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Abstract. Can a machine or algorithm discover or learn the elliptical or-
bit of Mars from astronomical sightings alone? Johannes Kepler required
two paradigm shifts to discover his First Law regarding the elliptical or-
bit of Mars. Firstly, a shift from the geocentric to the heliocentric frame
of reference. Secondly, the reduction of the orbit of Mars from a three-
to a two-dimensional space. We extend AI Feynman, a physics-inspired
tool for symbolic regression, to discover the heliocentricity and planarity
of Mars’ orbit and emulate his discovery of Kepler’s first law.

Keywords: Machine Learning · Symbolic Regression · Pareto Optimi-
sation

1 Introduction

In 2020, Silviu-Marian Udrescu and Max Tegmark introduced AI Feynman [19],
a symbolic regression algorithm that could rediscover one hundred equations
from the Feynman Lectures on Physics [4]. The authors motivated their work
with Johannes Kepler’s rediscovery of the orbital equation of Mars. Recent work
has shown that AI Feynman can also emulate Johannes Kepler’s rediscovery of
the orbital equation of Mars from the Rudolphine tables [11] when AI Feynman
is biased with information regarding the periodicity of Mars’ orbit, and the
trigonometric nature of the data from the Rudolphine tables [12].

In this work, we again use AI Feynman to emulate Kepler’s rediscovery of
the elliptical orbital equation of Mars, but from astronomical observations in-
stead of tabulated data from the Rudolphine tables. Kepler’s rediscovery of the
orbital equation of Mars required two paradigm shifts in early astronomy which
he embedded within the Rudolphine tables. Firstly, a shift from the geocen-
tric to the heliocentric frame of reference. Secondly, the reduction of the orbit
of Mars from a three-dimensional space to a two-dimensional plane. Without
observations from the Rudolphine tables, AI Feynman is ignorant of these two
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paradigm shifts and unable to emulate Kepler’s rediscovery of the orbital equa-
tion of Mars.

Our work extends AI Feynman to discover the heliocentricity and planarity of
Mars’ orbit. We embed the ability to change reference frames and reduce dimen-
sions in AI Feynman via biases in the style of physics-informed machine learning.
Embedding these biases in AI Feynman allows it to discover relationships other-
wise obscured by the perspective of the observer or concealed in higher dimen-
sional data. We devise, present, and evaluate the performance of two algorithms
that allow AI Feynman to rediscover the orbital equation of Mars by smartly
exploring changes in reference frames and reductions in dimension spaces.

Our approach imbues AI Feynman with a level of understanding akin to Ke-
pler’s paradigm-shifting insights, facilitating the discovery of complex physical
relationships concealed within the observer’s perspective or hidden in higher-
dimensional data. The remainder of this paper details this significant advance-
ment in symbolic regression algorithms and evaluates its performance.

2 Background

Kepler’s First Law states that each planet’s orbit about the Sun is an ellipse
with the Sun’s center located at one focus of the ellipse. The planet follows the
ellipse in its orbit, and the planet to Sun distance is constantly changing as the
planet goes around its orbit [3]. The orbital equation of Mars in polar coordinates
is shown in Equation 1. It describes the distance of Mars from the Sun, r, as
a function of the anomalia coaequata, θ, an angle between Mars and the Sun
with respect to a horizontal. a and ǫ are constants representing the semi-major
axis and eccentricity of the ellipse. The variables r(t) and θ(t) are functions of
time, and represent vectors comprising observations of that variable at multiple
different times.

r(t) =
a

1 + ǫ cos(θ(t))
(1)

Equation 1 describes Mars’ orbit as an ellipse centered on its focus. An alterna-
tive representation of an ellipse centered on its focus is shown in Equation 2. x
and y are the coordinates of Mars relative to the Sun, and a, b and h are the
semi-major axis, semi-minor axis and distance between the center and focus of
the ellipse respectively.

y(t)2 = b2 ×

(

1−
(x(t) − h)2

a2

)

(2)

The distance r(t) between Mars and the Sun in cartesian coordinates is shown
in Equation 3. It is a modification of Equation 2.

r(t) =
√

y(t)2 + x(t)2 =

√

b2 ×

(

1−
(x(t)− h)2

a2

)

+ x(t)2 (3)

Equations 1, 2 and 3 are equivalent in that they either directly or indirectly
describe Mars’ orbit around the Sun.
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3 Related Work

3.1 Symbolic Regression

Finding an equation from sample data, for instance, an equation describing the
orbit of Mars from sightings of the planet and the Sun, is a combinatorial chal-
lenge [19]. To circumvent this, one may use universal function approximators
such as multilayer perceptron neural networks [8].

Alternatively, symbolic regressions search for a parsimonious and elegant
form of the unknown equation. There are three main classes of symbolic re-
gression methods [14]: regression-based, expression tree-based and physics- or
mathematics-inspired. We use AI Feynman, a physics-inspired algorithm [19].

Regression-based symbolic regression methods [14], given solutions to the un-
known equation, find the coefficients of a fixed basis that minimise the prediction
error. As the basis grows, the fit improves, but the functional form of the un-
known equation becomes less sparse or parsimonious. Sparse regressions promote
sparsity through regularisation, as proposed by Robert Tibshirani [18] who used
the l1 norm, thus inventing the Lasso regression. Steven Brunton et al.’s Sparse
Identification of Nonlinear Dynamics [1] is a state-of-the-art sparse symbolic re-
gression approach. It leverages regularisation and identifies a system’s equations
of motion using a sparse regression over a chosen basis. However, committing to
a basis limits the applicability of regression-based methods.

Expression tree-based symbolic regression methods based on genetic pro-
gramming [14] can instead discover the form and coefficients of the unknown
equation. The seminal work by John Koza [13] represents each approximation
of an unknown equation as a genetic programme with a tree-like data struc-
ture, with traits (or nodes in the tree) representing functions or operations and
variables representing real numbers. The fitness of each genetic programme is
its prediction error. Fitter genetic programmes undergo a set of transition rules
comprising selection, crossover and mutation to find the optimal equation form
iteratively. Genetic programmes may greedily mimic nuances of the unknown
equation [17], limiting generalisability. David Goldberg [7] used Pareto optimi-
sation to balance the objectives of fit and parsimony in symbolic regression.
State-of-the-art symbolic regression using genetic programming includes Eureqa
by Michael Schmidt and Hod Lipson [16] and PySR by Miles Cranmer [2]. How-
ever, if an expression tree-based method finds a reasonably accurate equation
with the wrong functional form, it risks getting stuck at a local optimum [19].

Physics-inspired symbolic regression methods leverage properties of the un-
known equation like symmetry and separability [19]. Udrescu and Tegmark [19],
in AI Feynman, use a neural network to test for such properties and recursively
break the search for the unknown equation into that of simpler equations [19].
Each equation is then regressed with a basis-set of nonlinear functions. This
guarantees that more accurate approximations of an equation are symbolically
closer to the truth [19]. AI Feynman outputs a sequence of increasingly complex
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equations with progressively better accuracy along a Pareto frontier, leveraging
the work of Goldberg [7] and Smits [17] to balance fit and parsimony. We use AI
Feynman to rediscover the orbital equation of Mars from observational data.

3.2 Physics-Informed Machine Learning

Karniadakis et al. focus on three modes of biasing a learning algorithm: obser-
vational bias, learning bias, and inductive bias [10]. Observational biases can be
introduced directly through data that embody the underlying physics or carefully
crafted data augmentation procedures. With sufficient data to cover the input
domain of a learning task, machine learning methods have demonstrated remark-
able power in achieving accurate interpolation between the dots [10]. Learning
biases can be introduced by appropriate loss functions, constraints and infer-
ence algorithms that modulate the training phase of a machine learning model
to explicitly favour convergence towards solutions that adhere to the underly-
ing physics [10]. These are soft constraints [10]. Inductive biases are prior as-
sumptions incorporated by tailored interventions to a machine learning model
architecture, so predictions are guaranteed to implicitly satisfy a set of given
physical laws [10]. These are strict constraints. We embed biases within the AI
Feynman algorithm so that it can emulate Kepler’s change in reference frames,
to rediscover the orbital equation of Mars.

Seminal work by Khoo et al. [12] combined AI Feynman and physics-informed
machine learning to rediscover the orbital equation of Mars. However, this work
made use of data from the Rudolphine tables that already embeded assumptions
of the heliocentricity and planarity of Mars’ orbit [12]. Geocentric observations
of Mars and the Sun do not embed any assumptions. Therefore, in rediscovering
the orbital equation of Mars from geocentric observations, AI Feynman needs
to be informed of these assumptions of heliocentricity and planarity of Mars’
orbit. Our work focuses on embedding biases regarding the heliocentricity and
planarity of Mars’ orbit within the AI Feynman algorithm.

Additionally, the authors of the previous work needed to embed additional
inductive and observational biases within the AI Feynman algorithm to inform
the algorithm of the periodicity of Mars’ orbit and the trigonometric nature
of the data from the Rudolphine tables via two biases [12]. The first was an
observational bias which replaced angular values with their sine and cosine. The
second was an inductive bias which restricted the search space. The bias stemmed
from the knowledge that exponential and logarithmic functions only transform
dimensionless quantities, therefore cannot transform data representing physical
quantities and limited the search space to trigonometric, polynomial and radical
functions [12]. The necessity of embedding these biases arose from the data
in the Rudolphine tables being presented in polar coordinates. AI Feynman,
augmented with the observational and inductive biases to inform the algorithm
of the periodicity of Mars’ orbit and the trigonometric nature of the data, was
best able to rediscover Mars’ orbital equation.
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4 Methodology

This section introduces two algorithms that correspond to two biases to aid
AI Feynman in rediscovering the orbital equation of Mars. The first algorithm
considers the relationship between Mars and the Sun from different reference
frames, namely the heliocentric, geocentric and areocentric (centered around
Mars) reference frames. The second considers the relationship between Mars
and the Sun from varying dimensional spaces. We evaluate the two algorithms
on their ability to rediscover either Equation 1, 2 or 3.

The First Algorithm The first algorithm considers the relationship between
Mars and the Sun from varying reference frames. Observations of Mars, the Sun
and the Earth are made from the three heliocentric, geocentric and areocentric
reference frames.

In the absence of information regarding the choice of reference frames, AI
Feynman is used to rediscover the relationship between Mars and the Sun from
each set of observations. A Pareto frontier comparing fit and parsimony is pro-
duced from each set of observations and the three Pareto fronts are combined to
produce a single Pareto front. The combination of the three Pareto fronts is an
inductive bias as equations along the single combined Pareto frontier implicitly
optimise fit and parsimony.

With information regarding the choice of reference frame, AI Feynman is
used to rediscover the relationship between Mars and the Sun from observations
of the selected reference frame. This is an observational bias where the choice
of reference frame is introduced directly through observations that embody the
underlying physics of the relationship between Mars and the Sun.

The Second Algorithm The second algorithm considers the relationship be-
tween Mars and the Sun from varying dimensional spaces. Three-dimensional
geocentric observations of Mars and the Sun are made.

In the absence of information regarding the choice of dimensionality, the di-
mensional space of geocentric observations of Mars and the Sun is gradually
reduced by projecting the original observations into progressively lower dimen-
sional spaces. AI Feynman is used to rediscover the relationship between Mars
and the Sun from each set of lower-dimensional projections. A Pareto frontier
comparing fit and parsimony is produced from each set of projections and the
Pareto fronts are combined to produce a single Pareto front. The combination
of the Pareto fronts is an inductive bias as equations along the single combined
Pareto frontier implicitly optimise fit and parsimony.

With information regarding the choice of dimensionality, AI Feynman is used
to rediscover the relationship between Mars and the Sun from projections in
the selected dimensional space. This is an observational bias where the choice
of dimensionality is introduced directly through observations that embody the
underlying physics of the relationship between Mars and the Sun.
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We evaluate the algorithms on their ability to rediscover equations that de-
scribe Mars’ orbit around the Sun, namely Equations 1 2 or 3, from observations
from a polar or cartesian coordinate system.

5 Performance Evaluation

Three experiments are designed. The first two correspond to the two algorithms
described in Section 4 in the absence of information regarding the choice of
reference frame and dimensionality. Their experimental setup and results are
shown in subsections 5.1 and 5.2. The third experiment, in subsection 5.3 is a
proof of concept that informs AI Feynman via observational biases about the
choice of reference frame and dimensionality to rediscover the orbital equation of
Mars. All experiments use different inputs, elaborated on in subsections 5.1, 5.2
and 5.3, to describe the distance between Mars and the Sun. All experiments are
run twice, once each for the cartesian and polar coordinate systems respectively.

Data for all experiments was obtained from the National Aeronautics and
Space Administration’s Horizons system [6] and downloaded from astropy [5].
The data included geocentric observations of the angular width, AW , right as-
cension, RA and declination, DC, of Mars M and the Sun S from 1 January
1601 to 31 December 1602. All computations are in astronomical units. The code
and data are available at https://github.com/zykhoo/AI-Feynman.

From the angular width, the distances DT of Mars and the Sun from the
Earth are computed following Equations 4 and 5. SFAU is a scaling factor repre-
senting the diameter of the Sun relative to one astronomical unit, with a value of
0.00465047. SFM = 0.00486759 and SFS = 1 are scaling factors representing the
diameter of Mars relative to the Sun and the diameter of the Sun relative to itself
respectively. The angular width, right ascension and distance are polar coordi-
nates. The geocentric cartesian coordinates of Mars is a tuple (XM , YM , ZM ),
converted from polar coordinates using astropy.

DTM (t) =
SFM × SFAU

tan(AWM (t)/2)
(4)

DTS(t) =
SFS × SFAU

tan(AWS(t)/2)
(5)

The AI Feynman algorithm designed by Udrescu et al. [19] with modifica-
tions to embed inductive and observational biases by Khoo et al. [12] is used.
The modifications to embed an inductive bias inform AI Feynman of the pe-
riodicity of Mars’ orbit and the trigonometric nature of its input data by the
restriction of the search space. This inference stems from the knowledge that
exponential and logarithmic functions only transform dimensionless quantities,
therefore cannot transform data representing physical quantities. The inductive
bias limits the search space to trigonometric, polynomial and radical functions.
The modifications to embed an observational bias inform AI Feynman of the pe-
riodicity of Mars’ orbit and the trigonometric nature of its input data replacing
angular values with their sine and cosine.
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AI Feynman returns equations along a Pareto frontier. The Pareto frontier
is a set of solutions that represents the best trade-off between fit and parsimony.
No other solution has a better fit and is more parsimonious than an equation
along the Pareto frontier. The fit and parsimony of equations along the Pareto
frontier are optimised using the minimum description length formalism [21,20].
Minimising this description length formalism is equivalent to minimising the
number of bits required to represent the equation and its loss. The minimum
description length formalism comprises a measure of fit and a measure of parsi-
mony. The measure of fit places a logarithm-scaled penalty on the absolute loss.
The measure of parsimony places a logarithm-scaled penalty on real numbers,
variables and operators in an equation. AI Feynman simultaneously attempts to
minimise both penalties and this minimises the geometric mean instead of the
arithmetic mean, which encourages improving already well-fit points [21,20].

5.1 Experiment 1

This subsection details the experimental setup and implementation of the first
algorithm, and its results in rediscovering the relationship between Mars and the
Sun from heliocentric, geocentric and areocentric reference frames.

Experimental Setup Three sets of observations are created, corresponding to
the three reference frames for each coordinate system. The first set comprises
the coordinates of Mars and the Sun from the geocentric reference frame, the
second set comprises the coordinates of the Earth and Mars from the heliocentric
reference frame, and the third set comprises the coordinates of the Sun and the
Earth from the areocentric reference frame. The heliocentric and areocentric
reference frames of Mars, the Earth and the Sun are computed using vector
addition of the coordinates in the geocentric reference frame.

For the cartesian coordinate system, the x, y and z coordinates of the two
bodies in each of the three reference frames are input to AI Feynman to describe
the distance between Mars and the Sun. Independent runs of AI Feynman are re-
peated for the three reference frames. The fit and parsimony of equations output
by AI Feynman from the three runs are compared on the same Pareto frontier.
The equations that form the new, combined Pareto frontier are examined.

For the polar coordinate system, the declination and right ascension are
replaced with their sines and cosines as an observational bias regarding the
periodicity of Mars’ orbital equation. The sine and cosine of the declination, the
sine and cosine of the right ascension and the angular width are input to AI
Feynman to describe the distance between Mars and the Sun. Independent runs
of AI Feynman are repeated for the three reference frames. The fit and parsimony
of equations output by AI Feynman from the three runs are compared on the
same Pareto frontier and the equations that form the new Pareto frontier are
examined.
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Experimental Results The equations along the new, combined Pareto fron-
tiers are reported in column 2 of Tables 1 and 2 for the cartesian and polar coor-
dinate systems respectively. r(t) denotes the distance between Mars and the Sun.
MS(t) and ME(t) denote areocentric observations of the Sun and Earth, SE(t)
and SM(t) denote heliocentric observations of Earth and Mars, and EM(t) and
ES(t) denote geocentric observations of Mars and the Sun. The subscripts x, y
and z denote the cartesian coordinate system, while the subscripts RA, DC and
AW denote the right ascension, declination and angular width in the polar co-
ordinate system. The fit and parsimony of the equations are also measured and
presented in columns 3 and 4. In Table 1, Equation 6a is areocentric. Equations
6c to 6i are heliocentric. Equation 6b is geocentric. In Table 2, Equation 7d is
heliocentric. Equations 7a, 7b and 7c are geocentric.

No. Equation Fit Parsimony

(6a) r(t) = arccos(−0.1 × MSx(t)) 25.05 12.32

(6b) r(t) = −EMy(t) + EMz(t) × ESy(t)/ESz(t) + 1.5 24.10 29.0

(6c) r(t) = (SMx(t)
2

+ 1.17801253496029 × SMy(t)
2
)
0.5

22.82 63.52

(6d)
r(t) = (SMx(t)2 + 1.17801253496029 × SMy(t)2

+ 0.0538855469457899)
0.5

22.61 105.82

(6e)

r(t) = arccos
(

−0.294567985407943 × SMx(t)
2

−0.360901709329182 × SMy(t)
2

+ 0.75
)

22.52 112.46

(6f)
r(t) = 0.346480692154936 × SMx(t)

2

+ 0.424521090029716 × SMy(t)
2

+ 0.705090417032556

21.99 151.03

(6g)

r(t) = (0.978840855738558 × SMx(t)
2

− 0.0297412516501264 × SMx(t) × SMy(t)

+ 1.17801253496029 × SMy(t)
2

+ 0.0538855469457899)
0.5

21.23 197.63

(6h)

r(t) = (0.978840855738558 × SMx(t)
2

− 0.0297412516501264 × SMx(t) × SMy(t)

+ 1.17801253496029 × SMy(t)
2
+

0.00651713753890506 × SMy(t) + 0.0538855469457899)
0.5

20.31 236.87

(6i)

r(t) = (0.978840855738558 × SMx(t)
2

− 0.0297412516501264 × SMx(t) × SMy(t)

− 0.00278630946992131 × SMx(t)

+ 1.17801253496029 × SMy(t)
2

+ 0.00651713753890506 × SMy(t) + 0.0538855469457899)
0.5

20.21 274.89

Table 1. Results for Experiment 1 with cartesian coordinates

No. Equation Fit Parsimony

(7a) r(t) = 2 × cos
(

EMDC (t)
)

− 0.4 25.92 10.25

(7b) r(t) = 1.66666666666667 × cos
(

EMDC (t)
)2

25.57 10.51

(7c) r(t) = 6 × (cos
(

EMDC (t)
)

× EMAW (t)
0.25

)
0.5

25.35 15.81

(7d) r(t) = 0.000045273194 × ((0 + 1)/MSAW (t)) 3.25 35.08

Table 2. Results for Experiment 1 with polar coordinates

We observe that Equations 6c, 6g, 6h and 6i from Table 1 are similar to the
equation form for Equation 3. From Table 2, we can observe that no equation
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matches the form of Equation 1, although Equation 7d in Table 2 is an attempt
to use angular width to describe the relationship between Mars and the Sun
as seen in Equation 4. Furthermore, we can observe that most equations from
both tables are heliocentric and use observations of Mars to describe r(t). These
equations suggest a relationship between Mars and the Sun that is independent of
observations of the Earth. Such equations fit the data parsimoniously, therefore
Pareto-dominate other equations that use observations of the Earth which have
a poorer fit or are less parsimonious. Therefore, heliocentric equations appear
on the combined Pareto front.

Lastly, we note the absence of heliocentric equations along the combined
Pareto frontier presented in Table 2. This may be because the heliocentric equa-
tions are obscured by the high dimensional data from the areocentric and geo-
centric reference planes. However, one equation of interest along the heliocentric
Pareto frontier is r(t) = 0.009300823088×((0+1)/SMAW), which is heliocentric
and has the same form as Equation 7d. It is an attempt to use angular width
to describe the relationship between Mars and the Sun as seen in Equation 5
from a heliocentric frame of reference. This equation does not appear along the
combined Pareto frontier as it is Pareto dominated by Equation 7d.

5.2 Experiment 2

This subsection details the experimental setup and results in the implementation
of the second algorithm, which rediscovers the relationship between Mars and
the Sun from varying dimensional spaces.

Experimental Setup The three-dimensional geocentric observations of Mars
and the Sun in both the polar and cartesian coordinate systems are reduced to
lower dimensional spaces by principal component analysis [9].

For the cartesian coordinate system, the three-dimensional geocentric x, y
and z coordinates of Mars and the Sun are projected to three-dimensional,
two-dimensional and one-dimensional spaces. The three-dimensional geocentric
x, y and z coordinates of Mars, M(t), and the Sun, S(t), are expressed as
M(t) = [Mx(t),My(t),Mz(t)] and S(t) = [Sx(t), Sy(t), Sz(t)] respectively. The
covariance matrices for Mars and the Sun are M(t)⊺M(t) and S(t)⊺S(t) respec-
tively. We skip standardisation to retain measurements in astronomical units.
The eigenvalues and eigenvectors of the respective covariance matrices are com-
puted. To get a lower-dimensional projection of the three-dimensional space,
M(t) is projected onto an N-dimensional space defined by the eigenvectors cor-
responding to the N largest eigenvalues of M(t)⊺M(t) and S(t) is projected
onto an N-dimensional space defined by the eigenvectors corresponding to the N
largest eigenvalues of S(t)⊺S(t). This is repeated for N = [3, 2, 1].

Three independent runs of AI Feynman are made. The inputs to each run
are the six projections of Mars and the Sun on to a three-dimensional space,
four projections of Mars and the Sun on to a two-dimensional space and two
projections of Mars and the Sun on to a one-dimensional space respectively. All



10 Khoo et al.

runs attempt to describe the distance between Mars and the Sun. The fit and
parsimony of equations output by AI Feynman from the three runs are compared
on a combined Pareto frontier and the equations that form the new, combined
Pareto frontier are examined.

For polar coordinates, the three-dimensional polar coordinates of Mars and
the Sun comprise the declination, right ascension and angular width. As the
declination and right ascension are angles and the angular width is a measure of
length, they cannot be simultaneously projected onto a lower dimensional space.
Therefore, the angles have to be projected onto a lower-dimensional space, after
which they are replaced with their sines and cosines as an observational bias
regarding the periodicity of Mars’ orbital equation [12].

For the projection of the angles onto a lower dimensional space, the angles
of Mars and the Sun are expressed as M(t) = [MRA(t),MDC(t)] and S(t) =
[SRA(t), SDC(t)] respectively. The covariance matrices for Mars and the Sun are
M(t)⊺M(t) and S(t)⊺S(t) respectively. The eigenvalues and eigenvectors of the
covariance matrices are computed. To get an N-dimensional projection of the
two-dimensional space, M(t) is projected onto an N-dimensional space defined
by the eigenvectors corresponding to the N largest eigenvalues of M(t)⊺M(t)
and S(t) is projected onto an N-dimensional space defined by the eigenvectors
corresponding to the N largest eigenvalues of S(t)⊺S(t), for N = [2, 1].

Two independent runs of AI Feynman are made. The inputs to each run are
the projections of the angles onto a lower dimensional space, after which they
are replaced with their sines and cosines. The first run uses the sine and cosine
of the projections in a two-dimensional space, and the angular width, for both
the Sun and Mars. The second run uses the sine and cosine of the projections in
a one-dimensional space, and the angular width, for both the Sun and Mars. All
runs attempt to describe the distance between Mars and the Sun. The fit and
parsimony of equations output by AI Feynman from the two runs are compared
on the same Pareto frontier and the equations that form the new, combined
Pareto frontier are examined.

Experimental Results The equations along the new, combined Pareto fron-
tiers are reported in column 2 of Tables 3 and 4 for the cartesian and polar coor-
dinate systems respectively. λM,N (t) and λS,N (t) denote the projection of geo-
centric observations of Mars and the Sun respectively, with λM,1(t) and λS,1(t)
corresponding to the projections from the respective eigenvectors with the largest
eigenvalues. For the cartesian and polar coordinate systems, N ≤ 3 and N ≤ 2
respectively. The fit and parsimony of the equations are also measured and pre-
sented in columns 3 and 4. In Table 3, Equation 8f is the output from a one-
dimensional space. Equations 8c, 8h, 8i, 8j, 8k, 8n, 8o and Equations 8a, 8b,
8d, 8e, 8g, 8l, 8m are the outputs from two-dimensional and three-dimensional
spaces respectively. In Table 4, Equations 9a, 9b and 9c are outputs from a
one-dimensional space. Equation 9d is the output from a two-dimensional space.

None of the equations from Table 3 and 4 match the equation form for
Equations 3 and 1. However, Equations 8n and 8o make use of a square root to fit
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r(t), similar to Equation 3. Furthermore, even though the equations in Tables 3
and 4 are outputs from multi-dimensional spaces, most equations only make
use of one to two eigenvectors from both Mars and the Sun. These equations
suggest a relationship between Mars and the Sun that can be captured in a two-
dimensional space. The eigenvectors from a planar, two-dimensional space fit the
data parsimoniously, therefore Pareto-dominate other equations that make use
of eigenvectors from higher dimensional spaces that have a poorer fit or are less
parsimonious. Therefore, they appear on the combined Pareto front.

5.3 Experiment 3

This subsection considers the experimental setup and implementation in AI
Feynman to rediscover the orbital equation of Mars. Knowledge regarding the
heliocentricity and planarity of Mars’ orbit, discovered from Experiments 1 and
2, are embedded as observational biases into the AI Feynman algorithm.

Experimental Setup The three-dimensional heliocentric observations of Mars
in both the polar and cartesian coordinate systems are reduced to lower dimen-
sional spaces by principal component analysis [9].

For the cartesian coordinate system, the three-dimensional heliocentric x, y
and z coordinates of Mars are projected to a two-dimensional space. The three-
dimensional x, y and z coordinates of Mars is M(t) = [Mx(t),My(t),Mz(t)]. The
covariance matrix for Mars is M(t)⊺M(t). The eigenvalues and eigenvectors of
the covariance matrix are computed. To get a two-dimensional projection of the
three-dimensional space, M(t) is projected onto a two-dimensional space defined
by the eigenvectors corresponding to the two largest eigenvalues of M(t)⊺M(t).

One run of AI Feynman is made to describe the distance between Mars and
the Sun. The inputs are the two projections of Mars in two-dimensional space.

For polar coordinates, the three-dimensional heliocentric polar coordinates
of Mars comprise the declination, right ascension and angular width. As the
declination and right ascension are angles and the angular width is a measure of
length, they cannot be simultaneously projected onto a lower dimensional space.
Therefore, only the angles can be projected onto a lower dimensional space.

The angles of Mars are M(t) = [MRA(t),MDC(t)]. The covariance matrix
for Mars is M(t)⊺M(t). The eigenvalues and eigenvectors of the respective co-
variance matrices are computed. To get a one-dimensional projection of the
two-dimensional space, M(t) is projected onto a one-dimensional space defined
by the eigenvectors corresponding to the largest eigenvalue of M(t)⊺M(t).

One run of AI Feynman is made to describe the distance between Mars and
the Sun. The inputs to the run are the sine and cosine of the projections of the
angles in a one-dimensional space.

Experimental Results The equations along the Pareto frontiers are reported
in column 2 of Tables 5 and 6 for the cartesian and polar coordinate systems
respectively. λM,N (t) denote the projection of Mars with λM,1(t) corresponding
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No. Equation Fit Parsimony

(8a) r(t) = 2 × λM,3(t)(t) + 1.5 26.17 9.34

(8b) r(t) = 3 × λM,3(t)(t) + 1.5 26.13 9.75

(8c) r(t) = arccos
(

−0.1 × λS,2(t)
)

25.64 12.32

(8d) r(t) = 2 × λM,3(t)(t) + 1.563343180129 25.62 53.49

(8e) r(t) = 3 × λM,3(t)(t) + 1.554202964751 25.20 53.90

(8f) r(t) = 1.221198383854 + ((0 + 1)/((((λM,1(t) + 1) + 1) + 1) + 1)) 24.25 c54.87

(8g) r(t) = 1.221364981489 + ((0 + 1)/((((λM,1(t) + 1) + 1) + 1) + 1)) 24.22 54.87

(8h) r(t) = 1.221468928502 + ((0 + 1)/((((λM,1(t) + 1) + 1) + 1) + 1)) 24.19 54.87

(8i)
r(t) = −0.0416098292506629 × λM,1(t)

2
− 0.0337764400695433 × λM,1(t)

− 0.0526409552168828 × λM,2(t)
2

+ 1.66666666666667

24.02 144.75

(8j)

r(t) = (−0.017832447865237 × λM,1(t)
2

− 0.0122546126831841 × λM,1(t)

− 0.0197336507795308 × λM,2(t)
2

− 0.00525510104504469 × λM,2(t) + 1.28929406165126)
2

22.89 223.87

(8k)

r(t) = (−0.017832447865237 × λM,1(t)
2

− 0.000833616276921385 × λM,1(t) × λM,2(t)

− 0.0122546126831841 × λM,1(t) − 0.0197336507795308 × λM,2(t)
2

− 0.00525510104504469 × λM,2(t) + 1.28929406165126)
2

22.85 260.15

(8l)

r(t) = arccos
(

0.090616012160451 × λM,1(t)

− 0.0319600776983129 × λM,2(t) − 0.0232047508907192 × λS,1(t)

+ 0.0283550675125619 × λS,2(t)
2

− 0.0976600194525864 × λS,2(t)

+ 0.0289977987855869 × (λM,3(t)(t) − λS,1(t) + λS3(t)
)2

+ 0.0307948365787156)

21.33 335.29

(8m)

r(t) = arccos
(

0.090616012160451 × λM,1(t) − 0.0319600776983129 × λM,2(t)

− 0.0232047508907192 × λS,1(t) + 0.0283550675125619 × λS,2(t)
2

− 0.0976600194525864 × λS,2(t) + 0.0232047508907192 × λS3(t)

+0.0289977987855869 × (λM,3(t)(t) − λS,1(t) + λS3(t))
2

+ 0.0307948365787156
)

21.32 376.36

(8n)

r(t) =
(

0.618804692832026 × λM,1(t)
2

− 0.63643067097383 × λM,1(t) × λS,1(t)

− 1.06306011300215 × λM,1(t) × λS,2(t) − 0.104724154100595 × λM,1(t)

+ 0.613759226153589 × λM,2(t)
2

− 1.05609058819238 × λM,2(t) × λS,1(t)

+ 0.632982631682707 × λM,2(t) × λS,2(t) + 0.0355913865390322 × λM,2(t)

+ 0.629510568181755 × λS,1(t)
2

+ 0.0223685214839701 × λS,1(t)

+ 0.612538055894269 × λS,2(t)
2

+ 0.111425533671115 × λS,2(t)

+ 0.871191849870558)
0.5

20.65 616.10

(8o)

r(t) = (0.618804692832026 × λM,1(t)
2

− 0.63643067097383 × λM,1(t) × λS,1(t)

− 1.06306011300215 × λM,1(t) × λS,2(t) − 0.104724154100595 × λM,1(t)

+ 0.613759226153589 × λM,2(t)
2

− 1.05609058819238 × λM,2(t) × λS,1(t)

+ 0.632982631682707 × λM,2(t) × λS,2(t) + 0.0355913865390322 × λM,2(t)

+ 0.629510568181755 × λS,1(t)
2

+ 0.00362394983019903 × λS,1(t) × λS,2(t)

+ 0.0223685214839701 × λS,1(t) + 0.612538055894269 × λS,2(t)
2

+ 0.111425533671115 × λS,2(t) + 0.871191849870558)
0.5

20.65 654.50

Table 3. Results for Experiment 2 with cartesian coordinates

to the projection from the eigenvector with the largest eigenvalue. For the carte-
sian and polar coordinate systems, N = 2 and N = 1 respectively. The fit and
parsimony of the equations are measured and presented in columns 3 and 4.

Equations 10a, 10b and 10c in Table 5 suggest that the orbital equation of
Mars is a circle, likely because the eccentricity of the orbital equation of Mars is
small. An analysis of the projections of Mars reveals that the eigenvectors of the
projections correspond to the x- and y-axis of the plane that the two-dimensional
ellipse lies on.
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No. Equation Fit Parsimony

(9a) r(t) = arcsin
(

λM,4(t)2 + λM,5(t)2
)

26.17 14.78

(9b) r(t) = 1.75 + 1/(1 − λM,3(t)) 24.91 16.0

(9c) r(t) = 1.734731422448 + 1/(1 − λM,3(t)) 24.11 58.30

(9d) r(t) = 2.735302247043 + (λM,5(t)/((−λM,5(t)) + 1)) 24.06 58.96

Table 4. Results for Experiment 2 with polar coordinates

No. Equation Fit Parsimony

(10a) r(t) = (λ2
M,1(t) + λ2

M,2(t))0.5 0.97 13.17

(10b) r(t) = (λ
2
M,1(t) + λ

2
M,2(t))

0.5
+ 1.033e − 9 0.74 29.83

(10c) r(t) = (λM,2(t) × (λM,1(t)
2
/λM,2(t) + λM,2(t)))

0.5
+ 1.033e − 9 0.74 36.75

Table 5. Results for Experiment 3 with cartesian coordinates

We re-run AI Feynman to rediscover the relationship between the x- and
y-coordinates of the planar, two-dimensional ellipse. This run of AI Feynman
omits r(t) as an input, and returns the equation y(t) = (−0.99× x(t)2 − 0.28×
x(t)+2.28)0.5. This is the cartesian form of Kepler’s first law, seen in Equation 3,
which suggests an ellipse with a semi-minor axis of 1.5165, a semi-major axis of
1.5241, and an eccentricity of 0.09974. The reported semi-major axis of Mars is
1.5237, and the reported eccentricity of Mars’ orbit is 0.09341 [15].

Equations 11e to 11g and 11l to 11p in Table 6 are similar to Equation 1 but
have an additional sinusoidal function in the denominator. An analysis of λM,1(t)
reveals that the declination and right ascension of Mars have been projected
into a one-dimensional space corresponding to an angle between Mars and the
Sun with respect to a horizontal, corresponding to the anomalia coequata. The
sinusoidal function in the denominator expresses the ellipse has a focus that is
vertically displaced from the origin. We shift the ellipse to remove the vertical
displacement and run AI Feynman again. The inputs to the run are the sine
and cosine of the projections of the angles in a one-dimensional space. The run
uses the inputs to describe the distance between Mars and the Sun. This run of
AI Feynman returns the equation r(t) = 1

0.0549323×cos(θ(t))+0.6612821 . This is the

polar form of Kepler’s first law, seen in Equation 1, which suggests an ellipse
with a semi-major axis of 1.5227, and an eccentricity of 0.08306.

6 Conclusion

In this work, we have expanded the frontier of symbolic regression capabilities
by extending AI Feynman using inductive biases to smartly explore changes in
reference frames and reductions in dimension spaces. We found heliocentric and
two-dimensional, planar projections of the data could parsimoniously fit and
describe the distance of Mars from the Sun. This enhancement paves the way
for AI Feynman to make paradigm shifts that were previously only possible with
human intuition and understanding. Directly embedding an observational bias
regarding the discovered heliocentricity and planarity allowed AI Feynman to
rediscover the orbital equation of Mars.
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No. Equation Fit Parsimony

(11a) r(t) = arccos
(

0.125 × cos
(

λM,1(t)
))

24.65 8.75

(11b) r(t) = 1.2 + 0.5/(cos
(

λM,1(t)
)

+ 2) 24.35 14.47

(11c) r(t) = 1.201808689874 +
sin

(

λM,1(t)
)

2 × sin
(

λM,1(t)
)

× (cos
(

λM,1(t)
)

+ 2)
24.40 59.36

(11d) r(t) = 1.041283341747 ×

√

((cos
(

λM,1(t)
)

/(−(sin
(

λM,1(t)
)

+ 2))) + 2) 24.22 77.73

(11e)
r(t) = 1/

(

0.0274130068719387 × sin
(

λM,1(t)
)

+ 0.0555427223443985 × cos
(

λM,1(t)
)

+0.666666666666667)

22.67 99.43

(11f)
r(t) = 1/(0.0274164322763681 × sin

(

λM,1(t)
)

+ 0.0555496737360954 × cos
(

λM,1(t)
)

+ 0.666666666666667)

222.67 299.43

(11g)
r(t) = 1/(0.029216912995846 × sin

(

λM,1(t)
)

+ 0.0551251780273508 × cos
(

λM,1(t)
)

+ 0.666666666666667)

22.37 99.52

(11h)
r(t) = arccos

(

0.0584186388859265 × sin
(

λM,1(t)
)

+ 0.125 × cos
(

λM,1(t)
)

+0.0529077895460092)

22.27 100.29

(11i)
r(t) = arccos

(

0.0626782178878784 × sin
(

λM,1(t)
)

+ 0.125 × cos
(

λM,1(t)
)

+0.0570981465280056)

21.84 100.50

(11j)
r(t) = −0.0629538521170616 × sin

(

λM,1(t)
)

− 0.125 × cos
(

λM,1(t)
)

+ 1.51335501670837

21.82 101.62

(11k)
r(t) = arccos

(

0.0626782178878784 × sin
(

λM,1(t)
)

+ 0.126976847648621 × cos
(

λM,1(t)
)

+0.0570981465280056)

21.69 140.03

(11l)
r(t) = −0.0629538521170616 × sin

(

λM,1(t)
)

− 0.127503842115402 × cos
(

λM,1(t)
)

+ 1.51335501670837

21.61 141.16

(11m)
r(t) = 1/(0.0274130068719387 × sin

(

λM,1(t)
)

+ 0.0555427223443985 × cos
(

λM,1(t)
)

+ 0.663939893245697)

20.76 142.18

(11n)
r(t) = 1/(0.0274164322763681 × sin

(

λM,1(t)
)

+ 0.0555496737360954 × cos
(

λM,1(t)
)

+ 0.66388201713562)

20.76 142.18

(11o)
r(t) = (0.0274164322763681 × sin

(

λM,1(t)
)

+ 0.0555496737360954 × cos
(

λM,1(t)
)

+ 0.66388201713562)
−1.00050556659698

20.77 187.69

(11p)
r(t) = (0.0274130068719387 × sin

(

λM,1(t)
)

+ 0.0555427223443985 × cos
(

λM,1(t)
)

+ 0.663939893245697)
−1.00071978569031

20.77 187.69

Table 6. Results for Experiment 3 with polar coordinates
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