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Abstract. Adversarial patches are still a simple yet powerful white box
attack that can be used to fool object detectors by suppressing possible
detections. The patches of these so-called evasion attacks are computa-
tional expensive to produce and require full access to the attacked detec-
tor. This paper addresses the problem of computational expensiveness by
analyzing 375 generated patches, calculating the principal components of
these and show, that linear combinations of the resulting “eigenpatches”
can be used to fool object detections successfully.

Keywords: Adversarial Patch Attack · Object Detection · Principal
Component Analysis.

1 Introduction

Despite the good performance in image classification, object detection and se-
mantic segmentation, computer vision systems are still prone to adversarial at-
tacks. A prominent white box attack scenario is an evasion attack against object
detectors using adversarial patches, whereas these patches are sometimes also re-
ferred to as a form of camouflage [6] or invisibility cloak [27,28]. This is possible
since the patches depict specifically calculated patterns, that alter the activations
of the attacked object class for an object detector.

As “simple” and straightforward the generation process of such a patch is,
as time-consuming and computation intensive it is as well. To speed up the
patch calculation and gain a more profound understanding if there are com-
mon attributes that can be extracted to harden an object detector, this paper
investigates:

1. If patches that are combinations of principal components generated by a set
of precalculated patches can be used to create valid patches.

2. How many principal components are necessary, for recreating patches with
a sufficient high impact on the detection score.

3. The influence of set size used to generate the principal components, regarding
the quality of the resulting patches.
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Fig. 1. Left: the first sixteen principal components extracted from the trained patches.
Right: the unweighted mean image of these sixteen principal components.

Towards this end, the well known YOLOv7 object detector [23] is attacked
with various adversarial patches. These patches are trained on a subset of the
INRIA Person dataset [4] and are analyzed with a principal component analysis
(PCA). The extracted principal components are then used to recreate the patches
and even create new patches by combining them linearly (e.g., Figure 1).

To the best of our knowledge, this is the first approach in investigating and
creating adversarial patches that attack object detectors by using principal com-
ponents.

The organization of the paper is as follows: In section 2 the related work
regarding the investigation and analysis of adversarial attacks is addressed. A
brief introduction of what eigenpatches are and how they can be crafted is given
in section 3. Section 4 covers all necessary information to recreate the experi-
mental results. The used object detector, the dataset, and the generation process
of the patches that are the base for eigenpatch generation are further explained.
The results of the experiments and the used metrics are presented in section 5.
Finally, section 6 summarizes the paper, gives a conclusion and a brief outlook.

2 Related Work

In the following section, selected works regarding the analysis of adversarial
attack patterns and sampling from lower dimensional embeddings are presented.
For a broader overview, the interested reader is encouraged to read the survey
papers for adversarial attacks [1,3,13,24] and the YOLO object detector family
[19].

The approach of using dimensionality reduction algorithms like principal
component analysis to investigate the patterns generated by adversarial attacks
for image classifiers is an active research area. Nonetheless, most investigations
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are performed solely on image classifiers with attacks, that induce high frequent
noise on the whole image [21,25,15,5,14,26,8]. Only a few works [18] investigate
adversarial patches.

Tramer et al. explore the space of transferable adversarial examples by propos-
ing methods for estimating the dimensionality of the space of adversarial inputs
[21]. By investigating untargeted misclassification attacks, they show that per-
turbing a data point in such a way, that it crosses a model’s decision boundary, is
likely to result in similar performance degradation when applied to other models.

Wang et al. present a fast black-box adversarial attack that finds key differ-
ences between different classes based on PCA that later can be used to drive a
sample to a target class or the nearest other class [25].

Energy Attack [15] is a transfer-based black-box L∞ adversarial attack that
uses PCA to obtain the energy distribution of perturbations, generated by white-
box attacks on a surrogate model. For the attack, patches are sampled from the
energy distribution, tiled and applied on the target image.

Dohmatob et al. investigate, whether neural networks are vulnerable to black-
box attacks inherently [5]. After analyzing low-dimensional adversarial perturba-
tions, they hypothesize that adversarial perturbations exist with high probability
in low dimensional subspaces, that are much smaller than the dimension of the
image space.

Theoretical bounds on the vulnerability of classifiers against adversarial at-
tacks are shown by Shafahi et al. using the unit sphere and unit cube [14]. They
claim that by using extremely large values for the class density functions, the
bounds can be potentially escaped.

Weng et al. perform a Singular Value Decomposition to improve adversarial
attacks on convolutional neural networks [26]. They combine the top-1 decom-
posed singular value-associated features for computing the output logits with
the original logits, used to optimize adversarial examples and thus boost the
transferability of the attacks.

Recently, Tarchoun et al. examined adversarial patches from an information
theory perspective and measured the entropy of random crops of the patches
[18]. The results indicate that the entropy of adversarial patches have a higher
mean entropy than natural images. Based on these findings, they create a defense
mechanism against adversarial patches.

Further research on the relationship between adversarial vulnerability and
the number of perturbed dimensions is performed by Godfrey et al. [9]. Their
results strengthen the hypothesis, that adversarial examples are a result of the
locally linear behavior of neural networks with high dimensional input spaces.

3 Eigenpatches

This section covers the generation process of the eigenpatches. The term eigen-
patches is derived from eigenfaces (the most prominent example of eigenpictures
[16]), which are calculated similarly. Eigenpictures is the name of the eigenvec-
tors, that can be derived from a set of training images. They can be used as
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a low-dimensional representation of the original training images and recreating
these through a linear combination.

Given a set of adversarial patches

P = {Pi|i = 1, . . . , n}, Pi ∈ [0, 1]
C×H×W

(1)

where H is the height in pixel, W is the width in pixel and C is the number of
channels. A principal component analysis is now performed on P. With the top
k principal components Ej , j ∈ {1, . . . , k} and the weights λi,j the set

P̂ = {P̂i|i = 1, . . . , n} P̂i =

k∑
j=1

λi,jEj (2)

can be generated, that consists of linear combinations of the principal compo-
nents and is a recreation of P. Figure 1 shows the first sixteen principal compo-
nents as well as the patch resulting from calculating the mean of the components.

4 Experimental Setup

In the following, all the necessary information to recreate the experimental re-
sults is presented. In addition, the full source code is also provided3. The attacked
object detector is YOLOv7 [22] with the official pretrained weights. The used
Dataset is the INRIA Person dataset [4].

4.1 Object Detector

Due to its prominence and good performance, YOLOv7 [23] is selected as the
object detector to be attacked. The smallest model of YOLOv7 with an input
size of 640 × 640 pixels and the official pretrained weights are used. Despite a
small fix of an error, that causes problems during the training of the patches,
the source code is not modified. The generated patches can therefore be used
without specific finetuned weights, and the results can easily be verified.

4.2 Dataset

For the generation of the patches, the positive images of the INRIA Person
dataset [4] are used. Instead of using the provided ground truth bounding boxes
of the dataset, the object detector first generates new ground truth data for
each train image. After this, the newly created bounding boxes are manually
reviewed. False positives and bounding boxes of highly obscured target classes
(persons) are removed. The resulting ground truth data for both, the train and
test split, are available in the source code repository. Since the input size of the
used YOLOv7 model is 640 × 640 pixels, the images are resized and padded to
match this size. A resized and patched example image as it would be used in the
evaluation is given in Figure 2.

3 https://github.com/JensBayer/PCAPatches

https://github.com/JensBayer/PCAPatches
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Fig. 2. Patched input image as it would be used in the evaluation. The image is resized
and padded to match the required input size of 640× 640 pixels. After this, the tested
patch is embedded in the center of each bounding box and resized according to a scaling
factor.

4.3 Patch Generation

The training procedure of the patches follows the procedure, described in [20]:
During the generation process of a patch, it is placed inside the bounding boxes
of selected target classes in images of a training dataset. To improve the robust-
ness of the patch, different randomized transformations, such as translation,
rotation, perspective and also color jitter are applied. The altered image is then
propagated through the object detector and the objectness score of the target
classes is minimized. In addition, a smoothness loss that punishes high frequent
noise in the patches is also calculated and applied.

All patches are initialized with random values in the range [0, 1] and opti-
mized with the AdamW [12] optimizer with an initial learning rate of 0.01. The
random color jitter changes the brightness, contrast, and saturation of the patch
randomly by a values in the range of [0.9, 1.1], [0.95, 1.05], and [0.97, 1.03] re-
spectively. For the perspective, the distortion scale parameter is set to 0.5. The
resize range of the patch, the learning rate scheduler and the number of training
epochs are defined by the values in Table 1.

The random translation of the patch is performed in such a way, that the
resized and transformed patch is placed inside the bounding box.

5 Evaluation

This section covers the used metrics, the results, and a final limitations section
that discusses, under which circumstances these results are generalizable and
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Run ID n Epochs LR-Scheduler Resize range Rotation

191 175 100 StepLR [0.75, 1.0] 30
885 100 100 CosineAnnealingLR [0.75, 1.0] 30
905 50 100 StepLR [0.75, 1.0] 45
371 25 125 StepLR [0.5, 0.75] 30
243 25 125 StepLR [0.5, 0.75] 45

Table 1. Different parameterization for the patch generation. The resize range is the
range of the scaling factor, relatively to the bounding box.

valid they are. The ↑ and ↓ in the following tables indicate, whether a higher or
lower value in the column is desired.

5.1 Metrics

To quantify the results, the well-known mean average precision object detec-
tor metrics mAP@.5 [7] and mAP@.5:.95 [11] are used. While mAP@.5 is the
mean average precision for bounding boxes with an intersection over union (IoU)
threshold of at least fifty percent, the mAP@.5:.95 is the average across ten
IoU thresholds and therefore more strict. Both metrics are calculated for the
unpatched and the patched images. The higher the difference between the un-
patched and patched metric scores, the stronger is the impact of the patches
on the detector. For Table 2, the differences (∆) between the unpatched and
patched inputs images is also given.

5.2 Experimental Setup

Similar to the training data, the test split and positive images of the INRIA
Person dataset are used for the evaluation. New ground truth bounding boxes
are generated the same way as described in subsection 4.2. To generate repro-
ducible results, the evaluation procedure is as follows: A patch is placed in the
center of each bounding box as given in the ground truth information and re-
sized to a relative size of 0.75 times the longer side of the bounding box. Other
transformations such as the ones mentioned in subsection 4.3 are not applied.
An example of a test image is given in Figure 2. After this, the mAP@.5 and
mAP@.5:.95 is calculated, according to the provided detector evaluation script.

5.3 Results

As shown in Table 2, the trained patches have a significant impact on the object
detector. While the mAP of the detector on the test data is about 0.73 (0.71), the
mAP drops to 0.46 (0.35) when attacked with the adversarial patches. To verify,
that this is not a result of covering the persons in the image with the patches,
we also checked eleven single-colored gray valued patches. Each of these patches
has one particular shade of gray, out of the uniformly distributed range from
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Applied Patches Count mAP@.5 ↓ mAP@.5 : .95 ↓ ∆mAP@.5 ↑ ∆mAP@.5 : .95 ↑
No 1 0.73 0.71

Gray value 11 0.74± 0.03 0.71± 0.03 −0.01± 0.03 0.00± 0.02
Trained 375 0.46± 0.03 0.35± 0.03 0.27± 0.03 0.36± 0.03

PCA(2) recovered 375 0.63± 0.03 0.58± 0.03 0.10± 0.03 0.13± 0.03
PCA(4) recovered 375 0.60± 0.04 0.54± 0.04 0.13± 0.04 0.17± 0.04
PCA(8) recovered 375 0.58± 0.03 0.51± 0.03 0.15± 0.03 0.20± 0.03
PCA(16) recovered 375 0.57± 0.03 0.51± 0.03 0.16± 0.03 0.20± 0.03
PCA(32) recovered 375 0.57± 0.03 0.51± 0.04 0.16± 0.03 0.20± 0.04
PCA(64) recovered 375 0.57± 0.04 0.49± 0.04 0.16± 0.04 0.22± 0.04
PCA(128) recovered 375 0.55± 0.05 0.46± 0.06 0.18± 0.05 0.25± 0.06
PCA(256) recovered 375 0.51± 0.07 0.41± 0.07 0.22± 0.07 0.30± 0.07
Table 2. Mean average precision for the unpatched and patched test data. “Gray
value” refers to gray values in the range of zero to one with a linear step size. “Count”
is the numbers of patches on which the result mean and standard deviation values are
calculated. The last two columns are the differences of the mAPs of the patched and
unpatched images.

zero to one. As the second row of Table 2 shows, the gray valued patches do not
cover important parts and even improve the mAP@.5 slightly. In comparison,
the 375 crafted patches result in heavy mAP drops.

As expected, the PCA recovered patches are not as good as the trained ones
and the more principal components are used to recreate the patch, the higher
the mAP drop is (see Figure 3). The rising but still small standard deviation
suggests that some patches can be recreated better than others, which seems
plausible, since the number of patches with the same parameterization as given
in Table 1 is unevenly distributed. In addition, the mAP@.5 difference between
the patches that use 128 principal components for recreation and the patches
that only use eight principal components with about 0.03 is relatively small. Yet,
the impact on the mAP@.5:.95 is almost twice as high (0.05).

In comparison to Figure 3, the curves in Figure 4 are not that intuitive. Here,
the number of patches used to compute the PCA and the resulting mAPs are
plotted. Since a PCA with n components requires at least n elements in the input
set, the number of principal components is given by min(n, 64). As a result, the
number of principal components used for this plot equals either the input set size
or 64. As expected, the recreation of all 375 patches with only two components
results in a small standard deviation of 0.01 while achieving a mean mAP:.5 of
0.52, which differs from the PCA(256) by only a small percentage. A possible
reason is, that with such a small input set size, the resulting patch recreations
do not vary a lot and reassemble, at best, one of the two patches that are given
in the input set. A look of the reassembled patches (see Figure 5) as well as the
minimum achieved mAP values (0.41, 0.31) support this statement.
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Fig. 3. Drop of the mAP@.5 and mAP@.5:.95 with different numbers of principal
components to the recovered patches.

Fig. 4. mAP@.5 and mAP@.5:.95 curve with different numbers of input elements for
the PCA to recreate the patches with min(n, 64) principal components.
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Fig. 5. Left: The input set for the PCA. Middle: The computed principal components.
Right: Example recreations of the patches by the two principal components.

6 Conclusion

This paper investigates the applicability of the principal component analysis
for adversarial patches to fool object detectors. The evaluation shows, that the
recreation and sampling of patches based on the principal components is possible.
As expected, those patches are generally not as good as carefully trained ones,
yet they can be used as an initialization to finetune new patches. The evaluation
also shows that the more principal components are used, the higher the mAP
drop is. Nonetheless, the usage of the first eight principal components results
already in a noticeable mAP drop. The influence of the set size used for the
PCA is after eight patches also quite stable.

Since these experiments are performed on a comparable small dataset and
only a single object detector, future work should check the behavior with larger
datasets (e.g., OpenImages [10]) and other object detectors (e.g. EfficientDet
[17] or DETR [2]).
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