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Abstract. A series of recent studies have shown that permissionless
blockchain peer-to-peer networks can be partitioned at low cost (e.g.,
only a few thousand bots are needed), stealthily (e.g., no control plane
detection is available), or at scale (e.g., the entire bitcoin network can
be divided into two). In this paper, we focus on the sustainability of
partitioning attacks in Bitcoin, which is barely discussed in the litera-
ture. Existing studies investigate new partitioning attack strategies ex-
tensively but not how long the partition they create lasts. Our findings
show that, fortunately for Bitcoin, the permissionless peer-to-peer net-
work can be partitioned but only for a short time. In particular, two
recent partitioning attacks (i.e., Erebus [12], SyncAttack [10]) do not
maintain partitions for more than 10 minutes in most cases. After ana-
lyzing Bitcoin’s peer eviction mechanism (which makes the two original
attacks difficult to sustain), we propose optimization strategies for the
two attacks and calculate the total cost of the optimized attacks for a
1-hour attack duration. Our results complement the original attack stud-
ies: (i) the optimized Erebus attack shows that it requires at least one
adversary-controlled Bitcoin node close to a target and a few additional
expensive attack steps for sustainable attacks, and (ii) the optimized
SyncAttack can create sustainable partitions only with excessive cost.

1 Introduction

Blockchain systems are desired to maintain highly reliable network connectivity
across distributed nodes even in the face of severe network attacks or failures.
However, Bitcoin and many permissionless blockchains are at risk of connection
starvation attacks in which all available connections of public nodes are occupied
by an adversary, leaving no resource for legitimate nodes. Connection starvation
is first discussed as a part of the Eclipse attack in 2015 [7]. An adversary opens
many connections to a target Bitcoin node and prevents other legitimate Bitcoin
peers from establishing connections to it, effectively partitioning the target node
from the rest of the peer-to-peer (P2P) network.

After the publication of the Eclipse attack, Bitcoin developers deployed sev-
eral countermeasures, including a peer eviction mechanism in which a fully con-
nected node terminates one of its existing connections to make room for a new
incoming connection [3]. This peer eviction, along with several other measures,
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mitigates the Eclipse attacks by allowing legitimate nodes to connect to the
partitioned target and thus deliver new blocks from the canonical chain; that
is, the target node is no longer partitioned. In other words, the peer eviction
mechanism makes the Eclipse attacks unsustainable.

Since then, there are two notable attacks showing partitioning the Bitcoin
P2P network is still possible. In the Erebus attacks [12], a malicious autonomous
system (AS) partitions a single target node by poisoning its internal peer database.
SyncAttack [10] splits the entire Bitcoin P2P network into two partitions by mo-
nopolizing the incoming connection slots of all public Bitcoin nodes with a few
tens of malicious peers. We observe, however, these studies have not properly
evaluated the effect of the peer eviction mechanism against their attacks. Un-
fortunately, thus, sustainability of these attacks is left untested. Their original
reports pay significant attention to the end-to-end attack evaluation, i.e., from
the attack preparation phase to the attack completion phase with 100% connec-
tion occupation. Yet, the two studies do not show empirical evidence that their
attacks are sustainable enough (e.g., partition continues while several blocks are
generated), which is a critical condition for follow-up attacks, such as double-
spending attacks or stubborn mining attacks [9]. The lack of rigorous evaluation
on attack sustainability motivates us to test these partitioning attacks in our
independent study.

To that end, we first test the sustainability of the original versions of the Ere-
bus attack and SyncAttack. As we measure how long these attacks successfully
partition a node (in the case of the Erebus attack) or two groups of nodes (in the
case of the SyncAttack), we face a number of practical difficulties. For example,
to accurately measure the moment when a partition ends, we should evaluate the
Erebus attack in the Bitcoin mainnet, which has not been conducted in existing
literature due to the challenging attack setup and ethical concerns. Evaluating
SyncAttack accurately is even more challenging as it would create two partitions
of thousands of nodes. We carefully apply several workarounds for these evalu-
ations and estimate the attack sustainability effectively. Our evaluation of the
sustainability of these partitioning attacks, the first of its kind, shows that the
two attacks would not maintain successful network partitioning to some mean-
ingful extent, significantly limiting the effectiveness of these attacks in practice.

After learning that the two existing partitioning attacks in their original
versions fail to last long enough (e.g., for 1 hour) for follow-up exploits, we go
one step further and optimize for their maximal sustainability. Our optimization
requires thorough reviews of the original attack strategies and the current Bit-
coin’s peer connection mechanism. Our optimized attacks are designed against
the up-to-date Bitcoin Core implementation v23.0 (as of October 2022).

We then measure the required cost of the optimized attacks when aiming to
maintain partitions for a given duration (e.g., 1 hour). For useful risk analysis of
these attacks in practice, we define the attack cost as two-dimensional resources:
(1) the number of unique, adversary-controlled network address groups, and (2)
the distance (in network latency) from adversary-controlled nodes to the target
client(s). Our analysis of the attack cost for these optimized attacks shows that
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the Erebus attack can be sustainable (e.g., maintain a partition for an hour)
with moderately more attack resources (compared to what is described in its
original version) and a few additional attack steps. In contrast, the SyncAttack
shows its feasibility only with excessive cost.

The organization of the paper is as follows. We first provide a brief overview of
recent partitioning attacks in Section 2. We then test the attack sustainability of
two unmodified attacks in Section 3. In Section 4, we present our new optimized
attack strategy based on Bitcoin’s peer connection mechanism and calculate the
cost of 1-hour sustainability with these optimized attacks.

2 Related Work

In this section, we review a few recent Bitcoin partitioning attacks [6, 10–12].
We particularly focus on the Erebus attack and SyncAttack, and highlight their
differences in Table 1. We also briefly review two partitioning attacks based on
Internet routing manipulation (i.e., BGP hijacking), although evaluating their
attack sustainability is beyond the scope of this paper.

Targets Stealthiness
Attack

resources
Preparation

time
Peer table

manipulation
Evaluation in

the original paper
Deployed

countermeasures

Erebus
Attack

Single
Bitcoin node

Yes an AS 5-6 weeks Required
No direct evaluation, only

simulation with AS topology
Two deployed at
Bitcoin Core

Sync
Attack

Entire
Bitcoin network

No
125

Bitcoin nodes
Not mentioned Not required

No direct evaluation
(measurement in mainnet,
experiment in testnet)

None

Table 1. Comparison of two known Bitcoin partitioning attacks.

2.1 Erebus: a Stealthy Single-Node Partitioning Attack

In the Erebus attack [12], a malicious AS, such as a tier-1 or tier-2 Internet Ser-
vice Provider, fills a target node’s peer tables (i.e., new and tried) with adversary-
controlled IP addresses. Connections from the target to any of those IPs traverse
through the adversary AS and therefore, are controlled by the adversary. The
target is partitioned when all of its peer connections go through the adversary
AS. As the sending rate of the attack payloads to the target is negligible and
no routing manipulation is involved in both the data plane and control plane,
it is difficult to detect the Erebus attacks. The original publication [12] shows
that individual Bitcoin nodes can be partitioned, possibly in parallel, within 5-6
weeks of attack execution. Unfortunately, the attack sustainability is unknown
since no experiments are given to show what happens after the Erebus attack
successfully partitions a node.

2.2 SyncAttack: a P2P Network Splitting Attack

SyncAttack [10] aims to partition a group of Bitcoin nodes from the rest of the
P2P network, i.e., splitting it into two. In the SyncAttack, the adversary occupies
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all inbound connection slots of all reachable nodes to prevent other nodes connect
to them. The paper [10] argues that when all inbound slots of existing nodes are
occupied, newly-joined nodes have no choice but to establish connections to
the adversarial nodes. As a result, the P2P network would be split into two
partitions: existing nodes versus new, arriving nodes. To make an existing node
prioritizes the adversary-generated connections, the adversary sends fresh block
and transaction data via 16 connections from the same IP and establishes other
99 connections from IPs with distinct network groups to it. Again, the attack
sustainability is not properly evaluated in the original publication [10].

2.3 Bitcoin Partitioning Attacks Using Routing Manipulation

Apostolaki et al. [6] show that a malicious AS can perform BGP hijacking attacks
against the IP prefixes hosting targeted Bitcoin nodes. Once the traffic to such
prefixes is hijacked, the adversary AS drops Bitcoin traffic at the network layer,
effectively cutting off the communication between targeted Bitcoin nodes and
the rest of the P2P network. This is further extended in a multi-cryptocurrency
attack by Saad et al. [11]. Since evaluating the sustainability of such attacks
inherently requires measuring the sustainability of the routing manipulation, we
leave it for future work.

3 Re-evaluating Existing Partitioning Attacks

We aim to evaluate the sustainability of the Erebus attack [12], and SyncAttack
[10]— in the face of the peer eviction mechanism that has made the Eclipse at-
tack unsustainable. In particular, we use partitioning duration as the metric to
measure the sustainability of the two attacks. It indicates the time difference be-
tween the moment when the target node(s) is partitioned and the moment when
it receives a new block from the canonical chain. To measure the partitioning
duration, one needs to conduct the two attacks (i.e., partitioning a node or a
group of nodes) successfully and waits for the partitions to cease.

Thus, in this section, we test the sustainability of two existing partitioning
attacks and provide empirical evidence that they do not create effective parti-
tioning to any meaningful extent in practice. In the following Section 3.1–3.2,
we describe how we re-evaluate the two attacks and measure their sustainability
in practical test environments.

3.1 Re-evaluation of the Original Erebus Attack

Now, let us explain how we test the original Erebus attack with the sustainability
metric.
Direct implementation & evaluation of the original attack. First, we
explain how we are supposed to conduct the experiments of the original Erebus
attack, according to its publication [12]. It follows five steps:

(i) Deploy a target Bitcoin node on the mainnet.
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(ii) Send many adversary-chosen IPs (called shadow IPs) from a malicious ISP
with various network groups to the target node.

(iii) Wait until the target node’s peer table is filled with the shadow IPs and the
target makes all its outgoing connections to the shadow IPs.

(iv) Monopolize the target node’s inbound connections by making connections
from the malicious ISP.

(v) Measure how long the target node is partitioned, checking the moment the
target node receives new blocks.

Challenges. Measuring the sustainability of the Erebus attack, however, in-
volves several challenges.

• Mainnet experiment required. For measuring the attack sustainability, we should
identify the exact moment other benign Bitcoin nodes relay new blocks to the
target node. Therefore, ideally, the experiment should be performed in the
mainnet in order to reflect other real Bitcoin nodes’ behavior.

• Need huge network resources. The original Erebus attack requires an adversary
to be an autonomous system (AS), utilizing 500K shadow IPs for occupying
the target node’s peer table. To experiment it as is in the mainnet, we need
to be an ISP or we need to own and control many Bitcoin nodes with many
distributed IP addresses, both of which are extremely hard to achieve.

• Long attack execution time. The Erebus attack requires up to several weeks
to be successfully mounted, which is too long for making practical evaluations
in the mainnet.

Our workarounds. Let us describe how we address the three challenges with
our workarounds. To simplify the experiment, we only consider the target node’s
behavior after being partitioned. This is acceptable as we only measure the attack
sustainability, not the end-to-end attack effectiveness. Instead of implementing
the end-to-end Erebus attack, we make the target node behaves as if it is par-
titioned by the Erebus attack. For this attack emulation, we do the followings:
(i) we set up a simple, temporary firewall to prevent the target node from mak-
ing new outbound connections, and (ii) we occupy all inbound connections of
the target by manually disconnecting its peers (via RPC calls). As a result, the
target node cannot make outbound connections to other benign nodes, and all
inbound connections are occupied by the attacker as if the Erebus attack is suc-
cessfully launched. This short-cut implementation of the Erebus attack for our
sustainability evaluation can detour the challenges above: (a) we do not need to
be an ISP or own/control large numbers of IP addresses, as we skip occupying
the target node’s peer table; (b) the attack does not require a long execution
time because we manually disconnect all peers from the target node; (c) due
to (a) and (b), our experiments now do not disturb other benign nodes in the
mainnet.

Results. Table 2 shows the overall result of the original Erebus attack’s parti-
tioning duration from a mainnet experiment. The original Erebus attack main-
tains its partitioning to the target node for 297 seconds on average, where most
of the experiments have ended within 900 seconds.
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Partitioning duration: average±stdev 90% percentile 95% percentile

297 sec ± 293 sec 679 sec 847 sec

Table 2. Measured attack duration of the Erebus attack. The attack does not maintain
partitions longer than 10 minutes in most cases.

Why does the attack not last long? The partition ends when a benign node de-
livers new blocks to the target; however, the original Erebus attack design does
not have attack features that prevent such a partition-breaking event triggered
by benign peers. The target node faces frequent inbound connections from other
benign peers due to Bitcoin’s peer eviction mechanism (see Section 4 for more
details), and some of them would try relaying recent blocks right after establish-
ing a connection. Even when only one benign node tries to relay blocks to the
target node, as there is no barricade, the partition is broken by the delivered
blocks.

The attack usually ends in less than 900 seconds, which is in sufficient for
follow-up attacks. For example, double spending needs to make the target node
confirm a fake transaction, which requires several blocks to be generated while
the target is being partitioned.

3.2 Re-evaluation of the Original SyncAttack

Now, let us re-evaluate the original SyncAttack, by applying the same metric as
we evaluated the original Erebus attack in the previous section. SyncAttck differs
from the Erebus attack in a number of ways. The most notable difference is its
scale; i.e., SyncAttack aims to split the entire Bitcoin network into two whereas
the Erebus attack seeks to partition a single node. Therefore, we need to consider
new challenges and strategies to make a reasonable SyncAttack evaluation.
Direct implementation and evaluation of the original attack. First, we
explain how we conduct the sustainability experiments for the original SyncAt-
tack. Experiments should follow these steps:

(i) Prepare a network with two benign partitions (i.e., existing nodes and arriving
nodes) and a small group of adversary nodes.

(ii) Add a new node to the network and let this new node establishes new out-
bound connections referring to the DNS seeder.

(iii) Check whether the partition is maintained. We consider a partition ends
when the new node establishes outgoing connections to both benign partitions.

(iv) Repeat (ii)-(iii), and end the experiment when the partition ends.

Challenges. Here, we list the challenges of the implementations above:

• Implementation of a large-scale network split. In contrast to the Erebus attack,
evaluating the original SyncAttack requires a test network of thousands of
Bitcoin clients to split into two. It is nearly impossible to conduct such an
experiment in the mainnet. Simulating it would be challenging as well.

• Implementation of churn-ins and their bootstrapping. The Bitcoin network
in practice experiences high churns, and new incoming nodes are important
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Proportion of adversary nodes in seeder 71.4% 50% 33.3%

Prob. of maintaining the partition after single node arrival 12.5% 3.7% 1.5%

Prob. of maintaining the partition for 1 hour 0 0 0

Table 3. Probability of maintaining partitions with SyncAttack for (i) every single
arriving node, and (ii) multiple arriving nodes within an hour. Partitions do not last
at all after having multiple arriving nodes in an hour.

components for SyncAttack. When a new node enters the Bitcoin network, it
requests reachable nodes’ IP addresses to DNS seeds.

Our workarounds. Let us explain how we realize the re-evaluation of SyncAt-
tack with the following workarounds.

• Evaluation with over-estimations. Evaluating SyncAttack is challenging mainly
due to the size and complexity of the attack execution. To reduce the ex-
periments to a manageable size and manage the complexity while offering
meaningful experiment results, we simplify our sustainability experiments with
over-estimation. That is, we take a number of reduction strategies for our ex-
periments to obtain the attack sustainability results that are strictly longer
than the actual attack sustainability. We ensure at every reduction step that
the attacks in our simplified evaluations are strictly easier to sustain than the
large-scale attacks in the mainnet. We argue that this simplification makes an
effective experiment for proving the unsustainability of SyncAttack. By show-
ing that the strictly easier SyncAttack cannot achieve sustainability, we can
show that the original SyncAttack must also be unsustainable.

First, we reduce the size of the experiment by scaling down the original
SyncAttack’s strategy in the regtest network. Our regtest network consists of
three types of nodes: 10 adversary nodes, and existing/arriving nodes with
the same number. To use the terminologies in the original publications of
SyncAttack [10], the adversary nodes take the roles of Au (occupy all available
inbound slots of reachable nodes) and Ar (occupy all available outbound slots
of reachable nodes). This is a strict advantage to the adversary since it is
easier to maintain the partition in a small-scale test network rather than in
mainnet.

Second, we make an assumption that the adversary occupies almost all
inbound connection slots of reachable nodes. Under this assumption, the ad-
versary has a higher chance of maintaining the partition because new partition-
breaking connections from existing nodes would not occur.

• Implementing churn-ins with a real DNS seeder. In our evaluation framework,
we continuously add new Bitcoin nodes into the network and test whether Syn-
cAttack successfully continues to partition the target network. For a realistic
experiment of SyncAttack, we deploy a custom DNS seeder [1], and include
all IP addresses of existing nodes, arriving nodes and adversary nodes in our
experiment setup into the seeder. Each new Bitcoin node fetches IP addresses
from the DNS seeder and establishes 10 outgoing connections among them.
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Results. Table 3 shows the probability of maintaining the partitioning in Syn-
cAttack by varying proportion of adversary nodes in the seeder. The experi-
ment is conducted 1,000 times for each condition, checking if partitioning can
be maintained after a new single node arrives in the network. The partitioning
duration of SyncAttack turns out to be extremely short. Even in the case where
the adversary occupies half of the IP lists in the DNS seeder, the probability of
maintaining the partition after single node arrival is 3.7%. If the attacker tries
to maintain the partitioning for an hour (i.e. minimum partitioning duration for
performing double-spending), it has to withstand all new arriving nodes during
that time. According to Bitnodes [13], 851 nodes joined the Bitcoin network ev-
ery hour on average; the probability of maintaining the partitioning for an hour
converges to zero. By looking at the fact that SyncAttack would not sustain in
such advantageous conditions (i.e., controlling over the network with only a few
dozen of nodes, and adversary occupying almost all inbound connection slots of
reachable nodes), we claim that SyncAttack execution in mainnet is not feasible
after all.

4 Optimization and Cost Analysis

Knowing that the two original attacks [10, 12] are unsustainable in practice, we
aim to improve these attacks to see whether sustainable Bitcoin partitioning
attacks are possible in practice. To make stronger final conclusions about their
sustainability, we aim to optimize the attacks by maximizing the partitioning
duration in consideration of Bitcoin’s peer eviction mechanism in Section 4.1.

For accurate and realistic cost analysis, we measure the attack resources
required for the optimized attacks in practice. We define and model the necessary
resources for these optimized attacks as a two-dimensional attack resource vector:
(1) the number of distinct network groups controlled by the adversary (i.e.,
netgroup cost), and (2) the physical distance to the target node(s) (i.e., latency
cost). Upon this, we derive the required cost of the optimized attacks when
attempting to maintain partitioning for a given time duration (e.g., 1 hour).
Our optimization often requires significantly more attack resources than the
original attacks to attain certain sustainability. Our analysis of the attack cost
in these optimized attacks concludes that a node partition made by the optimized
Erebus attack can be sustained with reasonably high investment (e.g., 100 unique
network groups along with adversary closer to the target than 95% of all inbound
connections towards it) while the optimized SyncAttack becomes sustainable
only with extremely high attack resources (e.g., 22K unique network groups
along with adversary closer to each target in the reachable node than 95% of all
inbound connections towards them).

4.1 Optimization of Two Original Attacks

We first look back at why the original partitioning attacks fail to sustain. A
successful partitioning attack campaign begins to fail when a new benign con-
nection is made to the target, and starts to deliver new blocks. This means that
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Fig. 1. Flow chart of Bitcoin’s connection handling logic. An unmodified benign Bitcoin
node always accepts new incoming connections, with the exception of three abnormal
cases (marked with *) that occur by extremely unlikely chance.

to maximize attack sustainability, we should prevent new benign connections
from delivering new blocks to our target(s). To this end, we investigate Bitcoin’s
peer connection mechanism as it is where the decision to allow a new connection
to the target node is made. Therefore, we investigate Bitcoin’s peer connection
management logic since now it is essential to know when and how a new con-
nection is made to the target node. As we optimize the partitioning attacks,
we optimize their attack strategies with respect to Bitcoin’s peer connection
management logic, particularly, the peer eviction mechanism.

Bitcoin’s peer connection management logic. Figure 1 shows the overall
flow diagram of Bitcoin’s peer connection management logic. We analyze the
CreateNodeFromAcceptedSocket() in net.cpp and extract this diagram without
any omission. We summarize the two important design principles:

• Admitting inbound connections (almost) unconditionally. The Bitcoin client
admits new inbound connections unconditionally in all practical scenarios ex-
cept for the following three abnormal, unlikely cases:

(i) the client has manually banned the new peer.

(ii) the new peer has violated the Bitcoin protocol and is thus considered
discouraged.

(iii) the client has manually reduced the maximum number of inbound con-
nections.

• Evicting the least prioritized. A new inbound connection may cause an eviction
of an existing peer connection in order to free up one connection slot for
this new inbound connection. Existing peer connections are ordered by their
priority and only the least prioritized one is evicted.

Our conclusions drawn from these principles are two-fold. First, the remote
attacker cannot prevent new benign connections from being made to the target
node unless it can force the target and the benign nodes to turn into abnormal
states, which is impossible. Second, therefore, partitioning adversaries have to
evict any new benign connection before it delivers new blocks from the canonical
blockchain.
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Probability of withstanding a single inbound connection. Now, our goal
is narrowed down to maintaining a partition by evicting new benign connec-
tions before they deliver new blocks to the target. As a target node may receive
multiple new connections from other benign peers while being partitioned, we
should evict multiple such benign connections. We can consider each new benign
connection is made independently since benign peers are not coordinated in the
permissionless Bitcoin network and also incoming connections do not change the
target’s internal state with respect to the peer eviction logic (unless the benign
connection breaks the partition).

Let us define ppc (partitioning continues), the probability the existing parti-
tioning continues when a single new benign connection is made to the target. In
other words, it is the probability that a new benign peer is evicted before deliver-
ing any new block. We want to ensure that we achieve ppc very close to 1.0 since
the target is partitioned until the first new inbound connection is made with
the probability of 1− ppc. Because all these events are independent, the expec-
tation of the number of new inbound connections the adversary can withstand
is 1

(1−ppc)
. For example, a five-nines probability for ppc = 0.99999 ensures that

partitioning can last after about 100, 000 new inbound connections on average.
Breaking down ppc. Given the current Bitcoin’s peer connection management
logic, we summarize and propose the two orthogonal optimization strategies for
maximizing ppc. These two optimizations must be conducted independently to
maximize the overall partitioning duration.

The current Bitcoin’s peer eviction policy has three rules3 that prioritize 28
peer connections so that they are not evicted for a new (attacker’s) connection:

• Rule ➀ Netgroup-based prioritization. Prioritize 4 peers with top-4 netgroup-
key values.

• Rule ➁ Ping-based prioritization. Prioritize 8 peers with the lowest minimum
ping times.

• Rule ➂ Message-history-based prioritization. Prioritize 16 peers that have ex-
changed recent blocks and transactions.

The probability ppc indeed is equivalent to the probability that the newly-
made benign connection we want to evict is not prioritized by these rules. This is
because, after prioritizing 28 peer connections according to the rules above, the
target Bitcoin node always selects a single, the least prioritized connection (i.e.,
the youngest peer in the network group with the most connections) to evict
among the rest. Thus, now we analyze these three rules and the adversary’s
chance of having the benign connection not prioritized after all.

First, pnt4 (non-top-4), the probability that a new benign connection has non-
top-4 netgroupkey value at the target. This can be increased by making many
connections to the target with many unique netgroups. Second, pebp (evicted-
before-ping): the probability that a new benign connection is evicted before its
ping time (with respect to the target) is calculated. This is related to how quickly

3 We exclude some rare-case rules found in the Bitcoin Core implementation, which
are not useful for our current discussion.
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an adversary can send new attack connection(s) to the target and evict the new
benign connection before it finishes the ping calculation. This probability can
be increased by locating the attacker’s nodes very close to the target. Third,
pebbt (evicted-before-block/tx): the probability that a new benign connection is
evicted before any blocks or transactions are sent to the target. This probability
can also be increased by locating the adversary’s nodes close to the target.
Designing two orthogonal optimization strategies. Finally, we design de-
tailed attack strategies. We first separate out the optimization for pnt4 since an
event of being prioritized by Rule ➀ is independent of the events of being pri-
oritized by the latter two rules. This is because the network groups of inbound
connections are irrelevant to how quickly the adversary’s new connections can
be made to the target. In other words, having many network groups as attack
resources do not have a direct correlation with getting physically close to the
target. Therefore, our first attack strategy deals with Rule ➀ should maximize
pnt4 by raising the bar to be selected as the top-4 netgroupkey values.

Our second attack strategy aims to optimize pebp by minimizing the time
to send attacker’s new connections to the target so that the admitted benign
connection is not prioritized either by Rule ➁ or Rule ➂. In practice, ping time is
always calculated before allowing a new peer to send any blocks or transactions.
Thus, Rule ➂ can be ignored since the second attack strategy, if successful,
prevents any blocks or transaction messages from a benign connection after all.

Therefore, the probability ppc is simply derived as the multiplication of the
two independent probabilities pnt4 and pebp, which is given by

ppc = pnt4 · pebp (1)

Let us provide some more details on these two orthogonal attack strategies.
Netgroup-flooding. To maximize pnt4, our attacker should flood connections
to the target node with as many unique network groups as possible. To describe
why such a simple (yet expensive) strategy ensures optimality, let us quickly
sketch how the current Bitcoin implementation prioritizes nodes with certain
netgroups. From Bitcoin 0.12.0, Bitcoin prioritizes four peer connections with
the largest netgroupkeys among its inbound peers. The netgroupkey is calculated
in a deterministic manner using a cryptographic hash function (i.e., SipHash)
with a random seed that is known only to each node. The network group (i.e.,
the upper 16-bit of IPv4 addresses) is used as an input to the hash function and
its digest becomes the netgroupkey of each peer. This way, the attacker cannot
predict which network groups will be prioritized. As a result, the only way for
the attacker to maximize pnt4 is to raise the bar for being selected as the top-4
netgroupkey value by flooding connections with many unique network groups.
Evict-before-ping. To maximize pebp, our attacker should make her new con-
nections to the target node before it finishes the ping computation with the new
benign connection. To achieve that, the attacker must first fill up all the available
inbound connection slots of the target node in order to get notified whenever a
new benign connection is made.

Next, to ensure that the target node receives and accepts the attacker’s new
connection request before finishing a ping computation of the new benign con-
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nection, the adversary should be located as close to the target as possible. We
consider a number of practical scenarios to minimize the ping distance to the
target node. First, if a target is in a public cloud (e.g., AWS, Google Cloud), an
adversary can create instances at the same cloud data center and measure ping
distance to the target until it obtains a small enough (e.g., a few milliseconds)
ping value. Second, if a target is not in a public cloud but its approximate loca-
tion is known by its IP address (e.g., [2], [4], [5]), an adversary may attempt to
find bots or public clouds that are close enough to the target.

We accomplish the optimization strategies above by implementing the follow-
ing steps with our simple attack script: (1) the adversary makes 114 connections
(with nodes located close to the target node) to the target concurrently by
establishing VERSION handshakes; (2) each connection performs a ping-pong
exchange with the target every 2 minutes to stay alive; (3) each connection im-
mediately reconnects to the target as soon as its TCP session with the target
is terminated due to eviction. This way, we can ensure that the adversary is
notified of the new benign connection, and evict it with minimum delays.

4.2 Cost Analysis of the Optimized Attacks

Finally, we evaluate the optimized attack strategies and estimate the required
attack costs. Note again that we focus on the sustainability of these attacks and
the cost incurred by maintaining an existing partition using the two attacks.
Cost analysis with no real-world experiments. We estimate the required
cost for the sustainability of the two attacks without real-world experiments be-
cause making several simplifying assumptions (as we did for the sustainability
tests in Section 3.1-3.2) is not allowed here. Instead, we derive analytical frame-
works that allow us to compute the attack duration of the two attacks for varying
the two-dimensional attack costs.

As shown in Eq. (1), optimizing the sustainability of these partitioning at-
tacks is composed of two orthogonal attack strategies. The two strategies re-
quire two different attack resources: maximizing pnt4 requires a large number
of adversary-controlled IP addresses with unique netgroups (the more unique
netgroups, the higher pnt4) while maximizing pebp requires adversary-controlled
nodes that are close to the target node (the closer to the target, the higher pebp).
We describe how we derive two costs.
Netgroup cost. As mentioned earlier, in each node, peers with top-4 netgroup-
key values are prioritized. The adversary can raise the threshold for being chosen
as the top-4 netgroupkey values by making connections from numerous distinct
network groups. If the adversary can use G unique network groups to make con-
nections to the target, pnt4 is simply derived as

(
G
4

)
/
(
G+1
4

)
= G−3

G+1 because its
value should be smaller than top-4 values among G+ 1 unique network groups
(G from the adversary, 1 from the benign peer).
Latency cost. For a successful evict-before-ping event, our adversary nodes
should reconnect to the target earlier than a new benign connection. To be
more specific, the adversary should reach the target before the target receives
a pong message from the new benign connection. Analyzing the Bitcoin Core’s
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Netgroup\Pebp 0.9 0.95 0.97 0.99

10 0.001 0.002 0.003 0.004

20 0.022 0.043 0.055 0.070

50 0.106 0.203 0.260 0.333

100 0.174 0.333 0.427 0.546

1,000 0.269 0.515 0.661 0.845

10,000 0.281 0.538 0.691 0.882

22,000 0.282 0.539 0.692 0.884

Table 4. Probability of maintaining partitions with the optimized Erebus attack for
one hour. With significant attack resources (e.g., owning 100 unique network groups
with pebp = 0.95, 0.99), partitions can be maintained with moderate probability.

network protocol, we learn that two round-trip times (RTTs) are required for a
benign node to finish a ping-time calculation and the same two RTTs are needed
for an adversary node to make another connection to the target after being
notified of the new benign connection. Therefore, ignoring minor perturbations
in end-to-end network latency between these nodes, an adversary can continue
its partitioning (i.e., succeed evict-before-ping) if her node is closer to the target
compared to the benign peer; otherwise, the partition may end because of this
new benign connection. We empirically confirm this with five mainnet Bitcoin
nodes in five different locations in Amazon EC2. From this, we state that the
adversary can maximize pebp by getting closer than other benign nodes with
respect to the target node.

Final cost estimation of the two optimized attacks. We finally derive the
estimated cost for the 1-hour sustainability of the two optimized attacks. Table 4
shows the probability of maintaining a partition with the optimized Erebus at-
tack. Each value is derived by ppc

n = (pnt4 · pebp)n, where n is the number of
benign peers that adversary has to withstand for one hour. In Section 3.1, we ob-
serve that about n = 12 (≃ 3, 600/297) new benign connections must be handled
properly for the goal of 1-hour sustainability. As the Erebus attack partitions a
single node, the adversary can locate her attack nodes close to the target and
achieve a high pebp (e.g., 0.95, 0.97, 0.99). If the Erebus attacker owns 100 unique
network groups (as it claims to be in the original paper), it can sustain the par-
titioning for an hour with a probability of 33% and 55% with pebp=0.95 and
0.99, respectively. With some more attack network resources, say 1,000 network
groups, we can expect 52% and 85% of successful 1-hour attacks with pebp=0.95
and 0.99, respectively. Having unique network groups beyond 1,000, however,
only marginally improves the attack duration. Note that the maximum unique
netgroups we test is 22,000, which is the unique netgroups we find in a large
Mirai botnet [8]

Table 5 shows the probability of maintaining a partition with the optimized
SyncAttack. We assume benign reachable nodes are partitioned into two groups
of size A and B, while the adversary owns G reachable nodes with unique net-
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Netgroup\Pebp 0.9 0.95 0.97 0.99

1,000 0.00 0.00 0.00 0.00

10,000 0.00 0.00 0.00 0.02

22,000 0.00 0.00 0.0013 0.44

Table 5. Probability of maintaining partitions with the optimized SyncAttack for one
hour, suggesting that SyncAttack is nearly impossible to sustain despite the optimiza-
tion.

work groups. Let us consider a single new arriving node to the network due to
network churn. Each reachable node may end up establishing a new reliable con-
nection from this new node with a probability (1 − ppc) if the new node makes
a connection request. Since the eviction process at each node is independent of
each other, we can say that on average A′ = (1− ppc)A nodes in one group and
B′ = (1− ppc)B nodes in the other group would be willing to establish reliable
peer connections from the new benign node (again, if the benign node wishes to
do so).

The new node can make a new connection to any of the three groups: A′

nodes in one partition, B′ nodes in the other partition, and X adversary nodes.
The new node repeats reconnecting to other nodes when its connection is evicted
quickly due to the optimal partitioning attack strategies until it finally makes a
reliable peer connection to a reachable node. Thus, for the current partition to
continue, a new connection from the new node should not be made to the first two
groups at the same time (because that would bridge the two partitions). The
probability for withstanding single arriving node Psingle in SyncAttack would
therefore be given by

Psingle =

(
A′ +G

A′ +B′ +G

)10

+

(
B′ +G

A′ +B′ +G

)10

−
(

G

A′ +B′ +G

)10

. (2)

For Table 5, we consider two partitions of size 7,000 each (i.e., A = B =
7, 000) [13]. For the number of new peer nodes per hour, we used the churn rate
we measure earlier in Section 3.2; that is, we assume that 851 new peers appear
on the mainnet for an hour on average.The overall probability for maintaining
partition for an hour with the optimized SyncAttack is thus derived as Psingle

851.
SyncAttack turns out to be unsustainable in most cases even with optimization
strategies. Even in the case where the adversary has attack resources with 22K
network groups, it is hard to expect that SyncAttack would sustain for an hour
(i.e., 0% with pebp = 0.95, 1% with pebp = 0.97). Our experiment shows that
SyncAttack may maintain its partitioning with some reasonable probability of
44% only when it has a significant amount of attack resources. First, the adver-
sary must control 22K or more nodes with unique network groups. This can be
achieved only when the adversary has mega-size botnets (e.g., a Mirai botnet
of 2.3M bots has 22K unique network groups). Second, the adversary should be
close to all reachable nodes. That is, the adversary must be co-located with all
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the 14K reachable nodes in the Bitcoin network to achieve pebp = 0.99 (i.e., en-
suring 99th percentile in terms of RTT distance for all the nodes). This appears
to be challenging to achieve because reachable Bitcoin nodes are distributed in
various networks.

5 Conclusion

That blockchain networks can be partitioned by unauthorized adversaries is
still a serious threat to their security and safety. Our work helps us to further
characterize existing partitioning attacks with the notion of attack sustainability,
which is a critical yet less-emphasized metric for partitioning attacks. We hope
this work guides the direction for developing additional countermeasures against
partitioning attacks in Bitcoin and other blockchain networks.
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