our framework for algebraic sensitivity analysis. We advocate the use
of algebraic recurrences to model the behavior of probabilistic loops. We com-
bine and adjust techniques from symbolic summation, partial derivatives, and
probability theory to provide a step towards the exact and automated sensi-
tivity analysis of probabilistic loops, even in the presence of uncountable state
spaces and polynomial assignments. Figure 1 shows two probabilistic loops for
which our work automatically computes the sensitivities of program variables
with respect to different parameters. For example, Fig. 1a depicts a probabilistic
program, modelling the incidence of a disease within a population. More pre-
cisely, it models the probability infected prob that a single organism within
the population is infected, in dependence on symbolic parameters that model
the amount of social interaction (contac param), the frequency of vaccinations
(vax param) and effect of a vaccination weakening over time (decline). Sensi-
tivity analysis helps to reason about the influence of these parameters on the dis-
ease infection process, answering for example the question “How will an increase
in the rate of vaccinations vax param influence the probability infected prob

of an infection?”. Our work provides an algebraic approach to answering such
and similar questions.

In a nutshell, our technique computes exact closed-form solutions for the
sensitivities of (higher) moments of program variables for all, possibly infinitely
many, loop iterations. Higher moments are necessary to recover/estimate the
value distributions of probabilistic loop variables and hence these moments help
in inferring valuable sensitivity information for the variance or skewness. In
our work, we utilize algebraic techniques in probabilistic loop analysis to model
moments of program variables with linear recurrences, so-called moment recur-
rences [26,8]. However, moment recurrences do not support loops with intricate
polynomial arithmetic, such as the loop in Figure 1b. To overcome this limita-
tion, we propose the notion of sensitivity recurrences, which shortcut computing
closed-forms for variable moments and directly model sensitivities via linear re-
currence equations. In Figure 1b, the program variable w is independent of the
parameter p. By exploiting the independence of program variables from param-
eters, sensitivity recurrences enable the exact sensitivity analysis for loops such
as Figure 1b. We characterize a class of probabilistic loops for which we prove
sensitivity analysis via sensitivity recurrences to be sound and complete.

Our contributions.We integrate symbolic computation, in particular symbolic
summation and partial derivation, in combination with methods from probabil-
ity theory into the landscape of probabilistic program reasoning. In particular,
we argue that recurrence-based loop analysis yields a fully automated and pre-
cise way to derive sensitivity information over unknown symbolic parameters in
probabilistic loops. As such, our paper brings the following main contributions:

– We propose a fully automated approach for the sensitivity analysis of prob-
abilistic loops based on moment recurrences (Section 3.1).

– We introduce sensitivity recurrences and an algorithm for sensitivity analysis
going beyond moment recurrences (Section 3.2, Algorithm 1).
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– We provide a precise characterization of the class of probabilistic loops for
which sensitivity recurrences are provably sound and complete (Theorem 2).

– We describe an experimental evaluation demonstrating the feasibility of our
techniques on many interesting probabilistic programs (Section 4).

2 Preliminaries

We write N for the natural numbers, R for the reals, Q for the algebraic numbers,
and K[x1, . . . , xk] for the polynomial ring with coefficients in the field K. A
polynomial consisting of a single monic term is a monomial. The expected value
operator is denoted as E.

2.1 Syntax and Semantics of Probabilistic Loops

Syntax. In this paper, we focus on unbounded probabilistic while-loops, as illus-
trated by the two examples of Figure 1 and introduced in [26]. Our programming
model considers non-nested while-loops preceded by a variable initialization part,
with the loop body being a sequence of (nested) if-statements and variable as-
signments. Unbounded probabilistic loops occur frequently when modeling dy-
namical systems. Guarded loops while G: body can be analyzed by considering
the limiting behavior of unbounded loops of the form while true: if G: body.

The right-hand side of every variable assignment is either a probability dis-
tribution with existing moments (e.g. Normal or Uniform) and constant pa-
rameters, or a probabilistic choice of polynomials in program variables, that is
x = poly1{p1} . . . polyk{pk}, where x is assigned to poly i with probability pi.
Further, programs can be parameterized by symbolic constants which represent
arbitrary real numbers. For further details, we refer to Appendix A.

Throughout this paper, we refer to programs from our programming model
simply by (probabilistic) loops or (probabilistic) programs. For a program P
we denote the set of program variables by Vars(P) and the set of symbolic
parameters by Params(P).

Dependencies between program variables is a syntactical notion introduced
next, representing a central part in our work.

Definition 1 (Variable Dependency). Let P be a probabilistic loop and x, y ∈
Vars(P). We say that x depends directly on y, and write x −→ y, if y appears in
an assignment of x or an assignment of x occurs in an if-statement where y ap-
pears in the if-condition. Furthermore, we say that the dependency is non-linear,
denoted as x

N−→ y, if y appears non-linearly in an assignment of x.

By ↠ we denote the transitive closure of −→. Regarding non-linearity, we
write x

N
↠ y, if at least one of the direct dependencies from x to y is non-linear.

Example 1. In Figure 1b, we have (among others) y −→ z, w
N−→ x, u

N
↠ w,

and w
N
↠ u. To illustrate the influence of if-conditions, in Figure 1a, note that

efficiency −→ vax and infected prob ↠ vax.
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Semantics.Operationally, every probabilistic loop models an infinite-state Markov
chain, which in turn induces a canonical probability space. Due to brevity, we
omit the straightforward but rather technical construction of the Markov chains
associated to probabilistic loops. For more details, we refer the interested reader
to [26,16]. For an arithmetic expression Expr in program variables, we denote by
Exprn the stochastic process evaluating Expr after the nth loop iteration.

2.2 C-finite Recurrences

We recall notions from algebraic recurrences [17,23], adjusted to our work.
A sequence of algebraic numbers is a function u : N → Q, succinctly de-

noted by ⟨u(n)⟩∞n=0 or ⟨u(n)⟩n. A recurrence for the sequence u of order ℓ ∈ N
is specified by a function f : Rℓ+1 → R and given by the equation u(n+ℓ) =
f(u(n+ℓ−1), . . . , u(n+1), u(n), n). The solutions of a recurrence are the sequences
satisfying the recurrence equation. Of particular relevance to our work is the class
of linear recurrences with constant coefficients or more shortly, C-finite recur-
rences. The sequence u satisfies a C-finite recurrence if u(n+ℓ) = cℓ−1u(n+ℓ−1)+
cℓ−2u(n+ℓ−2) + · · · + c0u(n) holds, where c0, . . . , cℓ−1 ∈ Q are constants and
c0 ̸= 0. Every C-finite recurrence is associated with its characteristic polyno-
mial xn − cℓ−1x

ℓ−1 − · · · − c1x − c0. The solutions of C-finite recurrences can
always be computed [23] and written in closed-form as exponential polynomi-
als. More precisely, if ⟨u(n)⟩n is the solution to a C-finite recurrence, then
u(n) =

∑r
k=1 Pk(n)λ

n
k where Pk(n) ∈ Q[n] and λ1, . . . , λr are the roots of

the characteristic polynomial. The properties of C-finite recurrences also hold
for systems of C-finite recurrences (systems of linear recurrence equations with
constant coefficients, specifying multiple sequences).

2.3 Higher Moment Analysis using Recurrences

For a random variable x, its higher moments are defined as E(xk) for k ∈ N.
More generally, mixed moments for a set of random variables S are expected
values of monomials in S. Recent works in probabilistic program analysis [26,10]
introduced techniques and tools based on C-finite recurrences to compute higher
moments of program variables for probabilistic loops. For example, for a prob-
abilistic loop, k ∈ N and a program variable x, a closed-form solution for the
kth higher moment of x parameterized by the loop iteration n, that is E(xk

n), is
computed in [26] using the Polar tool. This is achieved by first normalizing the
program to eliminate if-statements and ensure every variable is only assigned
once in the loop body. Then, a system of C-finite recurrences is constructed
that models expected values of monomials in program variables. More precisely,
for a monomial M in program variables, the work of [26] constructs a linear
recurrence equation, relating the expected value of M in iteration n+1 to the
expected values of program variable monomials in iteration n. The linear recur-
rence for the expected value of M in iteration n+1 is constructed by starting
with the expression E(Mn+1) and replacing variables contained in the expression
by their assignments bottom-up as they appear in the loop body. Throughout,



6 M. Moosbrugger et al.

the linearity of expectation is used to convert expected values of polynomials
into expected values of monomials (cf. Appendix C).

We adopt the setting of [26,10] and refer by moment recurrences to the re-
currence equations these techniques construct for moments of program variables.

Definition 2 (Moment Recurrence). Let P be a probabilistic loop and M a
monomial in Vars(P). A moment recurrence for M is an equation E(Mn+1) =∑r

i=1 ci · E(W
(i)
n ) where ci ∈ Q and all W (i) are monomials in Vars(P).

In order to compute a closed-form solution for E(xk
n), we employ [26] to first

compute a moment recurrence R for the monomial xk. Next, we derive moment
recurrences for all monomials W (i) in R (cf. Definition 2) to construct a system
of C-finite recurrences.

Example 2. Consider the program from Figure 1a. For a more succinct rep-
resentation, we abbreviate the symbolic parameters as cp := contact param;
vp := vax param and d := decline. The first moments of the program variables
are modeled through the following system of C-finite recurrences [26]:

E(infected probn+1) = cp− cp · E(efficiencyn)

E(efficiencyn+1) = (d− d · vp) · E(efficiencyn) +
3

4
· vp

The initial values of E(infected probn) and E(efficiencyn) are both 0. The system
can be automatically solved [23] to obtain closed-form solutions, which are, when
expanded, exponential polynomials, e.g. for E(infected probn):

E(infected probn) = cp+
3 · vp · cp ·

(
(d− d · vp)n−1 − 1

)
4 (d · vp− d+ 1)

We note that moment recurrences do not always exist. Moreover, termina-
tion is not guaranteed when recursively inferring the moment recurrences for all
monomials W (i) in Definition 2 in order to construct a C-finite system.

Example 3. To illustrate that the approach based on moment recurrences does
not work unconditionally, consider the loop from Figure 1b and construct the
moment recurrence E(wn+1) = 5 · E(wn) + E(x2

n). Since the recurrence contains
E(x2

n), we require the moment recurrence E(x2
n+1) = E((5 + wn+1 + xn)

2) =
E(w2

n+1)+ . . . which requires the recurrence for E(w2
n). This in turn necessitates

a recurrence for E(x4
n), which necessitates the recurrence for E(w4

n) and so on.
This process will repeatedly require recurrences for increasing moments of xn

and wn, implying that this process will not terminate.

To circumvent variable dependencies and compute closed-forms of moment
recurrences, we note that the following two conditions on the probabilistic loops
ensure existence and computability of higher order moments.

Definition 3 (Admissible Loop). A loop is admissible if
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1. all variables in branching conditions only assume values in a finite set (i.e.
they are finite valued), and

2. no variable x is non-linearly self-dependent (x ̸N↠ x) 1.

Example 4. The probabilistic loop in Figure 1a is admissible. However, the pro-
gram in Figure 1b is not admissible. It does not satisfy condition 2: the variable
x depends linearly on w and w depends quadratically on x; therefore, x is non-
linearly self-dependent.

Admissible probabilistic loops are moment-computable [26], that is, higher
moments of program variables admit computable closed-forms as exponential
polynomials. The restriction on finite valued variables in branching conditions
is necessary to guarantee computability and completeness: a single branching
statement involving an unbounded variable renders the program model Turing-
complete [26].

3 Sensitivity Analysis

In this section, we study the sensitivity of program variable moments with re-
spect to symbolic parameters. We present two exact and fully automatic methods
to answer the question of how small changes in symbolic parameters influence
the moments of program variables. As such, we exploit the fact that closed-forms
for variable moments in admissible loops are computable (Section 3.1). We fur-
ther go beyond the admissible loop setting (Section 3.2) and devise a sensitivity
analysis technique applicable to some non-admissible loops, such as the program
in Figure 1b.

Definition 4 (Sensitivity). Let P be a probabilistic loop, x ∈ Vars(P) and
p ∈ Params(P). The sensitivity of the kth moment of x with respect to p, denoted
as ∂pE(xk

n), is defined as the partial derivative of E(xk
n) with respect to p, and

parameterized by loop counter n. For monomials M of variables, the sensitivity
∂pE(Mn) is defined analogously.

Similar to moment computability [26], we define a program to be sensitivity
computable if the sensitivities of all the variables’ expected values are expressible
in closed-form.

Definition 5 (Sensitivity Computability). Let P be a probabilistic program
and p ∈ Params(P). P is sensitivity computable with respect to p, if for ev-
ery variable x ∈ Vars(P) the sensitivity ∂pE(xn) has an exponential polynomial
closed-form that is computable.

1 While [26] allows arbitrary dependencies among finite valued variables, our work
omits this generalization for simplicity. Nevertheless, our results also apply to ad-
missible loops with arbitrary dependencies among finite valued variables.
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3.1 Sensitivity Analysis for Admissible Loops

As mentioned in Section 2, for admissible loops, any moment of every program
variable admits a closed-form solution as an exponential polynomial which is
computable. That is, for a program variable x and k ∈ N, the kth moment of
x can be written as E(xk

n) =
∑r

j=0 Pj(n)λ
n
j , where Pj ∈ Q[n] and λj ∈ Q may

contain symbolic parameters. We next show that based on the closed-forms of
variable moments, we can compute exponential polynomials representing the
sensitivities of moments on parameters.

Theorem 1 (Admissible Sensitivities). Let P be an admissible program,
x ∈ Vars(P), p ∈ Params(P), and k ∈ N. Then, the sensitivity ∂pE(xk

n) has an
exponential polynomial closed-form that is computable.

Proof. Because P is admissible, E(xk
n) can be expressed as an exponential poly-

nomial. We show that the sensitivity can be expressed as an exponential poly-
nomial by expanding E(xk

n) into a sum of exponential monomials: E(xk
n) =∑r

j=0 Pj(n)λ
n
j =

∑r
j=0

∑mj

i=0 Mij(n)λ
n
j , where mj is the number of monomi-

als in Pj and every Mij is a monomial. Note that every Mij and λj may depend
on the symbolic constant p. The derivative of the exponential monomials can
then be obtained by applying the product rule for derivatives:

∂pE(xk
n) =

r∑
j=0

mj∑
i=0

(∂pMij(n))λ
n
j +Mij(n) · n · (∂pλj) · λn−1

j

=

r∑
j=0

(∂pPj(n) + Pj(n) · n · ∂pλj ·
1

λj
)λn

j

It is left to show that the exponential polynomial ∂pE(xk
n) is computable. Because

P is admissible, an exponential polynomial for E(xk
n) is computable. Now, the

second claim follows from the fact that exponential polynomials are elementary
and that the derivative of any elementary function is computable. ⊓⊔

As a corollary, admissible loops are sensitivity computable. Although sen-
sitivity computability only refers to first moments, Theorem 1 shows that for
admissible loops, sensitivities of all higher moments of program variables admit
a computable closed-form.

Example 5. Consider Figure 1a. In Example 2 we stated the closed-form solu-
tions of E(infected probn). The sensitivities of the respective expected values can
be computed by symbolic differentiation and, by Theorem 1, can be expanded
to exponential polynomials. For example, the following expression describes the
sensitivity of E(infected probn) with respect to the parameter vp:

∂vpE(infected probn) =
3 · cp (1− vp · n+ d (1 + vp) (n · vp− vp− 1)) (d (1− vp))

n

4 (vp− 1)
2
d (1 + d · vp− d)

2

+
3 · cp · (d− 1)

4 (1 + d · vp− d)
2



Automated Sensitivity Analysis for Probabilistic Loops 9

3.2 Sensitivity Analysis for Non-Admissible Loops

In general, moments of program variables of non-admissible loops do not satisfy
linear recurrences. Therefore, we cannot utilize closed-forms of the moments for
sensitivity analysis. Nevertheless, sensitivity analysis is feasible even for some
non-admissible loops. In this section, we propose a novel sensitivity analysis
approach applicable to non-admissible loops. Moreover, we characterize the class
of (non-admissible) loops for which our method is sound and complete.

For admissible loops, linear recurrences describing variable moments can be
used as an intermediary step to compute sensitivities. The core of our approach
towards handling non-admissible loops is to shortcut moment recurrences and
devise recurrences directly for sensitivities. Due to independence with respect to
the sensitivity parameter, sensitivities of program variables can follow a linear
recurrence even though their moments do not. We illustrate the idea of our new
method on the non-admissible loop from Figure 1b.

Example 6. Consider the non-admissible program from Figure 1b. The moment
recurrences for all program variables are:

E(zn+1) = E(zn) + 0.5 · (p+ p2) E(yn+1) = E(yn)− 5p · E(zn+1)

E(wn+1) = 5 · E(wn) + E(x2
n) E(xn+1) = 5 + E(wn+1) + E(xn)

E(un+1) = E(xn+1) + p · E(zyn+1)

As illustrated in Example 3, we cannot complete the recurrences to a C-finite
system because both w and x are non-linearly self-dependent. Therefore, we
cannot compute closed-form solutions for E(wn) and E(xn). However, we can
shortcut solving for E(wn) and E(xn) by differentiating the moment recurrences
with respect to p and establish recurrences directly for the sensitivities:

∂pE(zn+1) = ∂pE(zn) + 0.5 · (1 + 2p)

∂pE(yn+1) = ∂pE(yn)− 5p · ∂pE(zn+1)− 5 · E(zn+1)

∂pE(wn+1) = 5 · ∂pE(wn) + ∂pE(x2
n)

∂pE(xn+1) = ∂pE(wn+1) + ∂pE(xn)

∂pE(un+1) = ∂pE(xn+1) + E(zyn+1) + p · ∂pE(zyn+1)

Now, because the variables w and x do not depend on the parameter p, we
conclude that ∂pE(wn) ≡ ∂pE(xn) ≡ 0. The sensitivity recurrences thus simplify:

∂pE(zn+1) = ∂pE(zn) +
1 + 2p

2
∂pE(yn+1) = ∂pE(yn)− 5p · ∂pE(zn+1)− 5 · E(zn+1)

∂pE(un+1) = E(zyn+1) + p · ∂pE(zyn+1)

We can interpret sensitivities such as ∂pE(zn) or ∂pE(un) as atomic recur-
rence variables. In the resulting recurrences, all variables with non-linear self-
dependencies vanished. Therefore, the recurrences can be completed to a C-finite
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system and solved by existing techniques, even though E(wn) and E(xn) are not
C-finite. The resulting system of recurrences consists of all recurrences for sensi-
tivities and moments that appear on the right-hand side of another recurrence.
That is, the system of recurrences consists of the sensitivity recurrences for
∂pE(z), ∂pE(y), ∂pE(u), ∂pE(yz), ∂pE(z2) and the moment recurrences for E(z),
E(y), E(yz), E(z2).

Motivated by Example 6, we introduce the notion of sensitivity recurrences.

Definition 6 (Sensitivity Recurrence). Let P be a program, p ∈ Params(P)
a symbolic parameter, M a monomial in Vars(P) and let E(Mn+1) =

∑r
i=1 ci ·

E(W (i)
n ) be the moment-recurrence of M . Then the sensitivity recurrence of M

with respect to p is defined as

∂pE(Mn+1) :=
∂E (Mn+1)

∂p
=

∂

∂p

(
r∑

i=1

ci · E
(
W (i)

n

))

=

r∑
i=1

(
∂

∂p
ci

)
· E
(
W (i)

n

)
+ ci · ∂pE

(
W (i)

n

) (1)

The sensitivity recurrence of M equates the sensitivity of M at iteration
n+1 to moments and sensitivities at iteration n. Along the ideas in Example 6,
we provide with Algorithm 1 a procedure for sensitivity analysis also applica-
ble to non-admissible loops. The idea of Algorithm 1 is to determine ∂pE(Mn)
by constructing a C-finite system consisting of all necessary recurrence equa-
tions for the moments and sensitivities of program variables. As illustrated in
Example 6, we can exploit the independence of variables from the sensitivity pa-
rameter p to simplify the problem: if a monomial W ′ is independent from p then
∂pE(W ′

n) ≡ 0. Moreover, if p does not appear in the constant ci of Equation (1),
then (∂/∂p)ci = 0, and hence the moment recurrence of W ′ does not need to be
constructed (lines 8–9 of Algorithm 1). This is essential if the expected value of
W ′ does not admit a closed-form. Algorithm 1 is sound by construction, how-
ever, termination is non-trivial. In the remainder of this section, we formalize
the notion of parameter (in)dependence and give a characterization of the class
of non-admissible loops for which Algorithm 1 terminates. As a consequence of
Algorithm 1, we show that sensitivity recurrences yield an exact and complete
technique for sensitivity analysis (Theorem 2).

Definition 7 (p-Dependent Variable). Let P be a program with parameter
p ∈ Params(P). A variable x ∈ Vars(P) is p-dependent, if (1) p appears in

an assignment of x, (2) x depends on some y ∈ Vars(P) (x ↠ y) and y is p-
dependent or (3) an assignment of x occurs in an if-statement where p appears in
the if-condition. A variable is p-independent if it is not p-dependent. A monomial
M in program variables is p-dependent if M contains at least one p-dependent
variable, otherwise it is p-independent.
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Algorithm 1 Computing Sensitivities via Sensitivity Recurrences

Input: program P, monomial M in Vars(P), p ∈ Params(P)
Output: closed-form for ∂pE(Mn)
1: if M is p-independent then
2: return 0
3: end if
4: Eqs ← ∅; Mom ← ∅; Sens ← {M}
5: while Sens ̸= ∅ do ▷ Add all necessary sensitivity recurrences
6: pick W ∈ Sens; Sens ← Sens \ {W}
7: SRec ← sensitivity recurrence of W
8: Replace every ∂pE(W ′

n) in SRec by 0 if W ′ is p-independent
9: Replace every (∂/∂pc)E(W ′

n) in SRec by 0 if (∂/∂pc) = 0
10: Eqs ← Eqs ∪ {SRec}
11: Add to Sens all monomials W ′ s.t. ∂pE(W ′

n) in SRec
12: ↪→ and the sensitivity recurrence of W ′ ̸∈ Eqs
13: Add to Mom all monomials W ′ s.t. E(W ′

n) in SRec
14: end while
15: while Mom ̸= ∅ do ▷ Add all necessary moment recurrences
16: pick W ∈ Mom; Mom ← Mom \ {W}
17: MRec ← moment recurrence of W
18: Eqs ← Eqs ∪ {MRec}
19: Add to Mom all monomials W ′ s.t. E(W ′

n) in MRec
20: ↪→ and the moment recurrence of W ′ ̸∈ Eqs
21: end while
22: S ← solve system of C-finite recurrences Eqs
23: return closed-form of ∂pE(Mn) from S
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For any p-independent monomial M in program variables, the corresponding
sensitivity ∂pE(Mn) is zero (by using induction on n and applying Definition 7).

Lemma 1. Let P be a program, p ∈ Params(P) a symbolic parameter and M
a p-independent monomial in Vars(P), then it holds that the sensitivity variable
of M is zero, i.e., ∀n ≥ 0 : ∂pE(Mn) = 0.

In Example 6, the moments E(wn) and E(xn) do not admit closed-forms.
We resolved this issue by differentiating all moment recurrences and working
directly with the sensitivity recurrences, where the moment recurrences for w
and x vanished. Crucial for this phenomenon is the fact that the variables w and
x are independent of the sensitivity parameter p.

However, a second fact is necessary to guarantee that the moment recurrences
of w and x do not appear in the resulting system of recurrences: Assume some
new variable v depends on x and has the moment recurrence E(vn+1) = E(vn)+
p·E(xn). Then the sensitivity recurrence for v is given by ∂pE(vn+1) = ∂pE(vn)+
E(xn)+p ·∂pE(xn). Even though x itself is p-independent, E(xn) remains in the
sensitivity recurrence of v because the coefficient of E(xn) contains the parameter
p. A similar effect occurs if the moment recurrence for v was E(vn+1) = E(vn)+
E(znxn), because z is p-dependent.

Our goal is to characterize the class of probabilistic loops for which sensitivity
recurrences yield a sound and complete method for sensitivity analysis. Hence,
we need to capture the notion that some dependencies between variables are free
of multiplicative factors involving the sensitivity parameter. We do this in the
following definition by refining our dependency relation ↠.

Definition 8 (p-Influenced Dependency). Let P be a program with parame-
ter p ∈ Params(P) and x, y ∈ Vars(P) with x −→ y. Then, the direct dependency
between x and y is p-influenced, written as x −→p y, if at least one of the following
conditions hold:

– An assignment of x contains y and occurs in an if-statement with the if-
condition involving p or a p-dependent variable.

– An assignment of x contains y and is a probabilistic choice with some prob-
ability of the choice depending on p.

– An assignment of x contains a term c ·M · y where c is constant and M is
a monomial in program variables (possibly containing y). Moreover, either c
contains p or M contains a p-dependent variable.

If x ↠ y, we write x ↠p y if some dependency from x to y is p-influenced.

If x ↠ y and x ̸↠p y we call the dependency between x and y p-free.

Definition 8 covers all cases in the construction of moment recurrences that
introduce multiplicative factors depending on the sensitivity parameter p [26].
We provide details on the construction of moment recurrences in Appendix C.

More concretely, assume P to be a program and x ∈ Vars(P). The moment
recurrence of x contains expected values of monomials M of program variables.
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Additionally, the moment recurrences of any M will again contain expected
values of monomials of program variables and so on. We capture all of these
monomials with the notion of descendant monomials in Definition 9. Intuitively,
to construct a system of moment recurrences for E(xn) one needs to include the
moment recurrences of all descendants of x.

Definition 9 (Descendant Monomial). Let P be a program, x ∈ Vars(P),
and M a monomial in program variables. The monomial M is a descendant of
the variable x if (1) M = x, or (2) M occurs in the moment recurrence of a
monomial W and W is a descendant of x. The variable x is an ancestor of M .

There is a dependency between x and any variable of any descendant of x,
which means x ↠ y for every descendant M of x and every variable y in M . Our
dependency relation from Definition 8 allows us to pinpoint the variables in the
moment recurrence of any descendant of x (Definition 9) with a multiplicative
factor involving the sensitivity parameter. Definitions 8 and 9 together with the
procedure constructing moment recurrences (Appendix C) yield:

Lemma 2 (p-Influenced Moment Recurrence). Let P be a program, x ∈
Vars(P), and p ∈ Params(P). Assume M is a monomial in program variables
descending from x. Let W be a monomial in M ’s moment recurrence with non-
zero coefficient c. If the parameter p occurs in c, then for all variables y in W
we have x ↠p y. Moreover, if some variable z in W is p-dependent, then for all

variables y in W different from z we have x ↠p y.

We now state our main result (Theorem 2) describing the class of probabilis-
tic loops for which Algorithm 1 terminates and, hence, sensitivity recurrences
are sound and complete. We characterize the class of loops in terms of our de-
pendency relations as well as variables with non-linear self-dependencies, which
we refer to as defective variables.

Definition 10 (Defective Variables). Let P be a program and x ∈ Vars(P),

then x is defective if x
N
↠ x. Otherwise, x is effective.

Theorem 2 (Non-Admissible Sensitivities). Let P be a probabilistic pro-
gram, p ∈ Params(P), x ∈ Vars(P), and assume all the following conditions:

1. All variables occuring in branching conditions are finite.
2. All defective variables are p-independent.
3. All dependencies on defective variables are p-free.

Then, for every monomial M in program variables descending from x, Algo-
rithm 1 terminates on input P, M and p.

Proof (Sketch). Algorithm 1 does not terminate iff infinitely many monomials
are added to the set Sens one line 11 or to the set Mom on lines 13 or 19.
However, every monomial added to these sets decreases with respect to some



14 M. Moosbrugger et al.

well-founded ordering. Hence, only finitely many monomials are added and Al-
gorithm 1 terminates. This holds by using a well-founded ordering for monomials
of effective variables and showing that all monomials added to Sens or Mom do
not contain defective variables. Assuming then that some monomial added to
the sets Sens or Mom contains defective variables leads to contradictions using
conditions 2 and 3, and Lemma 2. See Appendix D for more details. ⊓⊔

Theorem 2 characterizes the class of probabilistic loops for which sensitivity
recurrences provide a sound and complete method for sensitivity analysis. As an
immediate corollary, this class of loops is sensitivity computable because every
variable is a descendant of itself. Note that all conditions of Theorem 2 are stati-
cally checkable: the concepts of defective variables, p-independent variables, and
p-free dependencies are purely syntactic notions. Moreover, program variables
occurring in branching conditions only admitting finitely many values can be
verified using standard techniques based on abstract interpretation.

Theorem 2 also applies to sensitivity analysis for higher moments: let v ∈
Vars(P) and k ∈ N, then Theorem 2 covers the sensitivity of v’s kth moment if vk

is a descendant of some variable. Otherwise, vk can be dealt with by introducing
a fresh variable w and appending the assignment w := vk to P’s loop body.

The proof of Theorem 2 provides an alternative argument for admissible loops
being sensitivity computable (Theorem 1); as admissible loops do not contain
defective variables by definition (Definition 3), the class of loops characterized
by Theorem 2 subsumes the class of admissible loops.

4 Experiments and Evaluation

We evaluate our methods for sensitivity analysis for admissible loops (Sec-
tion 3.1) and non-admissible loops (Section 3.2). Our techniques for sensitiv-
ity analysis extend the Polar framework [26], which is publicly available at
https://github.com/probing-lab/polar. For admissible loops, we use the existing
functionality of the Polar framework to compute closed-forms for the moments
of program variables.

Experimental Setup. We split our evaluation into two parts. First, we compute
the sensitivities of (higher) moments of program variables for admissible loops
by automatically differentiating the closed-forms of the variables’ moments (Ta-
ble 1). In the second part, we consider our method using sensitivity recurrences,
which is also applicable to non-admissible loops (Table 2). To the best of our
knowledge, our work provides the first exact and fully automatic tool to compute
the sensitivities of (higher) moments of program variables for probabilistic loops.
All our experiments have been executed on a machine with a 2.6GHz Intel i7
(Gen 10) processor and 32GB of RAM with a timeout (TO) of 120 s.

Differentiating Closed-Forms. Table 1 shows the evaluation of our sensitivity
analysis technique for admissible loops (Section 3) on 11 benchmarks. The bench-
marks consist of the running example from Figure 1a and parameterized proba-
bilistic loops from the benchmarks in [26], coming from literature on probabilistic

https://github.com/probing-lab/polar
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program analysis [3,12,20,9]. All the benchmarks contain at least one symbolic
parameter with respect to which the sensitivities are computed. Table 1 shows
that our approach is capable of computing the sensitivities of higher moments of
program variables for challenging loops with various characteristics, such as dis-
crete and continuous state spaces as well as drawing from common distributions.

Benchmark Sensitivity Rec, RT Sensitivity Rec, RT

50-Coin-Flips ∂pE(total) 51, 1.56 ∂pE(total2) TO, TO

Bimodal ∂pE(x) 3, 0.40 ∂pE(x2) 5, 0.72

Component-Health ∂p1E(obs), 2, 0.61 ∂p1E(obs2), 2, 0.62

Umbrella ∂u1E(umbrella) 2, 0.97 ∂u1E(umbrella2) 2, 0.98

Gambler’s Ruin ∂pE(money) 4, 11.2 ∂pE(money2) 10, 64.6

Hawk-Dove ∂vE(p1bal) 1, 0.34 ∂vE(p1bal2) 2, 0.67

Las-Vegas-Search ∂pE(attempts) 2, 0.57 ∂pE(attempts2) 4, 7.31

1D-Random-Walk ∂pE(x) 1, 0.27 ∂pE(x2) 2, 0.39

2D-Random-Walk ∂p rightE(x) 1, 0.28 ∂p rightE(x2) 2, 0.41

Randomized-Response ∂pE(p1) 1, 0.29 ∂pE(p12) 2, 0.42

Vaccination (Fig. 1a) ∂vpE(infected) 2, 1.25 ∂vpE(infected2) 2, 1.19

Table 1: Evaluation of the sensitivity computation for 11 admissible loops by dif-
ferentiating closed-forms of variable moments. Rec: size of the recurrence system
to compute the variables’ moments; RT: runtime in seconds; TO: timeout.

Sensitivity Recurrences. Table 2 shows the evaluation of our sensitivity analy-
sis technique from Algorithm 1 using sensitivity recurrences. The benchmarks
consist of four non-admissible loops and six admissible loops from Table 1. Non-
admissible loops are known to be notoriously hard to analyze automatically [2].
Table 2 shows that sensitivity recurrences are capable of computing the sensi-
tivities for admissible as well as non-admissible loops.

Experimental Summary. When comparing both approaches on admissible loops,
the differentiation-based approach typically performs better, e.g., on the bench-
marks “Gambler’s Ruin” or “Vaccination”. This is not surprising, as the main
complexity in both approaches lies in solving the system of recurrences and when
using sensitivity recurrences, the number of recurrences tends to be higher. How-
ever, the exact number of recurrences depends on the program structure, and as
such, there are cases where the approach using sensitivity recurrences performs
equally well, such as in the “Randomized-Response” benchmark. Nevertheless,
for the class of loops characterized in Section 3.2, the differentiation-based ap-
proach fails, whereas sensitivity recurrences still deliver exact results in a fully
automated manner.
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Benchmark Sensitivity Rec, RT Sensitivity Rec, RT

Non-Admissible (Fig. 1b) ∂pE(u) 9, 1.40 ∂pE(y2) 9, 1.75

Non-Admissible-2 ∂parE(y) 5, 6.56 ∂parE(xz) 4, 3.67

Non-Admissible-3 ∂pE(total) 6, 12.6 ∂pE(z12) 12, 56.5

Non-Admissible-4 ∂p1E(z) 4, 0.48 ∂p1E(cnt2) 3, 0.39

Bimodal ∂varE(x) 3, 0.28 ∂varE(x2) 5, 0.42

Component-Health ∂p1E(obs) 3, 0.74 ∂p1E(obs2) 3, 0.73

Gambler’s Ruin ∂pE(money) 7, 66.9 ∂pE(money2) TO, TO

Las-Vegas-Search ∂pE(attempts) 3, 0.81 ∂pE(attempts2) 7, 13.3

Randomized-Response ∂pE(p1) 1, 0.30 ∂pE(p12) 3, 0.40

Vaccination (Fig. 1a) ∂vpE(infected) 3, 8.26 ∂vpE(infected2) 3, 7.85

Table 2: Evaluation of the sensitivity computation for 10 loops (4 are non-
admissible) using sensitivity recurrences. Rec: size of the recurrence system
to compute the variables’ sensitivities; RT: runtime in seconds; TO: timeout.

Our experiments demonstrate that our novel techniques for sensitivity anal-
ysis can compute the sensitivities for a rich class of probabilistic loops with
discrete and continuous state spaces, drawing from probability distributions,
and including polynomial arithmetic. Moreover, the technique based on our new
notion of sensitivity recurrences can compute sensitivities for probabilistic loops
for which closed-forms of the variables’ moments do not exist.

5 Related Work

Sensitivity & Probabilistic Programs. Bayesian networks can be seen as special
loop-free probabilistic programs. The sensitivity of Bayesian networks with dis-
crete probability distribution was studied in [13,14]. The works of [9,31] provide
a framework to analyze properties (sensitivity among others) of Prob-solvable
Bayesian networks. In contrast, our work focuses on probabilistic loops with more
complex control flow and supports continuous distributions. In recent years, tech-
niques emerged to manually reason about sensitivities of probabilistic programs,
such as program calculi [1], custom logics [4], or type systems [32]. Although
applicable to general probabilistic programs, these techniques require manual
reasoning or user guidance, while our work focuses on full automation.

A fully-automatic and exact sensitivity analyzer for probabilistic programs
with statically bounded loops was proposed in [21]. In comparison, our work
focuses on potentially unbounded loops. The authors of [33] introduce an au-
tomatable approach for expected sensitivity based on martingales. Their tech-
nique proves that a given program is Lipschitz-continuous for some Lipschitz
constant. In contrast, our work produces exact sensitivities for unbounded loops
and we characterize a class of loops for which our technique is complete.
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Recurrences in Program Analysis. Recurrence equations are a common tool in
program analysis. The work of [28,29] first introduced the idea of using lin-
ear recurrences and Gröbner basis computation to synthesize loop invariants.
This line of work has been further generalized in [25,22] to support more general
recurrences. In [18,24] the authors apply linear recurrences to more complex pro-
grams and combine it with over-approximation techniques. The work [11] com-
bines recurrence techniques with template-based methods to analyze recursive
procedures. Recurrence equations were first used for the analysis of probabilistic
loops in [8] to synthesize so-called moment-based invariants. This approach was
further generalized by [26]. Our technique of sensitivity recurrences is applicable
to loops whose variables’ moments do not satisfy linear recurrences. The recent
work [2] studies the synthesis of invariants for such loops, but does not address
sensitivity analysis.

6 Conclusion

We establish a fully automatic and exact technique to compute the sensitivities
of higher moments of program variables for probabilistic loops. Our method is
applicable to probabilistic loops with potentially uncountable state spaces, com-
plex control flow, polynomial assignments, and drawing from common probabil-
ity distributions. For admissible loops, we utilize closed-forms of the variables’
moments obtained through linear recurrences. Moreover, we propose the notion
of sensitivity recurrences enabling the sensitivity analysis for probabilistic loops
whose moments do not admit closed-forms. We characterize a class of loops for
which we prove sensitivity recurrences to be sound and complete. Our experi-
ments demonstrate the feasibility of our techniques on challenging benchmarks.
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A Appendix: Probabilistic Loop Syntax

lop ∈ {and, or}, cop ∈ {=, ̸=, <,>,≥,≤}, Dist ∈ {Bernoulli,Normal,Uniform, . . . }

⟨sym⟩ ::= a | b | . . . ⟨var⟩ ::= x | y | . . .
⟨const⟩ ::= r ∈ R | ⟨sym⟩ | ⟨const⟩ ( + | * | / ) ⟨const⟩
⟨poly⟩ ::= ⟨const⟩ | ⟨var⟩ | ⟨poly⟩ (+ | - | *) ⟨poly⟩ | ⟨poly⟩**n
⟨assign⟩ ::= ⟨var⟩ = ⟨assign right⟩ | ⟨var⟩ , ⟨assign⟩ , ⟨assign right⟩
⟨categorical⟩ ::= ⟨poly⟩ ({⟨const⟩} ⟨poly⟩)* [{⟨const⟩}]
⟨assign right⟩ ::= ⟨categorical⟩ | Dist(⟨const⟩∗)
⟨bexpr⟩ ::= true (⋆) | false | ⟨poly⟩ ⟨cop⟩ ⟨poly⟩ | not ⟨bexpr⟩ | ⟨bexpr⟩ ⟨lop⟩ ⟨bexpr⟩
⟨ifstmt⟩ ::= if ⟨bexpr⟩: ⟨statems⟩ (else if ⟨bexpr⟩: ⟨statems⟩)∗ [else: ⟨statems⟩] end

⟨statem⟩ ::= ⟨assign⟩ | ⟨ifstmt⟩ ⟨statems⟩ ::= ⟨statem⟩+

⟨loop⟩ ::= ⟨statem⟩* while ⟨bexpr⟩ : ⟨statems⟩ end

Fig. 2: Grammar describing the syntax of probabilistic loops ⟨loop⟩. [26]

B Appendix: Variable Dependency

When we refer to
N
↠ as the transitive closure of −→ where at least one of the

direct dependencies is non-linear we mean the following. We say that x
N
↠ y if

– either x
N−→ y, or

– there exists some z such that either
• x −→ z and z

N
↠ y, or

• x
N−→ z and z ↠ y

Definition 11 (Variable Dependency). Let P be a probabilistic loop and
x, y ∈ Vars(P). We say that x depends directly on y, in symbols x −→ y, if y
appears in an assignment of x or an assignment of x occurs in an if-statement
where y appears in the if-condition. Furthermore, we say that the dependency is
non-linear, in symbols x

N−→ y, if y appears non-linearly in an assignment of x.

Moreover, the transitive closure ↠ of −→ is the smallest relation satisfying:

– If x −→ y, then x ↠ y, and
– if x ↠ y ∧ y ↠ z, then x ↠ z.

The relation
N
↠ formalizing transitive non-linear dependencies is the smallest

relation satisfying:
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– If x
N−→ y, then x

N
↠ y,

– if x
N
↠ y ∧ y ↠ z, then x

N
↠ z, and

– if x ↠ y ∧ y
N
↠ z, then x

N
↠ z.

Definition 12 (p-Influenced Dependency). Let P be a program with param-
eter p ∈ Params(P) and x, y ∈ Vars(P) with x −→ y. Then, the direct dependency
between x and y is p-influenced, in symbols x −→p y if at least one of the following
conditions hold:

– An assignment of x contains y and occurs in an if-statement with the if-
condition involving p or a p-dependent variable.

– An assignment of x contains y and is a probabilistic choice with some prob-
ability of the choice depending on p.

– An assignment of x contains a term c ·M · y where c is constant and M is
a monomial in program variables (possibly containing y). Moreover, either c
contains p or M contains a p-dependent variable.

If x ↠ y, we write x ↠p y if at least one of the dependencies from x to y is

p-influenced. That means x ↠p y if and only if

– x −→p y, or

– x −→p v ↠ y for some variable v, or

– x ↠ v −→p y for some variable v, or

– x ↠ v1 −→p v2 ↠ y for some variables v1, v2.

If x ↠ y and x ̸↠p y we call the dependency between x and y p-free.

C Appendix: Moment Recurrences

For programs of our programming model (cf. Figure A) and a monomial M in
program variables, a moment recurrence for M equates the expected value of
M at iteration n+1, that is E(Mn+1) to expected values of program variable
monomials at iteration n (Definition 2). It is always possible to construct a
moment recurrence for M if all variables in all branching conditions are finite
valued [26]. For completeness, we restate the process introduced in [26] on how
moment recurrences are constructed.

Normalized Programs. To simplify the construction of moment recurrences, we
can restrict ourselves to probabilistic loops satisfying the following conditions:

– All distribution parameters are constant.
– The loop body is a flat sequence of guarded assignments. That means, every

assignment is of the form x = e1[C]e2, where x is a program variable and C
is a boolean condition over program variables. The expression e1 is either a
distribution or a probabilistic choice of polynomials and is assigned to the
variable x if C evaluates to true. The expression e2 is a single variable and
is assigned to x if C evaluates to false.
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– In the loop body, every program variable is only assigned once.

Programs satisfying these conditions are called normalized. Every program
from our program model can be transformed into a normalized program while
maintaining the joint distribution of program variables as well as the dependen-
cies between program variables as shown in [26].

Construction of Moment Recurrences. Let P be a normalized program with
all program variables in branching conditions (or guards) being finitely-valued.
Given a monomial in program variables M , the moment recurrence for M is
constructed by starting with the expression E(Mn+1) and replacing variables
contained in the expression by their assignments bottom-up as they appear in
the loop-body of P. Throughout, the linearity of expectation is used to convert
expected values of polynomials into expected values of monomials. Because P
is a normalized program, its loop body is a sequence of guarded assignments.
Assume x is a program variable appearing in E(Mn+1). Therefore,M = M ′ ·xk

n+1

for some monomial M ′ free of x. The assignment of x is either a probabilistic
choice of polynomials,

x = a0{p0} . . . {pi−1}ai [C] d,

for polynomials a0, . . . , ai and constant probabilities p0, . . . , pi−1, or the as-
signment of x is drawing from a known distribution,

x = Dist [C] d.

Because P is a normalized program, C is a boolean condition and d is a
program variable. In case the assignment of x is a (guarded) probabilistic choice
of polynomials, E(Mn+1) is rewritten to

E(Mn+1) = E(M ′ · xk
n+1) = E

(
M ′
(
d[¬C] +

∑
pia

k
i [C]

))
.

The second option is that the assignment of x is a (guarded) draw from a
distribution. In this case E(Mn+1) is rewritten to

E(Mn+1) = E(M ′ · xk
n+1) = E (M ′d[¬C]) + E (M ′[C])E

(
Distk

)
.

In the above expressions [C] denotes the Iverson bracket, evaluating to 1 if
C holds and to 0 otherwise. By assumption, all program variables in branching
conditions, and hence all variables in C, are finitely-valued. Therefore, we can
replace all occurrences of [C] and [¬C] in the above equations with polynomials
over variables occurring in the condition C as described in [26]. Throughout the
process, the linearity of expectation is used to turn expected values of polyno-
mials into linear combinations of expected values of monomials. By applying the
replacement of program variables by their assignments for every variable bottom-
up as they appear in the loop body, we end up with a the moment recurrence
for E(Mn+1).
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D Appendix: Proof of Theorem 2

Theorem 2 (Non-Admissible Sensitivities). Let P be a probabilistic pro-
gram, p ∈ Params(P), x ∈ Vars(P), and assume all the following conditions:

1. All variables occuring in branching conditions are finite.
2. All defective variables are p-independent.
3. All dependencies on defective variables are p-free.

Then, for every monomial M in program variables descending from x, Algo-
rithm 1 terminates on input P, M and p.

Proof. First, we cover the case where the monomial M contains a defective vari-
able. If M contains a defective variable y, then y must be p-independent by
condition 2. As M is a descendant of x, we have x ↠ y. Moreover, if there ex-
ists a p-dependent variable z in M different from y, Lemma 2 gives us x ↠p y.

However, x ↠p y contradicts our condition 3 that all dependencies on defective
variables must be p-free. Hence, the monomial M is p-independent and Algo-
rithm 1 terminates on line 2.

For the second, more involved case, assume all variables inM are effective and
possibly p-dependent. Algorithm 1 does not terminate if and only if the algorithm
adds infinitely many monomials W ′ to the set Sens one line 11 or to the set
Mom on lines 13 or 19. Every monomial W ′ added to the set Mom occurs in the
moment recurrence of W from line 16. Moreover, every monomial W ′ added to
the set Sens occurs in the sensitivity recurrence of W from line 6 and hence also
occurs in the moment recurrence of W . That is because the sensitivity recurrence
and the moment recurrence of W share the same monomials (Definition 6).

In [26], the authors showed that every monomial W ′ occurring in the moment
recurrence of a monomial W decreases with respect to a well-founded ordering if
(A) all variables in branching conditions are finite, and (B) all variables inW and
W ′ are effective. Premise (A) matches our condition 1. Therefore, to show that
only finitely many monomials are added to Sens and Mom (and hence establish
termination of Algorithm 1), it suffices to show that all monomials W ′ added to
Sens and Mom only contain effective variables.

First, note that every monomial W ′ added to Sens or Mom is a descen-
dant of the variable x. This holds because the algorithm starts with Sens =
{M},Mom = ∅, the monomial M is a descendant of x, and W ′ occurs in the
moment recurrence of some W ∈ Sens ∪Mom.

Claim: All monomials W ′ added to Sens on line 11 only contain effective vari-
ables. Towards a contradiction, assume some monomial W ′ is added to Sens on
line 11 andW ′ contains a defective variable y. By condition 2, y is p-independent.
By Lemma 2 and condition 3, all variables in W ′ are p-independent. Hence, the
monomial W ′ is p-independent and ∂pE(W ′

n) was replaced by 0 on line 8. There-
fore, W ′ could not have been added to Sens on line 11.

Claim: All monomials W ′ added to Mom on line 13 only contain effective
variables. Towards a contradiction, assume some monomial W ′ is added to Mom
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on line 13 andW ′ contains a defective variable y. The monomialW ′ occurs in the
sensitivity recurrence of W (fixed at line 6) with coefficient (∂/∂pc). Therefore,
W ′ occurs in the moment recurrence of W with coefficient c. By Lemma 2 and
condition 3, the constant c does not contain the parameter p. Hence, (∂/∂pc) = 0
and E(W ′

n) was replaced by 0 on line 9. Therefore, W ′ could not have been added
to Mom on line 13.

Claim: All monomials W ′ added to Mom on line 19 only contain effective
variables. First, note that for all monomials W ′ added to Mom on line 13, the
corresponding coefficient (∂/∂pc) ̸= 0 and hence c must contain the parameter p.
Therefore, by Lemma 2, for all variables y in all monomials W ′ added to Mom
in the first while-loop, we have x ↠p y. By transitivity of ↠p, we get x ↠p y for
all variables y in all monomials W ′ added to Mom on line 19. Therefore, all W ′

added to Mom on line 19 cannot contain defective variables by condition 3. ⊓⊔
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E Appendix: Non-Admissible Benchmarks

u,w,x,y,z = 0,1,2,3,4

while ⋆:
z = z+p2 {1/2} z+p

y = y - 5*p*z

w = 5*w + x2

x = 5 + w+x

u = x + p*z*y

end

(a) Non-Admissible (Fig. 1b)

x,y,z,var = 1,2,a,0

d1,d2 = 5,3

run = -1

while ⋆:
run = 2*run + z2

z = z+1

d1,d2 = d1*d2+3, d1+z

x = 3*x + d2 + par2*z + run*z

y = 3*(x-y) + par2*run

end

(b) Non-Admissible-2

cnt,total = 0,0

x1,x2 = 1,2

y1,y2 = 0,3

z1,z2 = 1,5

while ⋆:
cnt = cnt + 1

x1 = x12 + q*x2

x2 = y1 + cnt + q

y1 = r*(y1-cnt) + y2*cnt

y2 = r*y1 + 5

z1 = cnt2 - cnt + p*z1

z2 = z1*3 - 5*(z2-p)

total = x2 + y2 + z2

end

(c) Non-Admissible-3

y,x,z,cnt = 0,0,0,0

while ⋆:
x = DiscreteUniform(1,5)

if x < 3:

inc = Bernoulli(p1)

cnt = cnt + inc

else:

inc = Bernoulli(p2)

cnt = cnt - inc

end

f = DiscreteUniform(0,10)

y = y2 + x * f

z = cnt2 - 3*y2 + x3

end

(d) Non-Admissible-4

Fig. 3: Four parameterized non-admissible loops used for our experiments (Sec-
tion 4).
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