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Abstract. Generalized metric spaces are obtained by weakening the requirements (e.g., sym-
metry) on the distance function and by allowing it to take values in structures (e.g., quantales)
that are more general than the set of non-negative real numbers. Quantale-valued metric spaces
have gained prominence due to their use in quantitative reasoning on programs/systems, and
for defining various notions of behavioral metrics.
We investigate imprecision and robustness in the framework of quantale-valued metric spaces,
when the quantale is continuous. In particular, we study the relation between the robust
topology, which captures robustness of analyses, and the Hausdorff-Smyth hemi-metric. To
this end, we define a preorder-enriched monad PS , called the Hausdorff-Smyth monad, and
when Q is a continuous quantale and X is a Q-metric space, we relate the topology induced
by the metric on PS(X) with the robust topology on the powerset P(X) defined in terms of
the metric on X.
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Introduction

In the 1970s, Lawvere [20] proposed viewing metric spaces as small categories enriched over the
monoidal category R+, whose objects are the extended non-negative real numbers, where there is
an arrow x → y if and only if x ≥ y, and + and 0 provide the monoidal structure. In this way,
one recovers most notions and results about metric spaces as instances of those about enriched
categories [18].

Enrichment over arbitrary monoidal categories, however, is unnecessarily general for studying
metric phenomena. Indeed, the base of enrichment for Lawvere’s metric spaces belongs to the class
of small (co)complete posetal categories, where the tensor commutes with colimits. These categories
are called quantales and small categories enriched over a quantale Q are dubbed Q-metric spaces.
Quantales are a useful compromise between arbitrary monoidal categories and the specific case of
R+ [9,15,5]. Beside a substantial simplification of the theory, restricting to quantales allows to use
well-known order-theoretic notions which do not have obvious counterparts in arbitrary monoidal
categories, but are crucial to relating Q-metric spaces to other structures such as topological spaces.

Quantale-valued metric spaces are also increasingly used for quantitative reasoning on pro-
grams/systems, and for defining various notions of behavioral metrics [10,3,7,25,27,11]. The use
of quantitative methods is important in coping with the uncertainty/imprecision that arises in the
analysis of, e.g., probabilistic programs or systems interacting with physical processes. In these con-
texts, quantales provide a flexible framework which allows choosing the most suitable notion of
distance for the specific analysis one is interested in.

Quantales arise naturally also in analysis of algorithms, namely, costs are values in certain quan-
tales (see Example 2), but researchers in this area usually consider only subsets of these quantales
and their partial order.

Motivations. the notions of imprecision and robustness are relevant in the context of software tools
for the analysis of hybrid/continuous systems. These tools manipulate (formal descriptions of) math-
ematical models. A mathematical model is usually a simplified description of the system (and its
environment), with the requirement that the simplification should be safe, i.e., if the analysis says
that the model satisfies a property, then the system also satisfies that property. Usually, safe sim-
plification is achieved by injecting non-determinism in the model (non-determinism is useful also to
model known unknowns in the environment and don’t care in the model). For hybrid/continuous sys-
tems there is another issue: imprecision in observations. In fact, predictions based on a mathematical
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model and observations on a real system can be compared only up to the precision of measurements
on the real system. We say that an analysis is robust when it can cope with small amounts of im-
precision in the model, i.e., if a robust analysis says that a model M has a property, then it says so
also for models that have a bit more non-determinism than M . Working with metric spaces makes
it possible to define imprecision formally and to quantify the amount of non-determinism added to
a model.

Following [22], given a metric space X, we can identify analyses with monotonic maps on the
complete lattice P(X) of subsets of X ordered by reverse inclusion.3 However, even when imprecision
is made arbitrarily small, two subsets with the same closure are indistinguishable. Therefore, analyses
should be considered over the complete lattice C(X) of closed subsets, rather than that of arbitrary
subsets, and should cope with small amounts of imprecision in the input. Formally, this property
was defined as continuity with respect to the robust topology [21, Def. A.1] on C(X). This yields
a functor from metric spaces to T0-topological spaces, which maps a metric on X to the robust
topology on C(X). An anonymous referee suggested that the robust topology might be related to
the Hausdorff-Smyth hemi-metric in [13, Proposition 1], and thus the functor from metric spaces
to topological spaces might be replaced with an endofunctor on hemi-metric spaces (aka, Lawvere’s
metric spaces).

Contributions. This paper studies the link between the robust topology and the Hausdorff-Smyth
hemi-metric—as suggested by an anonymous referee of [8]—and in doing so, addresses also more
general issues, namely:

1. The notion of imprecision and the definition of robust topology are generalized to Q-metric spaces
when Q is a continuous quantale, and the results in [22] are extended to this wider setting (see
Section 4.1).

2. Indistinguishability is investigated in the context of Po-enriched categories4 and the notion
of separated object is introduced. In Section 5, we prove that, under certain conditions, every
Po-enriched monad can be transformed into one that factors through the full sub-category of
separated objects. The conditions that allow this transformation hold in many Po-enriched
categories, such as that of Q-metric spaces and that of topological spaces.

3. The Hausdorff-Smyth Po-enriched monad PS is defined on the category of Q-metric spaces, with
Q an arbitrary quantale (see Section 6). When Q is a continuous quantale, the topology induced
by the metric on PS(X) is shown to coincide with a topology on P(X), called *-robust, defined
in terms of the metric on X. In general, the *-robust topology is included in the robust topology,
but they coincide when Q is linear and non-trivial (e.g., R+).

Although we apply the construction in Section 5 only to the monad defined in Section 6, it is
applicable to other monads definable on Q-metric spaces (see Section 7) or on other Po-enriched
categories.

Summary. The rest of the paper is organized as follows:

– Section 1 contains the basic notation and mathematical preliminaries.
– Section 2 introduces the category Qnt of quantales and lax-monoidal maps, and states some

properties of continuous quantales.
– Section 3 defines the Po-enriched category MetQ of Q-metric spaces and short maps for a

quantale Q, and gives some of its properties.
– Section 4 introduces two topologies associated with a Q-metric space when Q is continuous, and

characterizes the open and closed subsets.
– Section 5 defines separated objects in a Po-enriched category A , and shows that, under certain

assumptions on A satisfied by MetQ, every Po-enriched monad on A can be transformed (in
an optimal way) into one that factors through the full sub-category of separated objects.

– Section 6 defines the Hausdorff-Smyth distance dS and a related Po-enriched monad on MetQ,
characterizes the preorder induced by dS and, when Q is continuous, also the topology induced
by dS .

– Section 7 contains an overview of related work and some concluding remarks.
– Omitted proofs appear in Appendix A.

3 The category of complete lattices and monotonic maps is the framework proposed in [6] for abstract
interpretations.

4 Po denotes the category of preorders and monotonic maps.
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1 Mathematical Preliminaries

In this section, we present the basic mathematical notation used throughout the paper. We assume
basic familiarity with order theory [14]. We write ⊔S to denote the join (aka lub) of a set S, and
write ⊓S to denote the meet (aka glb) of S. Binary join and meet of two elements x and y are
written as x ⊔ y and x ⊓ y, respectively. We write ⊥ and ⊤ to denote the bottom and top element
of a partial order Q, respectively, when they exist.

We also assume basic familiarity with category theory [4]. In this article:

– Set denotes the category of sets and functions (alias maps).
– Po denotes the category of preorders and monotonic maps.
– Po0 denotes the full (reflective) sub-category of Po consisting of posets.
– Top denotes the category of topological spaces and continuous maps.
– Top

0
denotes the full (reflective) sub-category of Top consisting of T0-spaces.

All categories above have small limits and colimits. Set , Po and Po0 have also exponentials, thus they
are examples of symmetric monoidal closed categories [18]. Po and Top (and their sub-categories)
can be viewed as Po-enriched categories [18], e.g., the hom-set Po(X,Y ) of monotonic maps from
X to Y can be equipped with the pointwise preorder induced by the preorder Y .

Other categories introduced in subsequent sections are Po-enriched, and this additional structure
is relevant when defining adjunctions and equivalences between two objects of a Po-enriched category.

Definition 1 (Adjunction). Given a pair of maps X Yf
g in a Po-enriched category A ,

we say that they form:

1. an adjunction (notation f ⊣ g) △⇐⇒ f ◦ g ≤ idY and idX ≤ g ◦ f , in which f and g are called
left- and right-adjoint, respectively.

2. an equivalence △⇐⇒ idY ≤ f ◦ g ≤ idY and idX ≤ g ◦ f ≤ idX .

We use ‘∈’ for set membership (e.g., x ∈ X), but we use ‘:’ for membership of function types
(e.g., f :X → Y ) and to denote objects and arrows in categories (e.g., X:Top and f :Top(X,Y )). The
powerset of a set X is denoted by P(X). Subset inclusion is denoted by ⊆, whereas strict (proper)
subset inclusion is denoted by ⊂. The finite powerset (i.e., the set of finite subsets) of X is denoted
by Pf (X), and A ⊆f B denotes that A is a finite subset of B.

We denote with ω the set of natural numbers, and identify a natural number with the set of its
predecessors, i.e., 0 = ∅ and n = {0, . . . , n− 1}, for any n ≥ 1.

2 Quantales

Conceptually, a quantale [23,24,2] is a degenerate case of monoidal category [18], in the same way
that a partial order is a degenerate case of category.

Definition 2 (Quantale). A quantale (Q,⊑,⊗) is a complete lattice (Q,⊑) with a monoid struc-
ture (Q,⊗, u) satisfying the following distributive laws:

x⊗ (⊔S) = ⊔{x⊗ y | y ∈ S} and (⊔S)⊗ x = ⊔{y ⊗ x | y ∈ S},

for any x ∈ Q and S ⊆ Q. A quantale is trivial when ⊥ = u (which implies that ∀x ∈ Q. ⊥ = x),
affine when u = ⊤, linear when ⊑ is a linear order, and commutative when ⊗ is commutative
(in this case the two distributive laws are inter-derivable). A frame5 is a quantale where ⊗ = ⊓
(thus, necessarily commutative and affine).

The complete lattice (Q,⊑) amounts to a complete and cocomplete category, while the distribu-
tivity laws imply that:

– ⊗ is monotonic. Thus, (Q,⊗, u) makes (Q,⊑) a (strict) monoidal category.
– ⊗ (viewed as a functor) preserves colimits, in particular ⊥⊗ x = ⊥ = x⊗⊥.

5 Alternative names for frame are locale and Heyting algebra, see [17].
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These properties imply that the functors x ⊗ − and − ⊗ y, have right-adjoints x\− and −/y,
i.e., x ⊗ y ⊑ z ⇐⇒ y ⊑ x\z and x ⊗ y ⊑ z ⇐⇒ x ⊑ z/y, called left- and right-residual,
respectively. In commutative quantales (i.e., degenerate examples of symmetric monoidal closed
categories) x\z = z/x is denoted as [x, z] and is given by [x, z] = ⊔{y | x⊗ y ⊑ z}.

Example 1. We present some examples of quantales. The first four examples describe linear, commu-
tative and affine quantales (some are frames). The last two items (excepts in degenerate cases) give
non-linear, non-commutative and non-affine quantale. The construction Q/u always returns an affine
quantale and preserves the linearity and commutative properties, while

∏
j∈J Qj and QP preserve

the affine and commutative properties.

1. The quantale R+ of [20] is the set of non-negative real numbers extended with ∞, with x ⊑
y

△⇐⇒ x ≥ y and x ⊗ y
△
= x + y. Therefore, ⊔S = inf S, ⊓S = supS, ⊥ = ∞, u = ⊤ = 0,

[x, z] = z − x if x ≤ z else 0.
2. R⊓ is similar to R+, but x ⊗ y

△
= x ⊓ y = max(x, y). Thus, R⊓ is a frame, u = 0, [x, z] = z if

x ≤ z else 0 (⊤, ⊥, ⊔S, and ⊓S are the same as in R+).
3. N+ is the sub-quantale of R+ whose carrier is the set of natural numbers extended with ∞. N⊓

is the sub-frame of R⊓ with the same carrier as N+.
4. Σ is the sub-quantale of R+ whose carrier is {0,∞}. Σ is a frame.
5. Q/u is the sub-quantale of Q whose carrier is {x ∈ Q | x ⊑ u}. Thus, u is the top element of Q/u.
6.

∏
j∈J Qj is the product of the quantales Qj , with ⊑ and ⊗ defined pointwise.

7. QP is the quantale of monotonic maps from the poset P to the quantale Q, with ⊑ and ⊗ defined
pointwise.

8. (P(M),⊆,⊗) is the quantale (actually a boolean algebra) of subsets of the monoid (M, ·, e), with
u = {e} and A⊗B

△
= {a · b | a ∈ A, b ∈ B}.

9. (P(X2),⊆,⊗) is the quantale (boolean algebra) of relations on the set X, with u = {(x, x) |
x ∈ X} and:

R⊗ S
△
= {(x, z) | ∃y ∈ X.(x, y) ∈ R, (y, z) ∈ S}.

Example 2. We consider some quantales arising in the analysis of algorithms. We identify algorithms
with multi-tape deterministic Turing Machines (TM), which accept/reject strings written in a finite
input alphabet A. In this context, one is interested in quantale-valued cost functions X → Q, rather
than distances.

– The size s(w) of an input w for a TM is a value in the quantale N+, namely the length of the
string w. In particular, the size of an infinite string is ∞, and the size of the concatenation of
two strings is the sum of their sizes.

– The time (i.e., the number of steps) taken by a TM on a specific input w is again a value in N+.
In particular, a TM failing to terminate on w takes time ∞, and the time taken for executing
sequentially two TMs on w is the sum of the times taken by each TM (plus a linear overhead
for copying w on two separate tapes, so that the two TMs work on disjoint sets of tapes).

The time complexity associated to a TM typically depends on the input (or its size), thus it cannot
be a cost in N+. Such cost should be drawn from a quantale reflecting this dependency, namely a
higher-order quantale.6 We now describe some of such quantales from the most precise to the most
abstract.

1. The most precise quantale is NA∗

+ (i.e., the product of A∗ copies of N+). A t ∈ NA∗

+ maps each
finite input w ∈ A∗ to the time taken by a TM on w.

2. A first abstraction is to replace t ∈ NA∗

+ with T ∈ Nω
+, where T (n) is the best upper-bound for

the time taken by a TM on inputs of size n, i.e., T (n) = max{t(w) | s(w) = n}.
3. In practice (by the linear speed-up theorem), time complexity is given in O-notation, i.e., T ∈

Nω
+ is replaced with the subset O(T ) of Nω

+ such that T ′ ∈ O(T ) ⇐⇒ ∀n ≥ n0.T
′(n) ≤

C ∗ T (n) for some n0 and C in ω.
If we replace Nω

+ with the partial order LO of O-classes O(T ) ordered by reverse inclusion, we
get a distributive lattice (i.e., binary meets distribute over finite joins, and conversely): the top is

6 This resembles higher-order distances used to compare functional programs [7,25].
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O(0), the bottom is O(∞), the join O(T1)⊔O(T2) is O(T1)∩O(T2) = O(T1⊔T2) = O(min(T1, T2)),
the meet O(T1) ⊓O(T2) is O(T1 ⊓ T2) = O(max(T1, T2)) = O(T1 + T2).
The lattice LO is distributive, because the complete lattice underlying Nω

+ is distributive, but it
is not a frame (as it fails to have arbitrary joins). However, there is a general construction, see
[17, page 69], which turns a distributive lattice L into the free frame I(L) over L. More precisely,
I(L) is the poset of ideals in L ordered by inclusion, and the embedding x 7→↓ x from L to I(L)
preserves finite meets and joins.

4. A simpler way to obtain a frame is to take the subset of LO consisting of the O(nk) with
k ∈ [0,∞]. This linear frame is isomorphic to N⊓, namely k ∈ N⊓ corresponds to O(nk).

There are several notions of morphism between quantales, we consider those corresponding to
lax and strict monoidal functors.

Definition 3. A monotonic map h:Q → Q′ between quantales is called:

– lax-monoidal △⇐⇒ u′ ⊑′ h(u) and ∀x, y ∈ Q.h(x)⊗′ h(y) ⊑ h(x⊗ y);
– strict-monoidal △⇐⇒ u′ = h(u) and ∀x, y ∈ Q.h(x)⊗′ h(y) = h(x⊗ y).

Qnt denotes the Po0-enriched category of quantales and lax-monoidal maps, where Qnt (Q,Q′) has
the pointwise order induced by the order on Q′.

We give some examples of monotonic maps between quantales.

Example 3. In the following diagram we write for lax- and for strict-monoidal maps,
1 for the trivial quantale (with only one element ∗), !Q for the unique map from Q to 1, and f ⊣ g
for “f is left-adjoint to g”:

1 Q Q/u Σ
⊤Q

⊤
!Q

g

⊤
f

g′

⊤
f ′

N+ R+ R⊓
i
⊤
c

id

– ⊤Q maps ∗ to ⊤;
– f is the inclusion of Q/u into Q, and g maps x to x ⊓ u;
– f ′ maps ⊥ to ⊥ and ⊤ to ⊤, and g′ maps ⊤ to ⊤ and x ⊏ ⊤ to ⊥;
– i is the inclusion, c(x) = ⌈x⌉ is integer round up, and id is the identity.

The frames for measuring the time complexity of TMs (see Example 2) are related by obvious
monoidal maps going from the more precise to the more abstract frame:

NA∗

+ Nω
+ I(LO) N⊓

f g h

– f maps t ∈ NA∗

+ to T ∈ Nω
+ such that T (n) = max{t(w) | s(w) = n};

– g maps T ∈ Nω
+ to the principal ideal ↓ O(T ) ∈ I(LO);

– h maps X ∈ I(LO) to n ∈ N⊓ such that n = min{k | ∀A ∈ X.A ⊆ O(nk)}.

2.1 Continuous Quantales

To reinterpret in quantale-valued metric spaces the common ϵ-δ definition of continuous maps, and
relate such spaces to topological spaces, we restrict to continuous quantales, i.e., quantales whose
underlying lattices are continuous. Note that linear quantales are always continuous. We recall the
definition of a continuous lattice and related notions. More details may be found in [12,1,14].

Definition 4. Given a complete lattice (Q,⊑) and x, y ∈ Q, we say that:

1. D ⊆ Q is directed △⇐⇒ ∀x, y ∈ D.∃z ∈ D.x ⊑ z and y ⊑ z .
2. x is way-below y (notation x ≪Q y, or x ≪ y when Q is clear from the context) △⇐⇒ for any

directed subset D of Q, y ⊑ ⊔D =⇒ ∃d ∈ D.x ⊑ d.
3. x is compact △⇐⇒ x ≪ x.

We write ↓↓y for {x ∈ Q | x ≪ y}, and Q0 for the set of compact elements in Q.



6 F. Dagnino et al.

The following are some basic properties of the way-below relation.

Proposition 1. In any complete lattice (Q,⊑), and for all x, x0, x1 ∈ Q:

1. x0 ≪ x1 =⇒ x0 ⊑ x1.
2. x′

0 ⊑ x0 ≪ x1 ⊑ x′
1 =⇒ x′

0 ≪ x′
1.

3. ⊥ ≪ x.
4. ↓↓x is directed. In particular, x0, x1 ≪ x =⇒ x0 ⊔ x1 ≪ x.

Definition 5 (Continuous Lattice). Given a complete lattice Q, we say that:

1. Q is continuous △⇐⇒ ∀x ∈ Q.x = ⊔↓↓x.
2. B ⊆ Q is a base for Q

△⇐⇒ ∀x ∈ X.B ∩ ↓↓x is directed and x = ⊔(B ∩ ↓↓x).
3. Q is ω-continuous △⇐⇒ Q has a countable base.
4. Q is algebraic △⇐⇒ Q0 is a base for Q.

A complete lattice Q is continuous exactly when it has a base. Any base for Q must includes
Q0. The set Q0 is a base only when Q is algebraic and the bottom element ⊥ is always compact.
Continuous lattices enjoy the following interpolation property (see [1, Lemma 2.2.15]):

Lemma 1. For any continuous lattice Q and q1, q2 ∈ Q, q1 ≪ q2 =⇒ ∃q ∈ Q.q1 ≪ q ≪ q2.

Continuous quantales enjoy a further interpolation property:

Lemma 2. In every continuous quantale, q1 ≪ q2 =⇒ ∃q ≪ u.q1 ≪ q2 ⊗ q and q1 ≪ q2 =⇒
∃q ≪ u.q1 ≪ q ⊗ q2.

Proof. Appendix A.1. ⊓⊔

Example 4. The quantales in Example 1 have the following properties:

– N+, N⊓, and Σ are ω-algebraic. More precisely, all elements in these quantales are compact, and
x ≪ y ⇐⇒ x ≥ y (or equivalently x ⊑ y).

– R+ and R⊓ are ω-continuous, e.g., the set of rational numbers with ∞ is a base, x ≪ y ⇐⇒
(x = ∞∨ x > y), and ∞ is the only compact element.

– P(M) and P(X2) are algebraic, the sets of compact elements are Pf (M) for P(M) and Pf (X
2)

for P(X2), and A ≪ B ⇐⇒ A ⊆f B.

Continuous lattices (and quantales) have the following closure properties:

Proposition 2. Continuous (algebraic) lattices are closed under small products. ω-continuous lat-
tices are closed under countable products.

Proof. The claims follow from the fact that if ∀j ∈ J.Bj is a base for Qj , then {x ∈ ∏
j∈J Bj |

∃J0 ⊆f J.∀j ∈ J − J0.xj = ⊥j} is a base for
∏

j∈J Qj . ⊓⊔

We conclude by observing that linear quantales are always continuous.

Proposition 3. Every linear quantale is continuous.

Proof. Use [12, Exercise 1.7], where linearly ordered complete lattices are called complete chains. ⊓⊔

3 Quantale-valued Metric Spaces

In [20], Lawvere views metric spaces as R+-enriched categories, and shows that several definitions
and results on metric spaces are derivable from general results on V -enriched categories, where V
is a symmetric monoidal closed category (see [18]). We replace R+ with a quantale Q, and consider
the Po-enriched category of Q-metric spaces and short maps, whose objects are Q-enriched small
categories and whose arrows are Q-enriched functors.

Definition 6 (MetQ). Given a quantale Q, the Po-enriched category MetQ of Q-metric spaces
and short maps is given by:
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objects are pairs (X, d) with d:X2 → Q satisfying d(x, y) ⊗ d(y, z) ⊑ d(x, z) and u ⊑ d(x, x); d

induces on X the d-preorder x ≤d y
△⇐⇒ u ⊑ d(x, y).

arrows in MetQ((X, d), (X ′, d′)) are f :X → X ′ satisfying ∀x, y ∈ X.d(x, y) ⊑ d′(f(x), f(y)) with
hom-preorder f ≤ f ′ △⇐⇒ ∀x ∈ X.f(x) ≤d′ f ′(x).

An arrow f :MetQ((X, d), (X ′, d′)) is said to be an isometry when ∀x, y ∈ X.d(x, y) = d′(f(x), f(y)).

In comparison with the properties of a standard metric d, we have that:

– the triangular inequality d(x, z) ≤ d(x, y)+d(y, z) becomes d(x, y)⊗d(y, z) ⊑ d(x, z). Note that,
in R+, the order ⊑ is ≥, and ⊗ = +;

– d(x, y) = 0 ⇐⇒ x = y is replaced by the weaker property u ⊑ d(x, x), which corresponds to
d(x, x) = 0. Note that in R+, we have u = 0 = ⊤;

– symmetry d(x, y) = d(y, x) is unusual in (enriched) category theory.

In the absence of symmetry, separation, i.e., d(x, y) = 0 =⇒ x = y, should be recast as
(d(x, y) = 0 ∧ d(y, x) = 0) =⇒ x = y, which in a quantale setting becomes (u ⊑ d(x, y) ∧ u ⊑
d(y, x)) =⇒ x = y. The objects with this property are exactly the (X, d) such that the preorder ≤d

is a poset. Section 5 gives a more abstract definition of separated object in a Po-enriched category.

Example 5. We relate MetQ for some quantales Q to more familiar categories:

1. R⊓-metric spaces generalize ultrametric spaces, i.e., spaces where the metric satisfies d(x, z) ≤
max(d(x, y), d(y, z)).

2. MetΣ is (isomorphic to) the Po-enriched category Po of preorders and monotonic maps, and
the separated objects of MetΣ are the posets.

3. Met 1 is the category Set of sets and functions, with the chaotic preorder on Set (X,Y ), i.e.,
f ≤ g for every f, g;Set (X,Y ), and the separated objects of Met 1 are the sets with at most one
element.

We summarize some properties of MetQ, which ignore the Po-enrichment, proved in [18] for a
generic complete and cocomplete symmetric monoidal closed category in place of a quantale Q.

Proposition 4. For any quantale Q, the category MetQ has small products, small sums, equalizers
and coequalizers.

Proof. Appendix A.2. ⊓⊔

Lax-monoidal maps induce Po-enriched functors.

Definition 7. Given a lax monoidal map h:Qnt (P,Q), the Po-enriched functor h:MetP → MetQ

is such that h(X, d)
△
= (X,h ◦ d) and is the identity on arrows.

4 Topologies on Q-metric spaces

When Q is a continuous quantale, one can establish a relation between MetQ and Top, thereby
generalizing the open ball topology induced by a standard metric. In general, to a Q-metric d on
X one can associate at least two topologies on X. When Q is ω-continuous—a restriction desirable
from a computational viewpoint (see [26])—convergence can be defined in terms of sequences.

Definition 8. Given a continuous quantale Q and (X, d):MetQ, the open ball with center x ∈ X

and radius δ ≪ u is B(x, δ)
△
= {y ∈ X | δ ≪ d(x, y)}. The open ball topology τd is the topology

generated by the family of open balls.
One can define also the dual open ball Bo(x, δ)

△
= {y ∈ X | δ ≪ d(y, x)}, and the corresponding

dual open ball topology τod .

When d is symmetric, i.e., d(x, y) = d(y, x), the two notions of open ball agree. In the rest of this
section, we focus on open balls only, but the results hold mutatis mutandis also for the dual notion.
The following proposition implies that open balls form a base for τd, i.e., every open in τd is a union
of open balls.
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Proposition 5. Open balls satisfy the following properties:

1. x ∈ B(x, δ).
2. δ ⊑ δ′ =⇒ B(x, δ′) ⊆ B(x, δ).
3. y ∈ B(x, δ) =⇒ ∃δ′ ≪ u.B(y, δ′) ⊆ B(x, δ).
4. y ∈ B(x1, δ1) ∩B(x2, δ2) =⇒ ∃δ′ ≪ u. B(y, δ′) ⊆ B(x1, δ1) ∩B(x2, δ2).

Proof. Appendix A.3. ⊓⊔

We show that, for continuous quantales, continuity with respect to the open ball topology can
be recast in terms of the usual epsilon-delta formulation:

Lemma 3. If (X, d):MetQ, with Q continuous, and O ⊆ X, then O ∈ τd ⇐⇒

∀x ∈ O.∃δ ≪ u.B(x, δ) ⊆ O. (1)

Proof. Appendix A.4. ⊓⊔

The following result characterizes the closed subsets for the topology τd. Informally, the closure
of a subset A can be described as the set of points from which one can reach a point in A within
any arbitrarily small distance.

Lemma 4. If (X, d):MetQ, with Q continuous, and A ∈ P(X), then the closure of A in the topo-
logical space (X, τd) is given by:

A = {y ∈ X | ∀δ ≪ u.∃x ∈ A.δ ≪ d(y, x)}. (2)

Proof. To prove that A is the closure of A, we show that z ̸∈ A ⇐⇒ exists δ ≪ u such that B(z, δ)
and A are disjoint. The claim follows from the equivalences: z ̸∈ A ⇐⇒ ∃δ ≪ u.∀x ∈ A.δ ̸≪
d(z, x) ⇐⇒ ∃δ ≪ u.B(z, δ) ∩A = ∅. ⊓⊔

Theorem 1. Given a continuous quantale Qi and an object (Xi, di):MetQi
for each i ∈ {1, 2}, if

f :X1 → X2, then f :Top((X1, τd1
), (X2, τd2

)) ⇐⇒

∀x ∈ X1.∀ϵ ≪ u2.∃δ ≪ u1.f(B(x, δ)) ⊆ B(f(x), ϵ). (3)

Proof. Appendix A.5. ⊓⊔

The above characterization of continuous maps suggests a variant of Top in which the objects
are Q-metric spaces (for some continuous quantale Q) instead of topological spaces, while the rest
is unchanged (see [5]):

Definition 9. The Po-enriched category Met c of metric spaces and continuous maps is given by:

objects are the triples (X, d,Q) with Q continuous quantale and (X, d):MetQ;
arrows in Met c((X, d,Q), (X ′, d′, Q′)) are f :Top((X, τd), (X

′, τd′)), or equivalently f :X → X ′ sat-
isfying ∀x ∈ X.∀ϵ ≪ u′.∃δ ≪ u.f(B(x, δ)) ⊆ B(f(x), ϵ).

Similarly, one can define the sub-category Metu of Met c with the same objects, but whose arrows
are the uniformly continuous maps, i.e., f :X → X ′ satisfying ∀ϵ ≪ u′.∃δ ≪ u.∀x ∈ X.f(B(x, δ)) ⊆
B(f(x), ϵ).

4.1 Imprecision and Robustness

We extend the notions of imprecision and robustness, that in [21,22] are defined for standard metric
spaces, to Q-metric spaces for a continuous quantale Q7. Since a Q-metric may fail to be symmetric,
we must consider the “direction” along which the distance is measured. In particular, in the presence
of imprecision, two subsets are indistinguishable when they have the same closure in the dual topology
τod , rather than in the topology τd (Proposition 7). This difference cannot be appreciated when d is
symmetric, because the two topologies coincide.
7 It is possible to relax the assumption of continuity of Q along the lines of [5].
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Definition 10. Given a Q-metric space (X, d), with Q continuous, the notions introduced in [22,
Definition 1] can be recast as follows:

1. BR(A, δ)
△
= {y ∈ X | ∃x ∈ A.δ ≪ d(x, y)} = ∪x∈AB(x, δ) ⊆ X is the set of points belonging to

A ⊆ X with precision greater than δ ≪ u.8

2. Aδ
△
= BR(A, δ)

o ⊆ X is the δ-flattening of A ⊆ X with δ ≪ u, where A
o

is the closure of A in
τod (see Lemma 4).

Proposition 6. The subsets BR(A, δ) have the following properties:

1. A ⊆ BR(A, δ) ⊆ BR(A
′, δ′) when A ⊆ A′ ⊆ X and δ′ ⊑ δ ≪ u.

2. BR(BR(A, δ1), δ2) ⊆ BR(A, δ) when δ1, δ2 ≪ u and δ ≪ δ1 ⊗ δ2[⊑ δi].
3. A

o
= ∩δ≪uBR(A, δ) for every A ⊆ X.

4. BR(A
o
, δ) = BR(A, δ) for every A ⊆ X and δ ≪ u, i.e., A and A

o
are indistinguishable in the

presence of imprecision.
5. BR(A, δ) ⊆ Aδ ⊆ BR(A, δ′) when A ⊆ X and δ′ ≪ δ ≪ u.

Proof. Appendix A.6. ⊓⊔

Example 6. Consider the Q-metric space (X, d), where Q = X = R+ and d(x, y)
△
= y − x if x ≤ y else 0.

If A = [a, b] and δ ∈ (0,+∞), then A = [a,+∞], A
◦
= [0, b], and BR(A

o
, δ) = BR(A, δ) = [0, b+ δ),

as depicted in Fig. 1.

0 +∞a b b + δ

A

A
◦
= [0, b]

A = [a,+∞]

BR(A
◦
, δ) = BR(A, δ) = [0, b + δ)

Fig. 1. Graphic recast of Example 6.

We can generalize to this wider setting also the definition of robust topology in [21, Definition
A.1]. We define such topology on P(X), rather than on the set of closed subsets in the topology τod ,
since the restriction to the set of closed subsets amounts to replacing a topological space with an
equivalent separated topological space (see Section 5).

Definition 11. Given a Q-metric space (X, d), with Q continuous, the robust topology τd,R on
P(X) is given by:

U ∈ τd,R
△⇐⇒ ∀A ∈ U.∃δ ≪ u.P(BR(A, δ)) ⊆ U.

Finally, we characterize the specialization preorder ≤τd,R induced by the robust topology τd,R on
P(X). As a consequence, we have that two subsets are indistinguishable in τd,R exactly when they
have the same closure in τod .

Proposition 7. Let (X, d) be a Q-metric space with Q continuous, and A,B ⊆ X. Then, we have
A ≤τd,R B ⇐⇒ B ⊆ A

o
.

Proof. Appendix A.7. ⊓⊔
8 The terminology used in [22] is “with imprecision less than δ”.
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5 Separation in Preorder-enriched Categories

Structures like preorders and topologies have a notion of indistinguishability between elements.
Informally, in such structures, separation can be understood as the property requiring that indistin-
guishable elements are equal.

In this section, we define and study this notion in the setting of Po-enriched categories. We also
show that the definition separation in this abstract setting subsumes many set-theoretic definitions
within specific categories, in particular the category of Q-metric spaces.

Definition 12 (Separation). Given a Po-enriched category A , we say that:

1. f, g ∈ A(X,Y ) are equivalent (notation f ∼ g) △⇐⇒ f ≤ g ∧ g ≤ f .
2. the hom-preorder A(X,Y ) is separated △⇐⇒ it is a poset.
3. the object Y ∈ A is separated △⇐⇒ A(X,Y ) is separated for every X ∈ A .
4. A is separated △⇐⇒ Y is separated for every Y ∈ A , i.e., A is Po0-enriched.

Remark 1. The definition of “A(X,Y ) is separated” can be recast in terms of equivalence, i.e.,
f ∼ g =⇒ f = g, for every f, g:A(X,Y ). There is a similar recast also for the definition of “A is
separated”, i.e., f ∼ g =⇒ f = g, for every pair (f, g) of parallel arrows in A . In some Po-enriched
categories, separated objects have a set-theoretic characterization that does not refer to arrows:

1. in Po, separated objects are posets.
2. In Top, separated objects are T0-spaces.
3. In MetQ, separated objects are separated Q-metric spaces (see Section 3).

Recall from [18] that a Po-enriched functor F :A - B is full&faithful (notation F :A ⊂ - B)
when the maps FX,Y :A(X,Y ) → B(FX,FY ) are iso in Po, and a Po-enriched sub-category A of
B is full when the Po-enriched inclusion functor is full&faithful.

Definition 13. If A is a Po-enriched category, then A0 denotes the full sub-category of separated
objects in A .

If every object in A is separated, then A0 is equal to A . A weaker property is that every object
in A is equivalent (in the sense of Definition 1) to one in A0. This weaker property holds in Po,
Top, and MetQ.

Proposition 8. In MetQ, every object is equivalent to a separated one.

Proof. Appendix A.8. ⊓⊔

If every object in A is equivalent to a separated one, then every Po-enriched endofunctor on
A can be transformed into one that factors through A0. This transformer lifts to the category of
Po-enriched monads on A .

Definition 14. Given a Po-enriched category A , we denote by Mon(A) the category of Po-enriched
monads on A and monad maps, i.e.

objects: Po-enriched monads on A , i.e., triples M̂ = (M,η,−∗), where:
– M is a function on the objects of A ,
– η is a family of arrows ηX :A(X,MX) for X:A ,
– −∗ is a family of monotonic maps A(X,MY ) → A(MX,MY ) between hom-preorders for

X,Y :A ,
and satisfy the equations:

η∗X = idMX , f∗ ◦ ηX = f , g∗ ◦ f∗ = (g∗ ◦ f)∗. (4)

arrows: θ from M̂ to M̂ ′ are families of maps θX :A(MX,M ′X) for X:A satisfying the equations:

θX ◦ ηX = η′X , θY ◦ f∗ = (θY ◦ f)∗′ ◦ θX . (5)

A basic monad transformer on Mon(A) is a pair (T, in), where T is function on the objects of
Mon(A) and in is a family of monad maps inM̂ from M̂ to TM̂ .
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Remark 2. The category Mon(A) can be made Po-enriched. The enrichment is relevant for defining
equivalence of monads. For our purposes, however, it suffices to relate (by a monad map) a generic
Po-enriched monad on A to one that factors through A0.

We use the simplest form of monad transformer among those in the taxonomy of [16], i.e., basic
transformer. However, the monad transformer described in the following theorem can be shown to
be a monoidal transformer.

Theorem 2. If A is a Po-enriched category and (rX :X → RX | X:A) is a family of arrows in A
such that:

RX:A0 and (rX , sX) is an equivalence for some sX :RX → X, (6)

then (T, in) defined below is a monad transformer on Mon(A):

– T is the function mapping M̂ = (M,η,−∗) to TM̂ = (M ′, η′,−∗′
), where

• M ′X
△
= R(MX)

• η′X
△
= rMX ◦ ηX :A(X,M ′X)

• if f :A(X,M ′Y ), then f∗′ △
= rMY ◦ (sMY ◦ f)∗ ◦ sMX :A(M ′X,M ′Y ).

– in is the family of monad maps such that inM̂,X

△
= rMX :A(MX,M ′X).

Moreover, the definition of T is independent of the choice of sX .

Proof. Appendix A.9. ⊓⊔

6 The Hausdorff-Smyth Monad

In this section, we introduce a Po-enriched monad PS on MetQ, related to the Hausdorff-Smyth
hemi-metric in [13], which extends the powerset monad P on Set to Q-metric spaces. By applying
the monad transformer T defined in Section 5, one obtains a separated version of PS , which amounts
to partitioning P(X) into equivalence classes, for which we define canonical representatives. Finally,
we investigate the relation between PS and the robust topology in Definition 11.

Recall that the monad (P, η,−∗) on Set is given by ηX :Set (X,P(X)) and −∗:Set (X,P(X ′)) →
Set (P(X),P(X ′)), where:

η(x) = {x},
f∗(A) =

⋃
x∈A

f(x).

Definition 15 (The PS monad). Let PS be the function on Q-metric spaces such that PS(X, d) =
(P(X), dS), where dS :P(X)2 → Q is given by:

dS(A,B) = ⊓y∈B ⊔x∈A d(x, y).

The rest of the monad structure for PS, i.e., the unit η and the Kleisli extension −∗, is inherited
from that for P. In particular, η(X,d) = ηX .

We now prove that what we have defined is a Po-enriched monad on MetQ.

Proposition 9. The triple (PS , η,−∗) is a Po-enriched monad on MetQ, i.e.

1. (P(X), dS):MetQ, i.e., u ⊑ dS(A,A) and dS(A,B)⊗ dS(B,C) ⊑ dS(A,C).
2. η:MetQ(X,PS(X)).
3. f :MetQ(X,PS(X

′)) implies f∗:MetQ(PS(X),PS(X
′)).

4. f ≤ g in MetQ(X,PS(X
′)) implies f∗ ≤ g∗ in MetQ(PS(X),PS(X

′)).

Moreover, (PS , η,−∗) satisfies the equations (4) for a monad.

Proof. Appendix A.10. ⊓⊔
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The Hausdorff-Smyth metric dS induces a preorder ≤dS
and an equivalence ∼dS

on P(X). In
the following, we define the canonical representative for the equivalence class of A ⊆ X with respect
to ∼dS

, called the *-closure of A, which turns out to be the biggest subset of X in the equivalence
class.

Definition 16. Given a Q-metric space (X, d), we define:

1. d(A, y)
△
= ⊔x∈Ad(x, y) ∈ Q the *-distance from A ⊆ X to y ∈ X.

2. Ã
△
= {y ∈ X | u ⊑ d(A, y)} the *-closure of A ⊆ X.

Proposition 10. For every Q-metric space (X, d) the following properties hold:

1. dS(A,B) = ⊓y∈Bd(A, y) and d(A, y) = dS(A, {y}).
2. A ≤dS

B ⇐⇒ B ⊆ Ã.
3. A ∼dS

B ⇐⇒ Ã = B̃.

Proof. For each property we give a proof hint.

1. The two equalities follow easily from the definition of dS .
2. We have the following chain of equivalences:

– A ≤dS
B ⇐⇒ u ⊑ dS(A,B) ⇐⇒

– ∀y ∈ B.u ⊑ d(A, y) ⇐⇒
– ∀y ∈ B.y ∈ Ã ⇐⇒ B ⊆ Ã.

3. Immediate by the characterization of ≤dS
. ⊓⊔

6.1 Hausdorff-Smyth and *-Robust Topology

We give a characterization of the topology τdS
on P(X) using a topology τd,S defined by analogy

with the robust topology τd,R of Section 4.1. In summary, we have that τdS
= τd,S ⊆ τd,R when Q

is continuous, and τd,S = τd,R when Q is linear and non-trivial.

Definition 17. Given a Q-metric space (X, d), with Q continuous, we define the topology τd,S on
P(X):

1. BS(A, δ)
△
= {y ∈ X | δ ≪ d(A, y)} ⊆ X is the set of points belonging to A ⊆ X with *-precision

greater than δ ≪ u.
2. the *-robust topology τd,S on P(X) is given by:

U ∈ τd,S
△⇐⇒ ∀A ∈ U.∃δ ≪ u.P(BS(A, δ)) ⊆ U .

Lemma 5. The subsets BS(A, δ) have the following properties:

1. BR(A, δ) ⊆ BS(A, δ) ⊆ BS(A
′, δ′) when A ⊆ A′ ⊆ X and δ′ ⊑ δ ≪ u.

2. δ ⊑ dS(A,BS(A, δ)) for every A ⊆ X and δ ≪ u.

Proof. Appendix A.11. ⊓⊔

Proposition 11. For every Q-metric space (X, d) with Q continuous:

τdS
= τd,S ⊆ τd,R.

Proof. Appendix A.12. ⊓⊔

Lemma 6. For every (X, d):MetQ with Q continuous, A ⊆ X, y ∈ X, and δ ∈ Q:

δ ≪ d(A, y) ⇐⇒ ∃A0 ⊆f A.δ ≪ d(A0, y).

Moreover, if Q is linear and ⊥ ≠ δ, then:

δ ≪ d(A, y) ⇐⇒ ∃x ∈ A.δ ≪ d(x, y).

Proof. Appendix A.13. ⊓⊔
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Proposition 12. If Q is a linear non-trivial quantale, then τd,R = τd,S.

Proof. Appendix A.14. ⊓⊔

Remark 3. Propositions 12 and 7 ensure that, when Q is linear and non-trivial, by applying the
monad transformer T of Section 5, we get a monad mapping a Q-metric space (X, d) to the separated
Q-metric space of closed subsets of X with respect to the dual topology τod with the Hausdorff-Smyth
metric. In this way, we recover the setting of [22] as a special case.

Example 7. When the quantale Q is not linear, the robust topology τd,R can be strictly finer than
the *-robust topology τd,S . For instance, consider the Q-metric space (X, d), in which Q = R+×R+,
X = R2, and the distance is given by d((x, y), (x′, y′)) = (|x − x′|, |y − y′|). Let δ0

△
= (1, 1) and

note that u = (0, 0). Take A
△
= {(0, 2), (2, 0)} ⊆ R2, p △

= (2, 2) ∈ R2, and consider the set O
△
=⋃

δ0≪δ′≪u P(BR(A, δ′)). The set O is in τd,R, but it is not open in the *-robust topology τd,S . The
reason is that d(A, p) = (0, 0) = u. Hence, for any δ ≪ u, the set BS(A, δ) must contain p. But, the
point p is not included in any set in O, because ∀p′ ∈ A. (1, 1) ̸≪ d(p′, p).

7 Concluding Remarks

Related work. Flagg and Kopperman define V -continuity spaces [9, Def 3.1] and V -domains, with
V a value quantale [9, Def 2.9], i.e., the dual V o of V is (in our terminology) a commutative affine
quantale, whose underlying complete lattice is completely distributive—hence, by [1, Thm. 7.1.1],
continuous—and satisfies additional properties formulated using a stronger variant ≪ of the way-
below relation ≪, called the totally-below relation, namely p ≪ q iff for any A ⊆ Q, if q ⊑ ⊔A, then
∃a ∈ A.p ⊑ a (in contrast with the definition of ≪, the set A is not required to be directed). Thus,
a V -continuity space (X, d) is what we call a V o-metric space, while a V -domain is a separated
V o-metric space satisfying further properties. The metric dU in [9, Sec 6] corresponds to our dS ,
and [9, Thm 6.1] characterizes those B such that dU (A,B) = 0 as the subsets of the closure of A in
the topology τod , under the stronger assumption that V is a value quantale. The upper powerdomain
U(X) defined in [9, Sec 6] is almost the separated object equivalent to PS(X), as its carrier consists
of the closed subsets in the topology τod , except the empty one.

Although not every topology is induced by a classical metric, Kopperman [19] showed that all
topologies come from generalized metrics. Cook and Weiss [5] present a more nuanced discussion
of this fact, with constructions that avoid the shortcomings of Kopperman’s original construction.
Their focus, however, is on comparing various topologies that arise from a given generalized metric,
i.e., those generated by open sets, closed sets, interior, and exterior systems. Although the four
topologies coincide in classical metric spaces, they may be different in quantale valued metric spaces.
In particular, they consider three conditions on a quantale, which are named Kuratowski, Sierpiński,
and triangularity conditions [5, Def. 3]. When a commutative affine quantale Q satisfies these three
conditions, it can be shown that all the four topologies coincide for the metric spaces valued in Q.
Cook and Weiss [5] use the totally-below relation ≪, which is included in the way-below relation
≪. Under the three conditions they impose on quantales, one can show that for every δ ≪ u there
exists δ′ ≪ u such that δ ⊑ δ′. Therefore, the topology generated by open balls with radius δ′ ≪ u
coincide with that generated by the open balls with radius δ ≪ u.

The main drawback of value quantales and the quantales considered in [5] is that they are not
closed under product, which is crucial for multi-dimensional quantitative analyses. On the other
hand, a continuous quantale Q may not satisfy the Kuratowski condition, and therefore the four
topologies considered in [5] for a Q-metric space may not coincide. Specifically, dS(A, {x}) = u may
not entail that x is in the closure of A under the open ball topology.

Future work. The results of the current article may be regarded as the first steps towards a framework
for robustness analysis with respect to perturbations that are measured using generalized metrics.
As such, more remains to be done for development of the framework. Our future work will include
study of effective structures on Q-metric spaces.

In [13], Goubault-Larrecq defines the Hausdorff-Hoare and the Hutchinson hemi-metrics. We plan
to investigate if they scale-up to Po-enriched monads (or endofunctors) on the category of Q-metric
spaces, and in this case apply to them the monad transformer defined in Section 5.
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We also plan to study the impact of imprecision on probability distributions on (Q-)metric spaces,
i.e., to which extent they are indistinguishable in the presence of imprecision, by applying our monad
transformer to probability monads.
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A Proofs

A.1 Proof of Lemma 2

We prove only the first implication. If q1 ≪ q2, then

q1 ≪ q2 = q2 ⊗ u

(by continuity of Q) = q2 ⊗ ⊔↓↓u
(by distributivity for ⊗) = ⊔{q2 ⊗ q | q ≪ u}.

Hence, for some q ≪ u, we must have q1 ≪ q2 ⊗ q, because {q2 ⊗ q | q ≪ u} is directed and
{q′2 ∈ Q | q1 ≪ q′2} is Scott open [1, Proposition 2.3.6]. ⊓⊔

A.2 Proof of Proposition 4

Given a family ((Xi, di) | i ∈ I) of objects in MetQ, the metric on the product Πi∈IXi (computed in
Set ) is dΠ(x, y) = ⊓i∈Idi(xi, yi), and the metric on the sum Σi∈IXi is dΣ((j, x), (j′, x′)) = dj(x, x

′)
if j = j′ else ⊥.

Given a pair of short maps f, g:MetQ((X, d), (X ′, d′)), the equalizer is obtained by taking the
equalizer ι:Xe → X in Set , i.e., Xe = {x ∈ X | f(x) = g(x)} and ι is the inclusion of Xe into X,
and endowing Xe with the restriction of d to it. Then, ι is obviously short. Dually, the coequalizer is
obtained by taking the coequalizer π:X ′ → X ′/ ≈ in Set , i.e., ≈ is the smallest equivalence relation
on X ′ including the relation {(f(x), g(x)) | x ∈ X} and π is the quotient map x 7→ [x], and endowing
X ′/ ≈ with the metric d′≈ given by d′≈([x], [y]) = ⊔x′∈[x],y′∈[y]d

′(x′, y′). ⊓⊔

A.3 Proof of Proposition 5

For each property we give a proof hint.

1. follows from δ ≪ u ⊑ d(x, x)
2. follows from δ ⊑ δ′ ≪ d(x, y) =⇒ δ ≪ d(x, y)
3. y ∈ B(x, δ) is equivalent to δ ≪ d(x, y), thus (by Lemma 2) δ ≪ d(x, y) ⊗ δ′ for some δ′ ≪ u.

Moreover, B(y, δ′) ⊆ B(x, δ) is equivalent to δ′ ≪ d(y, z) =⇒ δ ≪ d(x, z). If δ′ ≪ d(y, z), then
δ ≪ d(x, y)⊗ δ′ ⊑ d(x, y)⊗ d(y, z) ⊑ d(x, z), which implies (by Proposition 1) δ ≪ d(x, z).

4. By item 3, for i ∈ {1, 2}, y ∈ B(xi, δi) implies B(y, δ′i) ⊆ B(x, δi) for some δ′i ≪ u. Let δ′ = δ′1⊔δ′2,
then δ′i ⊑ δ′ ≪ u (by Proposition 1). Thus, B(y, δ′) ⊆ B(y, δ′i) ⊆ B(x, δi) (by item 2). ⊓⊔

A.4 Proof of Lemma 3

The (⇐) direction is straightforward as property (1) states that O is a union of open balls. Thus,
O ∈ τd. To prove the (⇒) direction, note that every O ∈ τd is a union of finite intersections of open
balls. Therefore, to prove that property (1) holds for all O ∈ τd, it suffices to prove that, for any
n ∈ N and any (finite) sequence (Bi | i ∈ n) of open balls, property (1) holds for ∩i∈nBi, which we
prove by induction on n:

– base case 0: We note that ∩∅ = X and X = B(x,⊥) for any x ∈ X. Thus, by choosing δ = ⊥,
∩∅ satisfies property (1) by item 2 of Proposition 5;

– inductive step n + 1: by induction hypothesis O = ∩i∈nBi satisfies property (1). Thus, for any
x ∈ O ∩Bn, we have B(x, δ) ⊆ O for some δ ≪ u. In particular, x ∈ B(x, δ)∩Bn. Therefore, by
item 4 of Proposition 5, there exists δ′ ≪ u such that B(x, δ′) ⊆ B(x, δ) ∩Bn ⊆ O ∩Bn. ⊓⊔
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A.5 Proof of Theorem 1

For the (⇒) direction, assume that f :Top((X1, τd1), (X2, τd2)), which means ∀O ∈ τd2 .f
−1(O) ∈ τd1 .

Let O be the open ball B(f(x), ϵ) ∈ τd2
. Then, by Lemma 3, there exists a δ ≪ u1 such that

B(x, δ) ⊆ f−1(O), which is equivalent to f(B(x, δ)) ⊆ O = B(f(x), ϵ).
For the (⇐) direction, assume that O ∈ τd2

and f satisfies property (3). We must prove that
O′ = f−1(O) ∈ τd1

, or equivalently (by Proposition 5) for any x ∈ O′, there exists δ ≪ u such that
B(x, δ) ⊆ O′. If x ∈ O′, then f(x) ∈ O. Hence, by Lemma 3, B(f(x), ϵ) ⊆ O for some ϵ ≪ u2.
By property (3), there exists a δ ≪ u1 such that f(B(x, δ)) ⊆ B(f(x), ϵ) ⊆ O, which implies
B(x, δ) ⊆ O′. ⊓⊔

A.6 Proof of Proposition 6

For each property we give a proof hint.

1. Follows easily from the definition of BR(A, δ).
2. First, under the assumption δ1, δ2 ≪ u, one has δ1⊗ δ2 ⊑ δ1⊗u = δ1 ≪ u and δ1⊗ δ2 ⊑ u⊗ δ2 =

δ2 ≪ u. If z ∈ BR(BR(A, δ1), δ2), then δ2 ≪ d(y, z) for some y ∈ BR(A, δ1), thus δ2 ≪ d(y, z)
and δ1 ≪ d(x, y) for some x ∈ A, thus δ ≪ δ1 ⊗ δ2 ⊑ d(x, y)⊗ d(y, z) ⊑ d(x, z).

3. Follows easily from Lemma 4 and the definition of BR(A, δ).
4. It suffices to prove the inclusion BR(A

o
, δ) ⊆ BR(A, δ). If z ∈ BR(A

o
, δ), then δ ≪ d(y, z) for

some y ∈ A
o
. Choose ϵ ≪ u such that δ ≪ ϵ ⊗ d(y, z) and x ∈ A such that ϵ ≪ d(x, y), then

δ ≪ ϵ⊗ d(y, z) ⊑ d(x, y)⊗ d(y, z) ⊑ d(x, z).
5. The first inclusion follows easily from the definition of Aδ, For the second inclusion, since Aδ ⊆

∩ϵ≪uBR(BR(A, δ), ϵ), it suffices to choose ϵ ≪ u such that δ′ ≪ δ ⊗ ϵ, then BR(BR(A, δ), ϵ) ⊆
BR(A, δ′). ⊓⊔

A.7 Proof of Proposition 7

For the (⇐) direction, consider U ∈ τd,R such that A ∈ U . By definition of τd,R, we have P(BR(A, δ)) ⊆
U , for some δ ≪ u. By hypothesis and Proposition 6 we get B ⊆ A

o ⊆ BR(A
o
, δ) = BR(A, δ). Thus,

B ∈ U , as required.
For the (⇒) direction, we proceed by contraposition, namely, we prove the logically equivalent

B ̸⊆ A
o

=⇒ (∃U ∈ τd,R.A ∈ U ∧ B /∈ U). If B ̸⊆ A
o
, then there is x ∈ B such that x /∈ A

o
.

By Proposition 6, we have A
o
=

⋂
δ≪u BR(A, δ). Thus, there is δ ≪ u such that x /∈ BR(A, δ), and

consequently, x /∈ BR(A, δ′) for every δ′ such that δ ≪ δ′ ≪ u. We define an open subset U ∈ τd,R
such that A ∈ U and B ̸∈ U . Let U =

⋃
δ≪δ′≪u P(BR(A, δ′)). Clearly, A ∈ U , because by Lemma 1

there is at least one δ′ such that δ ≪ δ′ ≪ u, and B ̸∈ U , since x /∈ BR(A, δ′) for every δ′ such that
δ ≪ δ′ ≪ u.

It remains to prove that U ∈ τd,R, namely, that for every A′ ∈ U , i.e., A′ ⊆ BR(A, δ1) for
some δ ≪ δ1 ≪ u, there exists δ2 ≪ u such that P(BR(A

′, δ2)) ⊆ U . By Lemma 1 and 2, there
are δ′, δ2 ≪ u such that δ ≪ δ′ ≪ δ1 ⊗ δ2 ≪ u. Hence, by Proposition 6 we get BR(A

′, δ2) ⊆
BR(BR(A, δ1), δ2) ⊆ BR(A, δ′). Therefore, we have P(BR(A

′, δ2)) ⊆ P(BR(A, δ′)) ⊆ U . ⊓⊔

A.8 Proof of Proposition 8

Given a Q-metric space (X, d), denote by ∼d the equivalence induced by the preorder ≤d on X, i.e.,
x ∼d y

△⇐⇒ u ⊑ d(x, y)∧u ⊑ d(y, x). Let X0 be the quotient X/ ∼d and define d0:X0×X0 → Q as
d0([x], [y]) = d(x, y). Since x ∼d x′ ∧ y ∼d y′ =⇒ d(x, y) = d(x′, y′), d0 is a well-defined Q-metric
on X0.

Let r:X → X0 be the map such that r(x) = [x], which is clearly an isometry from (X, d) to
(X0, d0). Since r is surjective, there is a section s:X0 → X, which chooses a representative from each
equivalence class [x] ∈ X0. Thus, s([x]) ∼d x for every x ∈ X. Therefore, s in an isometry from
(X0, d0) to (X, d).

To prove that (r, s) is an equivalence in MetQ, i.e., r ◦ s ∼ idX0 and s ◦ r ∼ idX , where ∼ on
MetQ((X, d), (X ′, d′)) is the pointwise extension of ∼d′ , it suffices to observe that r(s([x])) = [x]
and s(r(x)) ∼ x for every x ∈ X. ⊓⊔
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A.9 Proof of Theorem 2

All the maps on hom-preorders used in the definition of T are monotonic, thus they preserve ∼.
Therefore, to prove that two arrows f, g ∈ A(X,Y ) defined by different monotonic constructions
are equal, it suffices to prove that they are equivalent (i.e., f ∼ g), if Y is separated. For the same
reason, if in a monotonic construction, one can replace sX with another s′X such that (rX , s′X) is an
equivalence, the results will be equivalent, because sX ∼ s′X .

– TM̂ = (M ′, η′,−∗′
) satisfies equations (4) for a monad, namely:

• (η′X)∗
′
= idM ′X :R(MX) → R(MX), because:

η′X
∗′

= rMX ◦ (sMX ◦ rMX ◦ ηX)∗ ◦ sMX

∼ rMX ◦ η∗X ◦ sMX = rMX ◦ sMX = idM ′X .

• f∗′ ◦ η′X = f :X → R(MY ) when f :X → R(MY ), because:

f∗′ ◦ η′X = rMY ◦ (sMY ◦ f)∗ ◦ sMX ◦ rMX ◦ ηX
∼ rMY ◦ (sMY ◦ f)∗ ◦ ηX = rMY ◦ sMY ◦ f = f.

• g∗
′ ◦f∗′

= (g∗
′ ◦f)∗′

:R(MX) → R(MZ) when f :X → R(MY ) and g:Y → R(MZ), because:

g∗
′ ◦ f∗′

= rMZ ◦ (sMZ ◦ g)∗ ◦ sMY ◦ rMY ◦ (sMY ◦ f)∗ ◦ sMX

∼ rMZ ◦ (sMZ ◦ g)∗ ◦ (sMY ◦ f)∗ ◦ sMX

= rMZ ◦ ((sMZ ◦ g)∗ ◦ sMY ◦ f)∗ ◦ sMX

∼ rMZ ◦ (sMZ ◦ rMZ ◦ (sMZ ◦ g)∗ ◦ sMY ◦ f)∗ ◦ sMX

= rMZ ◦ (sMZ ◦ g∗′ ◦ f)∗ ◦ sMX = (g∗
′ ◦ f)∗′

.

– inM̂ satisfies equations (5) for a monad map from M̂ to TM̂ , namely:
• inM̂,X ◦ ηX = η′X :X → R(MX), because:

inM̂,X ◦ ηX = rMX ◦ ηX = η′X .

• inM̂,Y ◦ f∗ = (inM̂,Y ◦ f)∗′ ◦ inM̂,X :MX → R(MY ) when f :X → MY , because:

inM̂,Y ◦ f∗ = rMY ◦ f∗

∼ rMY ◦ (sMY ◦ rMY ◦ f)∗ ◦ sMX ◦ rMX

= (inM̂,Y ◦ f)∗′ ◦ inM̂,X .
⊓⊔

A.10 Proof of Proposition 9

We prove each of the four properties in sequence.

1. u ⊑ dS(A,A) means ∀y ∈ A.u ⊑ ⊔x∈Ad(x, y). It holds because u ⊑ d(y, y) ⊑ ⊔x∈Ad(x, y) for
any y ∈ A. The inequality dS(A,B)⊗ dS(B,C) ⊑ dS(A,C) is equivalent to ∀z ∈ C.dS(A,B)⊗
dS(B,C) ⊑ ⊔x∈Ad(x, z), which holds by the following chain of ⊑ for any z ∈ C

dS(A,B)⊗ dS(B,C) ⊑ by monotonicity of ⊗
dS(A,B)⊗ ⊔y∈Bd(y, z) = by distributivity

⊔y∈B(dS(A,B)⊗ d(y, z)) ⊑ by monotonicity of ⊗
⊔y∈B(⊔x∈Ad(x, y))⊗ d(y, z) = by distributivity
⊔y∈B ⊔x∈A (d(x, y)⊗ d(y, z)) ⊑ by triangular inequality

⊔y∈B(⊔x∈Ad(x, z)) ⊑ because ⊔j∈Jq ⊑ q

⊔x∈Ad(x, z).
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2. The property follows from dS({x}, {x}) = d(x, x). Actually η is an isometry.
3. The implication amounts to proving dS(A,B) ⊑ d′S(f

∗(A), f∗(B)) from the assumption ∀x, y ∈
X.d(x, y) ⊑ d′S(f(x), f(y)). But:

dS(A,B) ⊑ d′S(f
∗(A), f∗(B))

means ∀y ∈ B.∀y′ ∈ f(y).dS(A,B) ⊑ ⊔x′∈f∗(A)d
′(x′, y′). Thus, it holds by the following chain

of ⊑ for y ∈ B and y′ ∈ f(y):

dS(A,B) ⊑ because ∀k ∈ J.(⊓j∈Jqj) ⊑ qk

⊔x∈Ad(x, y) ⊑ by the assumption
⊔x∈Ad

′
S(f(x), f(y)) ⊑ because ∀k ∈ J.(⊓j∈Jqj) ⊑ qk

⊔x∈A(⊔x′∈f(x)d
′(x′, y′)) = by definition of f∗

⊔x′∈f∗(A)d
′(x′, y′).

4. The implication amounts to proving ∀A ∈ P(X).u ⊑ d′S(f
∗(A), g∗(A)) from the assumption ∀y ∈

X.u ⊑ d′S(f(y), g(y)), i.e., ∀y ∈ A.∀y′ ∈ g(y).u ⊑ ⊔x′∈f(y)d
′(x′, y′). But u ⊑ d′S(f

∗(A), g∗(A))
means ∀y ∈ A.∀y′ ∈ g(y).u ⊑ ⊔x′∈f∗(A)d

′(x′, y′). Thus, it holds by the following chain of ⊑ for
any y ∈ A and y′ ∈ g(y):

u ⊑ by the assumption
⊔x′∈f(y)d

′(x′, y′) = by definition of f∗

⊔x′∈f∗(A)d
′(x′, y′).

Since the unit η and Kleisli extension −∗ for PS are equal to those for the monad P on Set , they
necessarily satisfy the required equational properties. ⊓⊔

A.11 Proof of Lemma 5

For each property we give a proof hint.

1. The first inclusion follows from d(x, y) ⊑ d(A, y) for every x ∈ A, while the second follows from
d(A, y) ⊑ d(A′, y) when A ⊆ A′.

2. Let B = BS(A, δ). Then, ∀y ∈ B.δ ≪ d(A, y). Thus:

δ ⊑ ⊓y∈Bδ ⊑ ⊓y∈Bd(A, y) = dS(A,B).

⊓⊔

A.12 Proof of Proposition 11

τd,S ⊆ τd,R follows from BR(A, δ) ⊆ BS(A, δ) when A ⊆ X and δ ≪ u.
Let B(A, δ) be the open ball with center A ⊆ X and radius δ ≪ u for the metric dS . To prove

τdS
⊆ τd,S , we show that every open ball B(A, δ) belongs to τd,S . Since B(A, δ) is downwards

closed, it suffices to prove that B ∈ B(A, δ) =⇒ ∃ϵ ≪ u.BS(B, ϵ) ∈ B(A, δ). Choose ϵ ≪ u such
that δ ≪ dS(A,B) ⊗ ϵ, then δ ≪ dS(A,B) ⊗ ϵ ⊑ dS(A,B) ⊗ dS(B,BS(B, ϵ)) ⊑ dS(A,BS(B, ϵ)).
To prove τd,S ⊆ τdS

, we show that B(A, δ) ⊆ P(BS(A, δ)) for every A ⊆ X and δ ≪ u. In fact,
dS(A,B) = ⊓y∈Bd(A, y) ⊑ d(A, y) when B ⊆ X and y ∈ B. ⊓⊔

A.13 Proof of Lemma 6

Choose (using Lemma 1) δ′ such that δ ≪ δ′ ≪ d(A, y), then we have the chain of equivalences:

– δ ≪ d(A, y) ⇐⇒ by definition of d(A, y)
– δ ≪ δ′ ≪ ⊔x∈Ad(x, y) ⇐⇒ by definition of ≪
– ∃A0 ⊆f A.δ ≪ δ′ ⊑ ⊔x∈A0

d(x, y) = d(A0, y).

If Q is linear and ⊥ ⊏ δ, then ⊥ ⊏ d(A0, y), thus ∅ ⊂ A0 ⊆f A. This implies that {d(x, y) | x ∈ A0}
has a maximum, thus d(A0, y) = d(x, y) for some x ∈ A0. ⊓⊔
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A.14 Proof of Proposition 12

τd,S ⊆ τd,R follows from Proposition 11. For the other inclusion we prove that ∀δ ≪ u.∃ϵ ≪
u.BS(A, ϵ) ⊆ BR(A, δ). By Lemma 6, BS(A, δ) = BR(A, δ) when ⊥ ⊏ δ. BS(A,⊥) = X = BR(A,⊥)
when ∅ ⊂ A. BR(∅,⊥) = ∅ = BS(∅, δ) for any δ ≪ u such that ⊥ ⊏ δ, which exists because Q is not
trivial. ⊓⊔


	Robustness in Metric Spaces over Continuous Quantales and the Hausdorff-Smyth Monad

