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Abstract. The COVID-19 pandemic has presented significant challenges to the 

healthcare industry and society as a whole. With the rapid development of 

COVID-19 vaccines, social media platforms have become a popular medium 

for discussions on vaccine-related topics. Identifying vaccine-related tweets and 

analyzing them can provide valuable insights for public health researchers and 

policymakers. However, manual annotation of a large number of tweets is time-

consuming and expensive. In this study, we evaluate the usage of Large Lan-

guage Models, in this case GPT-4 (March 23 version), and weak supervision, to 

identify COVID-19 vaccine-related tweets, with the purpose of comparing per-

formance against human annotators. We leveraged a manually curated gold-

standard dataset and used GPT-4 to provide labels without any additional fine-

tuning or instructing, in a single-shot mode (no additional prompting). 

Keywords: Large language models, GPT, weak supervision, social media data, 

Twitter. 

1 Introduction 

1.1 A Subsection Sample 

The widespread adoption of social media platforms has led to an explosion of user-

generated content, making them valuable sources of real-time information [1]. Social 

media platforms have become a valuable resource for studying public health issues 

[2], including the COVID-19 pandemic.  Social media platforms like Twitter have a 

vast user base, representing diverse demographics and geographic locations. Analyz-

ing vaccination sentiment data from such platforms allows for a more comprehensive 

understanding of public opinion, as it encompasses a wide range of perspectives. 

Twitter, in particular, has emerged as a platform where individuals share their person-

al experiences, including vaccination updates [3]. By analyzing the data, public health 

officials, policymakers, and researchers can gauge the overall sentiment towards vac-

cines, identify trends, and make informed decisions to address concerns or miscon-

ceptions. Analyzing self-reported vaccination tweets can provide valuable insights  
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into vaccine sentiment, vaccine uptake, and vaccine-related concerns among the gen-

eral population. However, manually annotating large volumes of social media data is 

labor-intensive and time-consuming, requiring domain experts to label the data accu-

rately. 

Weak supervision [4] techniques have emerged as a powerful approach for data 

annotation, offering significant advantages in terms of scalability [5], cost-

effectiveness [6], and flexibility [7]. Traditional methods of data annotation often rely 

on manual labeling, which can be time-consuming, expensive, and limited in terms of 

the volume of labeled data that can be produced. In contrast, weak supervision tech-

niques leverage various sources of supervision to automatically generate labeled data, 

reducing the manual effort required while maintaining reasonable accuracy. Scalabil-

ity is one of the primary advantages of weak supervision. With the exponential 

growth of data, manually labeling vast amounts of data becomes impractical and ex-

pensive. Weak supervision allows for the rapid annotation of large datasets by lever-

aging existing resources such as heuristics, rules, or readily available weak labels [8]. 

These weak signals can be automatically applied to unlabeled data, effectively in-

creasing the amount of labeled data available for training and development of robust 

machine learning models. Cost-effectiveness is another key benefit of weak supervi-

sion techniques. Manual data annotation often requires skilled human annotators, 

which can be costly and time-consuming. In contrast, weak supervision reduces the 

reliance on manual annotation efforts, thus reducing costs. Although weakly super-

vised labels may not be as accurate as manually annotated labels, they can still pro-

vide valuable insights and improve the performance of machine learning models. By 

combining weakly supervised labels with a smaller amount of manually labeled data, 

comparable results can be achieved at a fraction of the cost [9]. Additionally, tradi-

tional data annotation methods often require significant upfront effort to design anno-

tation schemas, guidelines, and quality control processes. These rigid procedures can 

be challenging to adapt as new data sources or requirements emerge [10]. In contrast, 

weak supervision provides a more agile and adaptable approach to data annotation. 

Weakly supervised labels can be easily generated or modified based on changing 

needs, enabling rapid iteration and refinement of models in response to evolving data 

or domain-specific requirements. 

Large language models (LLMs), such as GPT-3 [11], have revolutionized natural 

language processing and transformed various applications across multiple domains. 

These models employ deep learning techniques to generate coherent and contextually 

relevant text, making them invaluable for tasks like language translation, text summa-

rization, and conversational agents. Their effectiveness is attributed to the vast 

amount of pre-training data and the ability to capture complex linguistic patterns. This 

work assesses the effectiveness of Language Models (LLMs) (GPT-3.5 and GPT-4 

(March 23 version)), in conjunction with weak supervision, for the identification of 

COVID-19 vaccine-related tweets. The primary objective is to compare the perfor-

mance of LLMs against human annotators. To achieve this, we utilized an expertly 

curated gold-standard dataset and employed GPT3.5 and GPT-4 to generate labels in 

a single-shot mode, without resorting to additional fine-tuning or explicit instructions. 
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2 Related Works 

In the past weak supervision has demonstrated successful results in clinical text clas-

sification [12], multi-language sentiment classification [13], generating training sets 

for phenotype models [14], information retrieval [15], identifying drugs from Twitter 

[16–18], classifying different kinds of epidemics [19], natural disasters [20, 21] and 

several health applications [22–24]. In this aspect, LLMs have been effectively uti-

lized to leverage weak supervision techniques, automating data annotation processes 

by generating or modifying labels based on the model's pre-trained knowledge and 

heuristics. LLMs, such as BERT [25] and GPT [26], have shown impressive perfor-

mance in various natural language processing tasks, including sentiment analysis, 

named entity recognition, and text classification. These models can be fine-tuned on 

domain-specific datasets, enabling them to learn specific patterns and characteristics 

of the data. By leveraging pre-trained LLMs, researchers can automate or assist in the 

annotation process, significantly reducing the human effort required for data labeling. 

The evolution of LLMs has been marked by significant milestones, with BERT acting 

as a groundbreaking advancement. BERT introduced the concept of pretraining and 

fine-tuning, revolutionizing the field of NLP. By pretraining models on large corpora 

of text data and fine-tuning them on specific downstream tasks, BERT achieved state-

of-the-art performance on a wide range of NLP benchmarks.  BERT served as a foun-

dation and inspiration for the development of numerous pre-trained models like GPT 

[26], AlBERT [27], RoBERTa [28], DistilBERT [29], ELECTRA [30], XLNet [31], 

T5 [32], MegatronLM [33], BART [34], CamemBERT [35]. These models have lev-

eraged the success of BERT's architecture and training techniques to and improved 

the model by tackling various limitations like performance, optimization, reduction in 

training size. As a result, several other domain specific pre-trained models like Covid-

Twitter-BERT [36], BioBERT [37], SciBERT [38], ClinicalBERT [39], LegalBERT 

[40], FinBERT [41–43] emerged. Building upon the success of BERT, subsequent 

models such as GPT-2 [44] and GPT-3 [11] further pushed the boundaries of LLM 

capabilities. GPT-2 demonstrated impressive language generation abilities, while 

GPT-3 introduced even larger model sizes and showcased the potential for diverse 

applications. GPT-3.5 is a transitional model, which further refines the AI's capabili-

ties of GPT-3, and is known for nuanced understanding and contextual response gen-

eration. GPT-4, introduces a major leap with significant improvements in model size, 

training data, and comprehension abilities. GPT-4 is designed to better handle ambi-

guities and complexities in natural language, generating more coherent, relevant, and 

detailed responses. 

In the aspect of data labeling, LLMs have emerged as a promising solution to ad-

dress these challenges by automating or assisting in the data annotation process. With 

their language understanding capabilities, LLMs can be employed to generate annota-

tions or suggest labels for a given input, a technique known as active learning [45]. 

This approach allows human annotators to focus their efforts on more challenging or 

uncertain instances, thereby improving the efficiency and quality of the annotation 

process. Previous research has demonstrated that 35-40% of the crowd workers wide-

ly use LLMs for text related data annotation tasks [46]. In a study conducted by Gi-



4 

lardi et.al, Chat-GPT outperformed Crowd-Workers for text annotation tasks [47]. To 

improve the precision of ChatGPT as the hallucination is one of the limitations of 

LLMs, He et.al. designed a two step approach to explain why the text was labeled 

[48].  LLMs have demonstrated success in various data annotation tasks [49], senti-

ment analysis [50], text categorization, linguistic annotations [51],  multi-linguistic 

data annotation [52] and social computing [53]. 

This work examines the role of LLMs in data annotation, discussing the benefits, 

limitations, and potential future directions. The advancements in LLMs have not only 

transformed NLP tasks but have also had a profound impact on human tasks that in-

volve language understanding and generation. LLMs have been integrated into vari-

ous applications, ranging from chatbots and virtual assistants to language translation 

and content generation. In human-computer interaction scenarios, LLM-based sys-

tems have enabled more natural and effective communication, bridging the gap be-

tween machines and humans. However, the increasing reliance on LLMs also raises 

important ethical and societal considerations, such as potential biases and the respon-

sible deployment of AI technologies [54]. LLMs exhibit non-deterministic behavior, 

similar to human coders, where identical input can produce varying outputs [55, 56]. 

Hence, it is crucial to exercise caution when utilizing LLMs to ensure consistent and 

reliable results. 

3 Methods 

3.1 Datasets Used 

3.1.1 Gold standard dataset 

We collected a dataset of tweets related to COVID-19 vaccines by filtering related 

keywords, from one of the largest COVID-19 Twitter datasets [57] available. After 

filtering, this dataset consists of 2,454 self reported vaccination confirmation tweets 

and 19,946 vaccine chatter tweets. The complete dataset was manually curated by two 

medical students, having a Cohen Kappa score inter annotator agreement of 0.82 with 

a third annotator resolving all conflicts. This dataset was used in the Social Media 

Mining for Health 2022 shared tasks [58]. With the annotation task consuming over 

200 human hours, it is vital to try to identify additional techniques to attempt to 

streamline this process. 

 

 

3.1.2 Silver standard dataset 

While weak supervision has shown promise in the area of social media mining [17, 

59], we extracted an additional dataset, not manually curated, which consists of tweets 

selected by a weak labeling heuristic consisting of expressions like “vaccine causes”, 

“I was vaccinated”, “I got Moderna”, and similar. This weakly-supervised, or ‘silver 

standard’, consists of 750,000 randomly sampled (from a larger set of 12 million) 

tweets with an unidentifiable mixture of both classes. The rationale for doing so is 
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that researchers have shown that data augmentation using weak supervision leads to 

better and more generalizable models, than when only using gold standard data [60, 

61]. Note that none of the 750,000 randomly sampled tweets used in this dataset do 

not have any overlap with the gold standard data. 

 

3.2 Additional language models used 

Besides the previously mentioned GPT-4 and GPT-3.5, we fine tuned COVID-

Twitter-BERT [36] and BERTweet [62] with the GPT-labeled silver-standard data, 

for downstream tweet classification. Note that the class imbalance from the gold-

standard dataset is roughly 1 to 8, between self reported vaccination tweets and vac-

cine chatter tweets. This was also found to be similarly the same in the GPT-labeled 

silver-standard data, making the fine-tuning and evaluation comparable. 

 

3.3 Evaluation set-up 

3.3.1 LLM performance in annotating data 

We evaluate the performance of GPT-4 and GPT-3.5 on the labeling of the gold-

standard data. This evaluation will assess how good are LLMs in labeling data when 

compared to a set of medical professionals. As one of the most resource-expensive 

parts of generating datasets, if human annotation/labeling can be aided or streamlined, 

there is great value in leveraging LLMs in these types of tasks. Leveraging the Open 

AI API for both GPT-3.5 and GPT-4, we used the following prompt: “Categorize the 

following text: XXXXXXXXXXXX into vaccine self-reports or vaccine chatter. 

Figure 1 shows a sample output of the GPT-4 prompting on the chat.openai.com web-

site. This evaluation made 22,400 API calls to each GPT-4 and GPT-3.5 models. 

 

3.3.2 LLM to improve weakly supervised dataset creation 

In these evaluations, we leverage GPT-4/GPT-3.5 to attempt to ‘properly’ label the 

silver-standard data and then fine-tune BERT-like models to classify the gold-

standard data. The creation of silver-standard datasets has gained popularity in the 

field of NLP with many groups building systems that leverage silver-standard data to 

enhance their training sets and achieve state-of-the-art results in a variety of NLP 

shared tasks [58, 63]. Using the same prompt for the first evaluation, we made a total 

of 750,000 API calls to each GPT model to label this silver-standard dataset. 

 

With these evaluations we aim to answer two questions: a) is GPT-4/GPT-3.5 enough 

to annotate data with similar quality than a human expert, b) could we leverage both 

weak supervision and GPT-4/GPT-3.5 to quickly and scalably annotate large amounts 

of data with near-expert level performance. We would call these datasets: electrum 

datasets, which are a mixture of gold and silver standard-data. 
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Fig 1: Sample GPT-4 prompts to evaluate the created datasets. 

 

 

4 Results 

Before we introduce the actual results of our analysis, we would like to present a cost 

analysis of how much it would cost to run the data annotation tasks leveraging the 

GPT models and other traditional sources. We sent a total of 1,544,800 API calls, 

with a total cost of $2,743.40 USD. While this price might seem high, note that we 

annotated a total of 1,544,800 tweets, which would be time and cost prohibitive to do 

hiring humans and paying them a fair wage. Even using a service like Amazon Sage-

Maker Ground Truth, would cost around $52,896.00 USD for the same task. Leverag-

ing Amazon Mechanical Turk would cost $37,075.20 USD for the same number of 

text classification tasks [64]. There is clear value in evaluating if we can leverage 

such a resource for data annotation, this would particularly help resource constrained 

researchers that can not afford to pay expert annotators. The second aspect is scale, 

while ~1.5 Million API calls are done fairly quickly, nobody to our knowledge has 

manually annotated any dataset this large. 
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4.1.1 Results for LLM performance in annotating data 

In Table 1 we showcase the annotating performance of both GPT-4 and GPT-3.5. It is 

not surprising that GPT-4 outperformed GPT-3.5 by nearly 10% for the self reported 

vaccination tweets category, the more interesting one, and marginally for vaccine 

chatter. While vaccine chatter is more easily identified, nearly 90% for both models, 

GPT-3.5’s 71.11% performance on the self reported class, and 80.81% for GPT-4 are 

promising numbers. However, once larger amounts of data are annotated this way, 

this would lead to a considerable amount of noise to be added. These results are still 

promising as there was no additional prompting or fine-tuning performed, so the zero-

shot results are pretty solid. 

 

Table 1. Correct tweet labeling results for GPT models. 

Label GPT-4 % GPT-3.5 % 

Self reported vaccination 1,983 80.81% 1,745 71.11% 

Vaccine chatter 18,541 92.96% 17,842 89.45% 

 

We look at the inter-annotator agreement between both GPT models using Cohen 

Kappa coefficient [65] and the human annotators. We evaluate this to get insights into 

how much the correctly labeled tweets diverge between models. The inter annotator 

agreement between GPT models was 0.79 (p-value < 0.0001), which is considered 

substantial [66]. In comparison, the human Cohen Kappa score inter annotator agree-

ment was of 0.82, with a p-value < 0.0001, which is considered near perfect agree-

ment. Objectively, the difference is not much, 0.03, however it does show that hu-

mans agree slightly better than the GPT models. Note that our human annotators 

worked independently and did not know or communicated with each other. 

 

4.1.2 Results for LLM to improve weakly supervised dataset creation 

In the second evaluation, GPT-4 labeled 68,561 tweets as vaccine self-reports and 

681,439 tweets as vaccine chatter. GPT-3.5 labeled 66,288 tweets as vaccine self-

reports and 683,712 as vaccine chatter. While it might seem that GPT-4 labels more 

tweets, we are not sure they are correctly labeled and they have not been annotated by 

a human. Due to this fact, there are no comments on accuracy, the idea behind this 

exercise is to then feed this data as part of the fine-tuning step for the previously iden-

tified BERT-like models. 

 

After fine-tuning COVID-Twitter-BERT and BERTweet, Table 2 shows the correct 

tweet labeling results achieved. It is very interesting to see that a fine-tuned COVID-

Twitter-BERT performs marginally better than GPT-4 (and GPT-3.5) at labeling both 

tweet classes. While the improvement is marginal, it goes to show that a properly 

fine-tuned model does outperform a more complex model, at least in this scenario. 

Another interesting finding is that BERTweet performs slightly worse than GPT-4, 
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but better than GPT-3.5. This is most likely due to the training data for BERTweet not 

being focused on COVID-related tweets. 

 

Table 2. Correct tweet labeling results for BERT models. 

Label COVID-Twitter-BERT % BERTweet % 

Self reported vaccination 2,045 83.33% 1,897 77.30% 

Vaccine chatter 19,012 95.32% 18,457 92.53% 

 

In order to assess the actual labeling agreement between our top two models (GPT-4 

and COVID-Twitter-BERT) we measured the Cohen Kappa score, which was quite 

surprising to learn that it was 0.85 with a p-value < 0.0001. This means that both 

models have a high level of agreement in which tweets they labeled, even more so 

than humans. Additionally, we calculated the Fleiss Kappa statistic [67] between all 

annotators, showing that we have a score of 0.76 with a p-value < 0.0001. This show-

cases that both the models and the humans mostly agree on what class the tweets 

should be labeled. 

5 Conclusion 

In conclusion, our study has several important findings: 

 

GPT models perform fairly well, in a zero-shot, task of properly labeling social media 

data, tweets in this case. However, at larger scales the number of incorrect classifica-

tions might start becoming problematic, particularly depending on the downstream 

task that said data will be used for.  

• When leveraging GPT models alongside weak supervision techniques to 

identify ‘silver-standard’ data, we can use data augmentation with higher 

confidence. These resulting ‘electrum datasets’ could be leveraged for fur-

ther fine-tuning with potentially a considerable amount of less noise than just 

using weak supervision alone. 

• Fine-tuned BERT models are still not obsolete, as we showed them outper-

forming GPT-4 for labeling social media data, self reported vaccine tweets in 

this case. While this comparison might be unfair, the point we show is that 

combining approaches leads to better results. 

• Lastly, we show with our cost analysis that it is very cost effective to label 

data using GPT models, and that the results data is usable for downstream 

tasks. While we would continue to use human annotators to label data for our 

NER tasks, we can consider labeling less data to have equally or better per-

formant systems in downstream tasks. 
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While we show that GPT models perform well, this work does not advocate for the 

replacing of human labeled data with GPT-annotated data. Our argument is to show 

that leveraging multiple approaches together, and fine-tuning, leads to potentially 

better and more generalizable results. The limitations of our work are clear: we only 

used one task - self reported vaccine tweet labeling, we only fine-tuned two different 

BERT models, and we did not evaluate how large our ‘electrum dataset’ should be to 

fine-tune a model enough to achieve solid performance. All these are future research 

directions that would greatly inform the community. 

 

 

References 

1. Agichtein, E., Castillo, C., Donato, D., Gionis, A., Mishne, G.: Finding high-quality con-

tent in social media. In: Proceedings of the 2008 International Conference on Web Search 

and Data Mining. pp. 183–194. Association for Computing Machinery, New York, NY, 

USA (2008). https://doi.org/10.1145/1341531.1341557. 

2. Pershad, Y., Hangge, P.T., Albadawi, H., Oklu, R.: Social Medicine: Twitter in 

Healthcare. J. Clin. Med. Res. 7, (2018). https://doi.org/10.3390/jcm7060121. 

3. Xue, J., Chen, J., Hu, R., Chen, C., Zheng, C., Su, Y., Zhu, T.: Twitter Discussions and 

Emotions About the COVID-19 Pandemic: Machine Learning Approach. J. Med. Internet 

Res. 22, e20550 (2020). https://doi.org/10.2196/20550. 

4. Ratner, A., Bach, S., Varma, P., Ré, C.: Weak supervision: the new programming para-

digm for machine learning. Hazy Research. Available via https://dawn. cs. (2019). 

5. Cutler, J., Culotta, A.: Using weak supervision to scale the development of machine-

learning models for social media-based marketing research. Applied Marketing Analytics. 

5, 159–169 (2019). 

6. Chandra, A.L., Desai, S.V., Balasubramanian, V.N., Ninomiya, S., Guo, W.: Active learn-

ing with point supervision for cost-effective panicle detection in cereal crops. Plant Meth-

ods. 16, 34 (2020). https://doi.org/10.1186/s13007-020-00575-8. 

7. Shin, C., Li, W., Vishwakarma, H., Roberts, N., Sala, F.: Universalizing Weak Supervi-

sion, http://arxiv.org/abs/2112.03865, (2021). 

8. Ratner, A., De Sa, C., Wu, S., Selsam, D., Ré, C.: Data Programming: Creating Large 

Training Sets, Quickly. Adv. Neural Inf. Process. Syst. 29, 3567–3575 (2016). 

9. Zhang, J., Hsieh, C.-Y., Yu, Y., Zhang, C., Ratner, A.: A Survey on Programmatic Weak 

Supervision, http://arxiv.org/abs/2202.05433, (2022). 

10. Munro, R., Monarch, R.: Human-in-the-Loop Machine Learning: Active Learning and 

Annotation for Human-centered AI. Simon and Schuster (2021). 

11. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., 

Shyam, P., Sastry, G., Askell, A., Others: Language models are few-shot learners. Adv. 

Neural Inf. Process. Syst. 33, 1877–1901 (2020). 

12. Wang, Y., Sohn, S., Liu, S., Shen, F., Wang, L., Atkinson, E.J., Amin, S., Liu, H.: A clini-

cal text classification paradigm using weak supervision and deep representation. BMC 

Med. Inform. Decis. Mak. 19, 1 (2019). https://doi.org/10.1186/s12911-018-0723-6. 

13. Deriu, J., Lucchi, A., De Luca, V., Severyn, A., Müller, S., Cieliebak, M., Hofmann, T., 

Jaggi, M.: Leveraging Large Amounts of Weakly Supervised Data for Multi-Language 

Sentiment Classification. In: Proceedings of the 26th International Conference on World 

https://doi.org/10.1145/1341531.1341557
https://doi.org/10.1186/s12911-018-0723-6


10 

Wide Web. pp. 1045–1052. International World Wide Web Conferences Steering Commit-

tee, Republic and Canton of Geneva, CHE (2017). 

https://doi.org/10.1145/3038912.3052611. 

14. Agarwal, V., Podchiyska, T., Banda, J.M., Goel, V., Leung, T.I., Minty, E.P., Sweeney, 

T.E., Gyang, E., Shah, N.H.: Learning statistical models of phenotypes using noisy labeled 

training data. J. Am. Med. Inform. Assoc. 23, 1166–1173 (2016). 

https://doi.org/10.1093/jamia/ocw028. 

15. Zamani, H., Bruce Croft, W.: On the Theory of Weak Supervision for Information Re-

trieval, http://dx.doi.org/10.1145/3234944.3234968, (2018). 

https://doi.org/10.1145/3234944.3234968. 

16. Tekumalla, R., Asl, J.R., Banda, J.M.: Mining Archive. org’s Twitter Stream Grab for 

Pharmacovigilance Research Gold. In: Proceedings of the International AAAI Conference 

on Web and Social Media. pp. 909–917 (2020). 

17. Tekumalla, R., Banda, J.M.: Using weak supervision to generate training datasets from so-

cial media data: a proof of concept to identify drug mentions. Neural Comput. Appl. 

(2021). https://doi.org/10.1007/s00521-021-06614-2. 

18. Tekumalla, R., Banda, J.M.: An Enhanced Approach to Identify and Extract Medication 

Mentions in Tweets via Weak Supervision. In: Proceedings of the BioCreative VII Chal-

lenge Evaluation Workshop (2021). 

19. Tekumalla, R., Banda, J.M.: Identifying epidemic related Tweets using noisy learning. In: 

Proceedings of LatinX in Natural Language Processing Research Workshop at NAACL 

2022. 

20. Tekumalla, R., Banda, J.M.: TweetDIS: A Large Twitter Dataset for Natural Disasters 

Built using Weak Supervision. In: 2022 IEEE International Conference on Big Data (Big 

Data). pp. 4816–4823 (2022). https://doi.org/10.1109/BigData55660.2022.10020214. 

21. Tekumalla, R., Banda, J.M.: An Empirical Study on Characterizing Natural Disasters in 

Class Imbalanced Social Media Data using Weak Supervision. In: 2022 IEEE International 

Conference on Big Data (Big Data). pp. 4824–4832 (2022). 

https://doi.org/10.1109/BigData55660.2022.10020594. 

22. Saab, K., Dunnmon, J., Ré, C., Rubin, D., Lee-Messer, C.: Weak supervision as an effi-

cient approach for automated seizure detection in electroencephalography. NPJ Digit Med. 

3, 59 (2020). https://doi.org/10.1038/s41746-020-0264-0. 

23. Fries, J.A., Varma, P., Chen, V.S., Xiao, K., Tejeda, H., Saha, P., Dunnmon, J., Chubb, H., 

Maskatia, S., Fiterau, M., Delp, S., Ashley, E., Ré, C., Priest, J.R.: Weakly supervised 

classification of aortic valve malformations using unlabeled cardiac MRI sequences. Nat. 

Commun. (2019). https://doi.org/10.1101/339630. 

24. Saab, K., Dunnmon, J., Goldman, R., Ratner, A., Sagreiya, H., Ré, C., Rubin, D.: Doubly 

Weak Supervision of Deep Learning Models for Head CT. In: Medical Image Computing 

and Computer Assisted Intervention – MICCAI 2019. pp. 811–819. Springer International 

Publishing (2019). https://doi.org/10.1007/978-3-030-32248-9_90. 

25. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of Deep Bidirec-

tional Transformers for Language Understanding, http://arxiv.org/abs/1810.04805, (2018). 

26. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understand-

ing by generative pre-training, 

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf, last ac-

cessed 2023/06/17. 

27. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: A Lite 

BERT for Self-supervised Learning of Language Representations, 

http://arxiv.org/abs/1909.11942, (2019). 



11 

28. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, 

L., Stoyanov, V.: RoBERTa: A Robustly Optimized BERT Pretraining Approach, 

http://arxiv.org/abs/1907.11692, (2019). 

29. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of BERT: 

smaller, faster, cheaper and lighter, http://arxiv.org/abs/1910.01108, (2019). 

30. Clark, K., Luong, M.-T., Le, Q.V., Manning, C.D.: ELECTRA: Pre-training Text Encoders 

as Discriminators Rather Than Generators, http://arxiv.org/abs/2003.10555, (2020). 

31. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: Xlnet: General-

ized autoregressive pretraining for language understanding. Adv. Neural Inf. Process. Syst. 

32, (2019). 

32. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., 

Liu, P.J.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. 

Mach. Learn. Res. 21, 5485–5551 (2020). 

33. Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., Catanzaro, B.: Megatron-

LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, 

http://arxiv.org/abs/1909.08053, (2019). 

34. Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., 

Zettlemoyer, L.: BART: Denoising Sequence-to-Sequence Pre-training for Natural Lan-

guage Generation, Translation, and Comprehension, http://arxiv.org/abs/1910.13461, 

(2019). 

35. Martin, L., Muller, B., Suárez, P.J.O., Dupont, Y., Romary, L., de la Clergerie, É.V., Sed-

dah, D., Sagot, B.: CamemBERT: a Tasty French Language Model, 

http://arxiv.org/abs/1911.03894, (2019). 

36. Müller, M., Salathé, M., Kummervold, P.E.: COVID-Twitter-BERT: A Natural Language 

Processing Model to Analyse COVID-19 Content on Twitter, 

http://arxiv.org/abs/2005.07503, (2020). 

37. Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C.H., Kang, J.: BioBERT: a pre-trained 

biomedical language representation model for biomedical text mining. Bioinformatics. 36, 

1234–1240 (2020). https://doi.org/10.1093/bioinformatics/btz682. 

38. Beltagy, I., Lo, K., Cohan, A.: SciBERT: A Pretrained Language Model for Scientific 

Text, http://arxiv.org/abs/1903.10676, (2019). 

39. Huang, K., Altosaar, J., Ranganath, R.: ClinicalBERT: Modeling Clinical Notes and Pre-

dicting Hospital Readmission, http://arxiv.org/abs/1904.05342, (2019). 

40. Chalkidis, I., Fergadiotis, M., Malakasiotis, P., Aletras, N., Androutsopoulos, I.: LEGAL-

BERT: The Muppets straight out of Law School, http://arxiv.org/abs/2010.02559, (2020). 

41. Liu, Z., Huang, D., Huang, K., Li, Z., Zhao, J.: Finbert: A pre-trained financial language 

representation model for financial text mining. In: Proceedings of the twenty-ninth interna-

tional conference on international joint conferences on artificial intelligence. pp. 4513–

4519 (2021). 

42. Yang, Y., Uy, M.C.S., Huang, A.: FinBERT: A Pretrained Language Model for Financial 

Communications, http://arxiv.org/abs/2006.08097, (2020). 

43. Araci, D.: FinBERT: Financial Sentiment Analysis with Pre-trained Language Models, 

http://arxiv.org/abs/1908.10063, (2019). 

44. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language Models are 

Unsupervised Multitask Learners, https://life-

exten-

si-

on.github.io/2020/05/27/GPT%E6%8A%80%E6%9C%AF%E5%88%9D%E6%8E%A2/la

nguage-models.pdf, last accessed 2023/06/17. 



12 

45. Settles, B.: Active learning literature survey. University of Wisconsin-Madison Depart-

ment of Computer Sciences (2009). 

46. Veselovsky, V., Ribeiro, M.H., West, R.: Artificial Artificial Artificial Intelligence: Crowd 

Workers Widely Use Large Language Models for Text Production Tasks, 

http://arxiv.org/abs/2306.07899, (2023). 

47. Gilardi, F., Alizadeh, M., Kubli, M.: ChatGPT Outperforms Crowd-Workers for Text-

Annotation Tasks, http://arxiv.org/abs/2303.15056, (2023). 

48. He, X., Lin, Z., Gong, Y., Jin, A.-L., Zhang, H., Lin, C., Jiao, J., Yiu, S.M., Duan, N., 

Chen, W.: AnnoLLM: Making large language models to be better crowdsourced annota-

tors, http://arxiv.org/abs/2303.16854, (2023). 

49. Møller, A.G., Dalsgaard, J.A., Pera, A., Aiello, L.M.: Is a prompt and a few samples all 

you need? Using GPT-4 for data augmentation in low-resource classification tasks, 

http://arxiv.org/abs/2304.13861, (2023). 

50. Huang, F., Kwak, H., An, J.: Is ChatGPT better than human annotators? Potential and limi-

tations of ChatGPT in explaining implicit hate speech, http://arxiv.org/abs/2302.07736, 

(2023). 

51. Yu, D., Li, L., Su, H., Fuoli, M.: Using LLM-assisted Annotation for Corpus Linguistics: 

A Case Study of Local Grammar Analysis, http://arxiv.org/abs/2305.08339, (2023). 

52. Kuzman, T., Mozetic, I., Ljubešic, N.: Chatgpt: Beginning of an end of manual linguistic 

data annotation? use case of automatic genre identification. arXiv e-prints, pages arXiv--

2303. (2023). 

53. Zhu, Y., Zhang, P., Haq, E.-U., Hui, P., Tyson, G.: Can ChatGPT Reproduce Human-

Generated Labels? A Study of Social Computing Tasks, http://arxiv.org/abs/2304.10145, 

(2023). 

54. Bender, E.M., Gebru, T., McMillan-Major, A., Shmitchell, S.: On the Dangers of Stochas-

tic Parrots: Can Language Models Be Too Big?       . In: Proceedings of the 2021 ACM 

Conference on Fairness, Accountability, and Transparency. pp. 610–623. Association for 

Computing Machinery, New York, NY, USA (2021). 

https://doi.org/10.1145/3442188.3445922. 

55. Reiss, M.V.: Testing the Reliability of ChatGPT for Text Annotation and Classification: A 

Cautionary Remark, http://arxiv.org/abs/2304.11085, (2023). 

56. Beware the hype: ChatGPT didn’t replace human data annotators, 

https://news.techworkerscoalition.org/2023/04/04/issue-5/, last accessed 2023/06/17. 

57. Banda, J.M., Tekumalla, R., Wang, G., Yu, J., Liu, T., Ding, Y., Artemova, E., Tutubalina, 

E., Chowell, G.: A Large-Scale COVID-19 Twitter Chatter Dataset for Open Scientific 

Research—An International Collaboration. Epidemiologia. 2, 315–324 (2021). 

https://doi.org/10.3390/epidemiologia2030024. 

58. Weissenbacher, D., Banda, J., Davydova, V., Estrada Zavala, D., Gasco Sánchez, L., Ge, 

Y., Guo, Y., Klein, A., Krallinger, M., Leddin, M., Magge, A., Rodriguez-Esteban, R., 

Sarker, A., Schmidt, L., Tutubalina, E., Gonzalez-Hernandez, G.: Overview of the Seventh 

Social Media Mining for Health Applications (#SMM4H) Shared Tasks at COLING 2022. 

In: Proceedings of The Seventh Workshop on Social Media Mining for Health Applica-

tions, Workshop & Shared Task. pp. 221–241. Association for Computational Linguistics, 

Gyeongju, Republic of Korea (2022). 

59. Tekumalla, R., Asl, J.R., Banda, J.M.: Mining Archive.org’s Twitter Stream Grab for 

Pharmacovigilance Research Gold. ICWSM. 14, 909–917 (2020). 

https://doi.org/10.1609/icwsm.v14i1.7357. 

60. Solmaz, G., Cirillo, F., Maresca, F., Kumar, A.G.A.: Label Augmentation with Reinforced 

Labeling for Weak Supervision, http://arxiv.org/abs/2204.06436, (2022). 



13 

61. Robinson, J., Jegelka, S., Sra, S.: Strength from Weakness: Fast Learning Using Weak Su-

pervision. In: Iii, H.D. and Singh, A. (eds.) Proceedings of the 37th International Confer-

ence on Machine Learning. pp. 8127–8136. PMLR (13--18 Jul 2020). 

62. Nguyen, D.Q., Vu, T., Tuan Nguyen, A.: BERTweet: A pre-trained language model for 

English Tweets. In: Proceedings of the 2020 Conference on Empirical Methods in Natural 

Language Processing: System Demonstrations. pp. 9–14. Association for Computational 

Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-demos.2. 

63. Magge, A., Klein, A., Miranda-Escalada, A., Ali Al-Garadi, M., Alimova, I., Miftahutdi-

nov, Z., Farre, E., Lima López, S., Flores, I., O’Connor, K., Weissenbacher, D., Tutuba-

lina, E., Sarker, A., Banda, J., Krallinger, M., Gonzalez-Hernandez, G.: Overview of the 

Sixth Social Media Mining for Health Applications (#SMM4H) Shared Tasks at NAACL 

2021. In: Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop 

and Shared Task. pp. 21–32. Association for Computational Linguistics, Mexico City, 

Mexico (2021). https://doi.org/10.18653/v1/2021.smm4h-1.4. 

64. AWS Pricing Calculator, https://calculator.aws/#/addService/SageMakerGroundTruth, last 

accessed 2023/06/22. 

65. Cohen, J.: A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 20, 37–

46 (1960). https://doi.org/10.1177/001316446002000104. 

66. McHugh, M.L.: Interrater reliability: the kappa statistic. Biochem. Med. . 22, 276–282 

(2012). https://doi.org/10.1016/j.jocd.2012.03.005. 

67. Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychol. Bull. 76, 

378–382 (1971). https://doi.org/10.1037/h0031619. 


