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Abstract. Many functions characterising physical systems are addi-
tively separable. This is the case, for instance, of mechanical Hamiltonian
functions in physics, population growth equations in biology, and con-
sumer preference and utility functions in economics. We consider the
scenario in which a surrogate of a function is to be tested for additive
separability. The detection that the surrogate is additively separable can
be leveraged to improve further learning. Hence, it is beneficial to have
the ability to test for such separability in surrogates. The mathemati-
cal approach is to test if the mixed partial derivative of the surrogate is
zero; or empirically, lower than a threshold. We present and compara-
tively and empirically evaluate the eight methods to compute the mixed
partial derivative of a surrogate function.

Keywords: Second-order bias · inductive bias · symbolic regression

1 Introduction

Many functions characterising physical systems are additively separable, such as
mechanical Hamiltonian functions in physics [16], population growth equations
in biology [13], and consumer preference and utility functions in economics [26].

We consider the scenario in which a machine learning model is learning a sur-
rogate of a function without the information that it is additively separable. Test-
ing the surrogate for the property of additive separability is of interest. Physics-
informed neural networks [10] combine the universal function approximation ca-
pability of neural networks [9] with the information of the symbolic properties,
laws, and constraints of the underlying application domain [15,14,6,23,27]. With
information regarding the additive separability of the function, physics-informed
neural networks can leverage the additive separability property to improve fur-
ther learning of the surrogate [11].

The mathematical approach to test for additive separability is to check if the
mixed partial derivative of the surrogate is zero. Empirically, the mixed partial
derivative of the surrogate should be lower than a small threshold close to zero.
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Information regarding the additive separability of a surrogate has seen several
usages in physics-informed machine learning applications. In modelling Hamil-
tonian dynamics, for instance, Gruver et al., in [7] argue that almost all im-
provement of existing works [2] is due to a second-order bias. This second-order
bias results from the additive separability of the modelled Hamiltonian into the
system’s potential and kinetic energy as functions of position and momentum,
respectively. The additive separability allowed the physics-informed neural net-
work to ”avoid[...] artificial complexity from its coordinate system” (the input
variables) and improve its performance [7]. In symbolic regression, Udrescu and
Tegmark iteratively test an unknown function for additive separability to divide
a symbolic regression problem into two simpler ones that can be tackled sepa-
rately. This ”guarantee[s] that more accurate symbolic expressions [are] closer to
the truth”, improving the performance of the symbolic regression algorithm [24].
Our work to test for additive separability creates the opportunity to leverage
additive separability to improve the learning of surrogates as observed in the
works of Gruver and Udrescu.

We introduce eight methods to compute the mixed partial derivative of a ma-
chine learning model, specifically a multilayer perceptron neural network learn-
ing a surrogate of a function. Our surrogate of choice is the multilayer percep-
tron neural network, although theoretically, any differentiable machine learning
model will suffice. The first four of the eight methods compute the mixed par-
tial derivative via finite difference of the multilayer perception neural network.
Three methods arise from the different methods to automatically compute mixed
partial derivatives using automatic differentiation of the multilayer perceptron
neural network. The last method arises from the symbolic differentiation of a
multilayer perceptron neural network. We present and comparatively and em-
pirically evaluate the performance of eight methods in computing the mixed
partial derivative of the surrogate functions.

The remainder of this paper is structured as follows. Section 2 presents the
necessary background for additive separability and multilayer perception neural
network surrogates. Section 3 presents the eight methods to compute the mixed
partial derivative of a multilayer perception neural network. Section 4 presents
and discusses the results of an empirical comparative evaluation of the eight
methods. Section 5 concludes the paper.

2 Background and Related Work

2.1 Additive Separability

An additively separable real function f(~x, ~y) ∈ R is of the form f(~x, ~y) = g(~x)+
h(~y), where ~x ∈ R

n, ~y ∈ R
m are vectors representing disjoint subsets of Rm+n

input variables and g(~x), f(~y) ∈ R. xn and ym denote elements of ~x and ~y.
The necessary and sufficient condition for a function to be additively sepa-

rable is that the mixed partial derivative of the function equals zero. The mixed
partial derivative is the second derivative of the function. The first derivative is
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taken with respect to an element in either ~x or ~y, and the second derivative is
taken with respect to an element in either ~y or ~x. This condition is shown in
Equation 1, where the mixed partial derivative is found with respect to xn, an
element in ~x first, then ym, an element in ~y.

∂2f(~x, ~y)

∂xn∂ym
=

∂

∂ym

(

∂(g(~x) + h(~y))

∂xn

)

=
∂

∂ym

(

∂g(~x)

∂xn

)

= 0 (1)

Finite difference methods refer to those that obtain a numerical solution for
partial derivatives by replacing the derivatives with their appropriate numerical
differentiation formulae. In general, a finite difference approximation of the value
of some derivative of a scalar function f(x) at a point in its domain relies on a
suitable combination of sampled function values at its nearby points [17].

Starting with the first-order derivative, the simplest finite difference approx-
imation for a multivariate function f(~x, ~y) is the ordinary difference quotient
shown in Equation 2 where the function f(·) is sampled at f(~x, ~y)|xn=xN+h and
f(~x, ~y)|xn=xN and all other elements are kept constant. xN is a scalar sample
of the element xn in ~x, and h is the scalar distance between the two samples of

xn. Indeed, if f(·) is differentiable at xN then ∂f(~x,~y)
∂x

|x=xN is by definition, the
limit, as h → 0 of the finite difference quotients [17].

∂f(~x, ~y)

∂~x
|xn=xN =

f(~x, ~y)|xn=xN+h − f(~x, ~y)|xn=xN

h
(2)

The finite difference for a multivariate function is analogous to partial deriva-
tives in several variables. The finite difference analogue of Equation 1 is shown
in Equation 3. The components of the numerator of Equation 3 are defined in
Equations 4 to 7. xN and yM are scalar samples of elements xn and ym respec-
tively, and h and k are scalar. All other elements are kept constant.

∂2f(~x, ~y)

∂xn∂ym

∣

∣

∣

∣xn=xN
ym=yM

=
f(xN + h, yM + k)− f(xN + h, yM )− f(xN , yM + k) + f(xN , yM )

h× k
(3)

f(xN + h, yM + k) = f(~x, ~y)|xn=xN+h,ym=yM+k (4)

f(xN + h, yM ) = f(~x, ~y)|xn=xN+h,ym=yM (5)

f(xN , yM + k) = f(~x, ~y)|xn=xN ,ym=yM+k (6)

f(xN , yM ) = f(~x, ~y)|xn=xN ,ym=yM (7)

Seminal works that test for additive separability of a function make use of
the finite difference of the function. Udrescu et al. [24] and Bellenot [1] state that
for a function to be additively separable, for every pair of samples (xa, ya) and
(xb, yb) where x is to be additively separable from y, the difference between the
two pairwise sums of the values of the function at diagonally opposite corners of
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the rectangle 〈(xa, ya), (xb, ya), (xb, yb), (xa, yb)〉 equals zero [1,24]. This is shown
for a bivariate function f(x, y) in Equation 8.

∀xa, xb ∈ x ∀ya, yb ∈ y

(f(xa, ya) + f(xb, yb))− (f(xa, yb) + f(xb, ya)) = 0 (8)

Equation 8 and Equation 3 are equivalent in the case where Equation 3 describes
a bivariate function with the inputs xN and yM , after substituting xN = xa,
xN + h = xb, yM = ya, yM + k = yb, and h = k = 1.

Equation 8 can be generalised to test multivariate functions for additive
separability. A multivariate function f(~x, ~y) is additive separable if Equation 8
holds, and all elements of ~x and ~y except xN and yM are kept constant.

The set of additively separable functions is closed under operations including
addition, multiplication by constants, partial derivatives, and integrals with re-
spect to either of the disjoint subsets of input variables [1]. Therefore a test for
additive separability only has to decompose a function into two components and
can be applied repeatedly to a function that is multiply additively separable.

Several other tests for additive separability have been proposed in the liter-
ature, in particular in economics. These tests make assumptions that limit their
applicability to specific families of functions. The seminal work of Leontief [12]
proposed a test for additive separability for functions with three or more variables
and non-zero first derivatives. Gorman [5], Varian [25], Diewert and Parkan [3]
and Fleissig and Whitney [4] developed tests for additive separability that were
specific to concave and monotonic functions. Polisson, Quah and Renou [21] and
Polisson [20] developed tests for additive separability that assume non-satiation
or a positive correlation between the input variables and output of a function.

2.2 Multilayer Perceptron Neural Network Surrogates

Multilayer perceptrons are regression tools [8] that are universal function ap-
proximators [9]. They can approximate any function to any degree of accuracy
from one finite dimensional space to another.

We consider a multilayer perceptron neural network with one input layer, one
hidden layer, and one output layer. The multilayer perception neural network
regresses an output, shown in Equation 9. In Equation 9, the neural network has
two inputs, x1 and x2, and one output, f(x1, x2). σ1 and σ2 are the activation
functions for the input and hidden layer respectively. F ⊺ is the 3 by 2 weight
matrix of the input layer, G⊺ is the 3 by 3 weight matrix of the hidden layer, and
H⊺ is the 1 by 3 weight matrix of the output layer. B is the 1 by 3 bias matrix
of the input layer, and C is the 1 by 3 bias matrix of the hidden layer. The
elements of F ⊺, G⊺, H⊺, B and C are denoted by w, v, n, b and c respectively.
Their subscripts indicate the row and column of the element in the matrix. The
output of the input layer is denoted as W .
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f(x1, x2) = n1σ2(v11σ1(W1) + v12σ1(W2) + v13σ1(W3) + c1)

+ n2σ2(v21σ1(W1) + v22σ1(W2) + v23σ1(W3) + c2)

+ n3σ2(v31σ1(W1) + v32σ1(W2) + v33σ1(W3) + c3) (9)

Where the outputs of the input layer are denoted as W and their subscripts
enumerate the three outputs of the layer.

W1 = w11x1 + w12x2 + b1

W2 = w21x1 + w22x2 + b2

W3 = w31x1 + w32x2 + b3 (10)

In the context of additively separable functions and their mixed partial
derivatives, the derivatives of the output of the multilayer perceptron neural
network should be considered. The first derivative of the output of the mul-
tilayer perceptron neural network, f(x1, x2), with respect to its input, x1, is
computed in Equation 11. σ′

1,x1
and σ′

2,x1
is the first derivative of the activation

functions σ1 and σ2 with respect to x1. The output of the hidden layer is denoted
as V .

∂f(x1, x2)

∂x1

= n1σ
′
2,x1

(V1)× (v11w11σ
′
1,x1

(W1) + v12w21σ
′
1,x1

(W2) + v13w31σ
′
1,x1

(W3))

+ n2σ
′
2,x1

(V2)× (v21w11σ
′
1,x1

(W1) + v22w21σ
′
1,x1

(W2) + v23w31σ
′
1,x1

(W3))

+ n3σ
′
2,x1

(V3)× (v31w11σ
′
1,x1

(W1) + v32w21σ
′
1,x1

(W2) + v33w31σ
′
1,x1

(W3))

(11)

Where

V1 = v11σ1(W1) + v12σ1(W2) + v13σ1(W3) + c1

V2 = v21σ1(W1) + v22σ1(W2) + v23σ1(W3) + c2

V3 = v31σ1(W1) + v32σ1(W2) + v33σ1(W3) + c3

The mixed partial derivative of the multilayer perceptron neural network is
shown in Equation 12 where σ′

1,x1
, σ′

1,x2
, σ′

2,x1
and σ′

2,x2
are the first derivatives

for the activation functions for the input and hidden layer with respect to x1

and x2 respectively, and σ′′
1 and σ′′

2 are the second derivatives for the activa-
tion functions for the input and hidden layer with respect to both x1 and x2

respectively.

∂2f(x1, x2)

∂x1∂x2

= n1σ
′′
2 (V1)× (VW1,x1

)× (VW1,x2
) + n1σ

′
2,x1

(V1)× (VW ′′
1 )

= n2σ
′′
2 (V2)× (VW2,x1

)× (VW2,x2
) + n2σ

′
2,x1

(V2)× (VW ′′
2 )

= n3σ
′′
2 (V3)× (VW3,x1

)× (VW3,x2
) + n3σ

′
2,x1

(V3)× (VW ′′
3 ) (12)
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Where VW ′
1,x1

, VW ′
1,x2

, VW ′
2,x1

, VW ′
2,x2

, VW ′
3,x1

, VW ′
3,x2

, VW ′′
1 , VW ′′

2 and
VW ′′

3 are computed using the chain rule.

VW ′
1,x1

= v11 × w11 × σ′
1,x1

(W1) + v12 × w21 × σ′
1,x1

(W2) + v13 × w31 × σ′
1,x1

(W3)

VW ′
1,x2

= v11 × w21 × σ′
1,x2

(W1) + v12 × w22 × σ′
1,x2

(W2) + v13 × w32 × σ′
1,x2

(W3)

VW ′′
1 = v11 × w11 × w12 × σ′′

1 (W1) + v12 × w21 × w22 × σ′′
1 (W2)

+ v13 × w31 × w32 × σ′′
1 (W3)

VW ′
2,x1

= v21 × w11 × σ′
1,x1

(W1) + v22 × w21 × σ′
1,x1

(W2) + v23 × w31 × σ′
1,x1

(W3)

VW ′
2,x2

= v21 × w21 × σ′
1,x2

(W1) + v22 × w22 × σ′
1,x2

(W2) + v23 × w32 × σ′
1,x2

(W3)

VW ′′
2 = v21 × w11 × w12 × σ′′

1 (W1) + v22 × w21 × w22 × σ′′
1 (W2)

+ v23 × w31 × w32 × σ′′
1 (W3)

VW ′
3,x1

= v31 × w11 × σ′
1,x1

(W1) + v32 × w21 × σ′
1,x1

(W2) + v33 × w31 × σ′
1,x1

(W3)

VW ′
3,x2

= v31 × w21 × σ′
1,x2

(W1) + v32 × w22 × σ′
1,x2

(W2) + v33 × w32 × σ′
1,x2

(W3)

VW ′′
3 = v31 × w11 × w12 × σ′′

1 (W1) + v32 × w21 × w22 × σ′′
1 (W2)

+ v33 × w31 × w32 × σ′′
1 (W3)

3 Methodology

We consider the scenario in which a machine learning model is a surrogate of a
function without the information regarding additive separability of the function.
The surrogate is a multilayer perceptron neural network that learns a multi-
variate function f(~x, ~y). We design eight methods to compute the mixed partial
derivative of the surrogate, to test the surrogate, and hence the unknown func-
tion, for additive separability. This section describes the design of the eight
methods.

The first four methods compute the mixed partial derivative via finite differ-
ence. Three methods arise from the different methods to automatically compute
mixed partial derivatives using automatic differentiation of the surrogate. The
last method arises from the symbolic differentiation of the surrogate.

Method 1 computes the mixed partial derivative via Equation 3 by evaluating
the surrogate at (xN , yM ), (xN + h, yM ), (xN , yM + k) and (xN + h, yM + k) in
Equation 3, and setting h = k = 1.

Method 2 computes the mixed partial derivative via Equation 3 by evaluating
the surrogate at (xN , yM ), (xN + h, yM ), (xN , yM + k) and (xN + h, yM + k) in
Equation 3, and setting h and k to be the distances between xN and xN + h,
yM and yM + k respectively.

Method 3 computes the mixed partial derivative via Equation 3 by evaluating
the surrogate at (xN , yM ), (xN + h, yM ), (xN , yM + k) and (xN + h, yM + k) in
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Equation 3. However, it defines xN + h and yM + k to be the median of xN and
yM respectively. It sets h = k = 1. We note that this is the methodology used
by Udrescu et al. in their symbolic regression algorithm, AI Feynman [24].

Method 4 computes the mixed partial derivative via Equation 3 by evaluating
the surrogate at (xN , yM ), (xN + h, yM ), (xN , yM + k) and (xN + h, yM + k) in
Equation 3. However, it defines xN + h and yM + k to be the median of xN and
yM respectively. It sets h and k to be the distances between xN and xN +h, yM
and yM + k respectively.

We note that Methods 1 and 2 require a quadratic number of evaluations of
the surrogate, while Methods 3 and 4 require a linear number of evaluations of
the surrogate.

Method 5 computes the mixed partial derivative via Equation 1. The mixed
partial derivative of the surrogate is computed using automatic differentiation,
by taking the first derivative of the surrogate with respect to an element in ~x,
then taking a second derivative of the surrogate with respect to an element in ~y.

Method 6 computes the mixed partial derivative via Equation 1. The mixed
partial derivative of the surrogate is computed using automatic differentiation,
by taking the first derivative of the surrogate with respect to an element in ~y,
then taking a second derivative of the surrogate with respect to an element in ~x.

Method 7 computes the mixed partial derivative via Equation 1. The mixed
partial derivative of the surrogate is computed using automatic differentiation,
by finding the Hessian of the surrogate with respect to an element in ~x and an
element in ~y.

Method 8 computes the mixed partial derivative of a surrogate multilayer
perceptron neural network symbolically, following Equation 12. Given a surro-
gate of a function, it creates a second surrogate multilayer perceptron neural
network with the same weights and biases. This second surrogate multilayer
perception neural network instead models the mixed partial derivative of the
unknown function. The new surrogate multilayer perception neural network has
layers and activations following Equation 12. The inputs of the second surrogate
are the same as the first. The mixed partial derivative of the unknown function
is the output of the new surrogate multilayer perceptron neural network.

4 Performance Evaluation

Eight classifiers are created based on the eight methods listed in Section 3.
Independently, functions that are either additively or non-additively separable
are created, and one surrogate is trained on each function. Each classifier is then
given a trained surrogate. The eight classifiers each return a test output. The
test outputs are aggregated to compare the eight classifiers. This section presents
and discusses the results of the comparison of the eight methods.
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4.1 Experimental Setup

Setup of the Additively and Non-Additively Separable Surrogates We
create unknown functions that are either additively or non-additively separable.
We train one surrogate for each unknown function.

We create two- and three-variabled unknown functions comprising additive
and multiplicative combinations of polynomial, trigonometric, exponential, rad-
ical and logarithmic uni-variate sub-functions, shown in Table 1. A total of 3744
additively and non-additively separable unknown functions were created.

Table 1. Twelve sub-functions with input n, a placeholder for variables x, y and z

Sub-functions

f(n) = n f(n) = n2 f(n) = (n
3
)3 f(n) = 1

n+4

f(n) = sin(n) f(n) = cos(n) f(n) = sin(n)2 f(n) = cos(n)2

f(n) = exp(n) f(n) = log(n + 4) f(n) =
√

|n| f(n) = n1/3

One multilayer perceptron neural network surrogate is trained per unknown
function. We select 30 data points uniformly at random within the range of
[−3, 3] for each input variable of each unknown function4. The data is input to the
analytical form of the created unknown functions to get function outputs, which
we call output data. Tuples of the input and output data are used as training
data for a surrogate multilayer perceptron. Each surrogate multilayer perception
neural network has two hidden layers of width 26 with softplus activation, mean
squared error loss, batch size of 128 and Adam optimizer with learning rate
0.01. 80% of the data is used for training and 20% for validation. All models are
trained to convergence using a validation-based dynamic stopping criteria [22]
with patience of 500 epochs. All models are trained and evaluated on two GeForce
GTX1080 GPUs, with 64 GB of RAM and 12 processors.

Setup of the Eight Classifiers The eight classifiers make use of the trained
surrogate for each unknown function, f̂(~x, ~y) to evaluate additive separability.
All eight classifiers compute the mixed partial derivative of the surrogate with
respect to x1 and y1, which are the first elements in ~x and ~y respectively. The
values of all other inputs to the surrogates are kept constant for each evaluation
of each classifier. The eight classifiers compute the mixed partial derivatives on
a test dataset, comprising 30 data points generated uniformly in a grid within
the range of [−3, 3] for each input variable of each unknown function.

Classifier 1 computes the mixed partial derivative via Equation 3 by evaluat-
ing the surrogate at f̂(x1, y1), f̂(x1 + h, y1), f̂(x1, y1 + k) and f̂(x1 + h, y1 + k).
The pair of points (x1, y1) and (x1 +h, y1+ k) correspond to all pairwise combi-
nations of samples from the test dataset. h and k are set to 1. For a test dataset

4 We note that if data is generated evenly in a grid, Equation 1 (after computing the
derivative between consecutive points) and Equation 8 can be evaluated for each
unknown function immediately without a surrogate.
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comprising n tuples of (~x, ~y), this corresponds to n(n−1)
2 combinations of sam-

ples. The mixed partial derivative is averaged over all n(n−1)
2 combinations of

samples for a comparative evaluation.

Classifier 2 computes the mixed partial derivative via Equation 3 by evaluat-
ing the surrogate at f̂(x1, y1), f̂(x1 + h, y1), f̂(x1, y1 + k) and f̂(x1 + h, y1 + k).
The pair of points (x1, y1) and (x1 + h, y1 + k) correspond to all pairwise com-
binations of samples from the test dataset. h and k are set to be the distances
between each pair of samples of (x1, y1) and (x1 + h, y1 + k). For a test dataset

comprising n tuples of (~x, ~y), this corresponds to n(n−1)
2 combinations of sam-

ples. The mixed partial derivative is averaged over all n(n−1)
2 combinations of

samples for a comparative evaluation.

Classifier 3 computes the mixed partial derivative via Equation 3 by evaluat-
ing the surrogate at f̂(x1, y1), f̂(x1 + h, y1), f̂(x1, y1 + k) and f̂(x1 + h, y1 + k).
x1 + h and y1 + k are the median from all samples of x1 and y1 from the test
dataset respectively. h and k are set to 1. For a test dataset comprising n tu-
ples of (~x, ~y), the mixed partial derivative is averaged over all n samples for a
comparative evaluation.

Classifier 4 computes the mixed partial derivative via Equation 3 by evaluat-
ing the surrogate at f̂(x1, y1), f̂(x1 + h, y1), f̂(x1, y1 + k) and f̂(x1 + h, y1 + k).
x1 + h and y1 + k are the median from all samples of x1 and y1 from the test
dataset respectively. h and k are set to be the distances between each pair of
samples of (x1, y1) and (x1 + h, y1 + k). For a test dataset comprising n tu-
ples of (~x, ~y), the mixed partial derivative is averaged over all n samples for a
comparative evaluation.

Classifier 5 computes the mixed partial derivative via Equation 1. The mixed
partial derivative of the surrogate, f̂(x1, y1), is computed using automatic dif-
ferentiation via autograd in pytorch [18,19], at all samples (x1, y1) in the test
dataset. This is done by taking the first derivative of the surrogate with respect
to x1, then finding the derivative of the surrogate again, but with respect to y1.
For a test dataset comprising n tuples of (~x, ~y), the mixed partial derivative is
averaged over all n samples for a comparative evaluation.

Classifier 6 computes the mixed partial derivative via Equation 1. The mixed
partial derivative of the surrogate, f̂(x1, y1), is computed using automatic dif-
ferentiation via autograd in pytorch [18,19], at all samples (x1, y1) in the test
dataset. This is done by taking the first derivative of the surrogate with respect
to y1, then finding the derivative of the surrogate again, but with respect to x1.
For a test dataset comprising n tuples of (~x, ~y), the mixed partial derivative is
averaged over all n samples for a comparative evaluation.

Classifier 7 computes the mixed partial derivative via Equation 1. The mixed
partial derivative of the surrogate, f̂(x1, y1), is computed using automatic differ-
entiation via torch.func in pytorch [18,19], at all samples (x1, y1) in the test
dataset. torch.func directly computes the Hessian of the surrogate. For a test
dataset comprising n tuples of (~x, ~y), the mixed partial derivative is averaged
over all n samples for a comparative evaluation.
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Classifier 8 computes the mixed partial derivative of a surrogate multilayer
perceptron neural network symbolically, following Equation 12. It models the
mixed partial derivative of the unknown function by creating a second surrogate
multilayer perceptron neural network with the same architecture. Instead of
training the second surrogate multilayer perception neural network, the weights
from the surrogate of the unknown function are transferred over. The mixed par-
tial derivative of the surrogate, f̂(x1, y1), is computed using the second surrogate
multilayer perception neural network at all samples (x1, y1) in the test dataset.
For a test dataset comprising n tuples of (~x, ~y), the mixed partial derivative is
averaged over all n samples for a comparative evaluation.

The activation function of the surrogate multilayer perceptron neural net-
work of the unknown function is the softplus activation function, of the form
seen in Equation 13. Therefore, the second surrogate multilayer perception neu-
ral network that computes the mixed partial derivative also uses the softplus
activation function and its derivatives. The first and second derivatives of the
softplus activation function are shown in Equations 14 and 15 respectively.

σ(x) = log(exp(x) + 1) (13)

σ′
x =

∂σ(x)

∂x
=

exp(x)

exp(x) + 1
(14)

σ′′ =
∂2σ(x)

∂x2
=

exp(x)

(exp(x) + 1)2
(15)

All code was implemented in python. The code to train the surrogates of
the unknown functions, and to implement the eight classifiers, is available at
https://github.com/zykhoo/AdditiveSeparabilityTest.git.

Evaluation Metrics Each classifier computes an average mixed partial deriva-
tive for each of the 3744 unknown functions. A threshold value is set, and if the
average mixed partial derivative of an unknown function falls below or is equal to
the threshold, the classifier classifies that unknown function as additively sepa-
rable. Otherwise, the classifier classifies the unknown function as non-additively
separable. This is a binary classification problem.

The metric used to compare the eight methods is the accuracy of the classifi-
cation, using the threshold that gives no false positives as the optimal threshold.
The classification accuracy looks at fractions of correctly assigned positive and
negative classifications. As half of the unknown functions are additively sepa-
rable, and half are non-additively separable, the set of functions is balanced.
Furthermore, it is equally important to identify both additively separable and
non-additively separable unknown functions. Therefore the classification accu-
racy is used as a metric. The classification accuracy is computed as the count of
true positives and negatives, divided by the count of all classifications. A higher
accuracy is better.
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4.2 Experimental Results

We report the accuracy for the eight classifiers and their respective thresholds
in Tables 2. Additionally, we report the time taken for each classifier to evaluate
a surrogate in Table 3

Classifier 1 2 3 4 5 6 7 8

Accuracy 0.8654 0.7647 0.7260 0.6571 0.6343 0.6343 0.6343 0.6343
Threshold 0.0109 0.0030 0.0053 0.0018 0.0050 0.0050 0.0050 0.0050
Table 2. Accuracy and optimal threshold for the eight classifiers.

From Table 2 we observe that generally, all models have high classification
accuracy and can be used to classify additively and non-additively separable
functions. Classifier 1 performs the best, with an accuracy of 0.8654 at a thresh-
old of 0.0109. Classifiers 2, 3 and 4 also perform well, with accuracies ranging
between 0.7647 to 0.6571. Lastly. Classifiers 5, 6, 7 and 8 have an accuracy of
0.6343. It can also be observed from Table 2 that Classifiers 5, 6, 7 and 8 have
the same accuracy and thresholds, as they all compute the mixed partial deriva-
tive of the neural network through automatic or symbolic differentiation. These
mixed partial derivatives are instantaneous or at the limit, and computed at the
same samples in the test dataset and, therefore have the same accuracy.

Classifiers 1 through 4 outperform Classifiers 5 through 8. Equation 1 implies
that for an additively separable function f(~x, ~y) = g(~x)+h(~y), Equations 16 and
17 hold, as the functions g(~x) and h(~y) are independent of ~y and ~x respectively.
Therefore, Equations 16 and 17 should also hold even when the change in yn or
xm is large, or when h and k is large. Classifiers 1 through 4, when computing
the mixed partial derivative of a surrogate via finite difference, check that Equa-
tions 16 and 17 hold even for large changes in yn and xm, therefore outperform
Classifiers 5 through 8 that only check to ensure that Equations 16 and 17 hold
at the limit.

∂g(~x)

∂yn
= 0 (16)

∂h(~y)

∂xm

= 0 (17)

We make two notes about the observation above. Firstly, Classifiers 5 through
8 compute an instantaneous derivative whose magnitude may depend on the
analytical form of the function. A non-additively separable function may have a
small instantaneous derivative, and therefore be mistaken as additively separable
when using Classifiers 5 through 8. For example, f(~x, ~y) = xy can have a small
instantaneous derivative with respect to x of y and may potentially be classified
as additively separable. Classifiers 1 to 4, by computing the partial derivative
via finite difference instead of instantaneous derivative, compute the change in
f(~x, ~y) and can check if f(~x, ~y) changes greatly when y increases to identify that
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it is non-additively separable. Secondly, Classifiers 1 and 2 outperform Classifiers
3 and 4 because they compute the finite difference over larger changes in xn and
ym. The former takes the distance between any two samples in the test data,
while the latter takes the distance between any sample and the median of the
test data.

It is for this same reason that Classifiers 1 and 3 outperform Classifiers 2 and
4. The latter normalise Classifiers 1 and 3 by the magnitude of xn and ym. The
normalisation obscures the effect of computing the finite differences.

Lastly, from Table 3, we observe that generally, Classifiers 5, 6 and 8 are the
most time efficient. Classifiers 1 and 2 are time-consuming because they compute
n2 computations. Classifier 7 is also time-consuming because it computes the
Hessian of the neural network at each sample in the test dataset. This involves
not just computing the mixed partial derivative of the multilayer perceptron
neural network, but all other second-order derivatives as well.

Classifier 1 2 3 4 5 6 7 8

Time 48.3195 52.1720 0.0034 0.0032 0.0025 0.0025 136.4385 0.0029
Table 3. Time taken in seconds for the eight classifiers to evaluate a surrogate over a
test dataset.

5 Conclusion

We presented and comparatively and empirically evaluated the performance of
eight classifiers for additive separability, to be used to compute the mixed partial
derivatives of surrogate functions. Classifier 1 is the most effective, followed by
Classifier 2 and Classifier 3. Classifiers 5, 6 and 8 are the most efficient, followed
by Classifiers 3 and 4. Classifier 3 is the test of choice given a time constraint.

The surrogate of a function can be tested for additive separability using the
methods introduced in this paper. The detection that the surrogate is additively
separable can be leveraged to improve further learning. We are now working on
the embedding of information regarding additive separability into a multilayer
perceptron neural network surrogate that has been detected to be additively
separable.
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