AR Patterns: Event-driven Design Patterns in
Creating Augmented Reality Experiences

Philipp Ackermann

Zurich University of Applied Sciences, School of Engineering
Winterthur, Switzerland
philipp.ackermann@zhaw.ch

Abstract. Augmented Reality (AR) and Mixed Reality (MR) enable
superimposing digital content onto the real world. These technologies
have now matured to a point where low-code/no-code editors for AR
development have emerged. However, existing collections of design prin-
ciples for AR often fall short, either being too generic or overly focused
on low-level details. This makes it challenging to identify the essential
patterns necessary for creating captivating AR experiences. This paper
addresses this issue by introducing high-level AR design patterns en-
compassing fundamental concepts for crafting immersive AR experiences.
Event-Condition-Action rules are leveraged as a generic abstraction from
the reactive behavior of AR software systems to establish a unified frame-
work. AR-specific behavioral patterns and augmentation patterns are
presented in detail. Additionally, a uniform pattern diagram schema is
proposed that ensures consistent presentation and technology-agnostic
documentation of AR design patterns, facilitating their effective use in
design and creation of AR applications.

Keywords: Augmented Reality - Design Patterns - Reactive AR - Scene
Understanding - Active Rules - AR Pattern Diagram.

1 Introduction

1.1 Augmented Reality Design Patterns

Design patterns are a widely accepted concept for documenting proven solutions
to recurring design problems. Initially adapted from building architecture to
software development by Gamma et.al. [1] in the mid-90s the idea has become a
central concept in software engineering. Design patterns have been extensively
applied to various aspects of software development, including system architec-
tures and user interfaces, and have proven to be an effective tool for improving
software quality, reusability, and maintainability.

Design patterns for virtual, augmented, and mixed reality have recently
gained momentum [2-4]. Over the last decade, augmented reality (AR) tech-
nology has experienced strong advancements, resulting in a growing number of
successful AR solutions. To capture and share this knowledge, design patterns
have been proposed for developing AR applications on different levels of abstrac-
tion, including software components, system architectures, and user interfaces.

2 Philipp Ackermann

Design patterns for AR software components focus on applying generic software
design patterns, such as Composite, Iterator, and Chain of Responsibility, to
capture the relationships and interactions between classes or objects. These pat-
terns can be viewed as solution templates for solving common challenges in AR
software development at the object-oriented programming level.

Design patterns for AR system architectures center around the coordination of
various subsystems, such as computer vision, rendering, interaction, and net-
working. One example is the Augmented Reality Framework [5] developed by
the European Telecommunications Standards Institute (ETSI) which is responsi-
ble for setting telecommunications and broadcasting standards. ETSI’s Industry
Specification Group (ISG) has developed a functional reference architecture that
defines relevant components and interfaces to ensure AR components, systems,
and services interoperability. Other efforts to establish similar standards can be
found in references such as [6, 7].

Design patterns for AR user interfaces provide guidelines for implementing user
interfaces and best practices for interactions in AR. These design patterns pri-
marily focus on adapting existing design heuristics for layout, interaction, and
usability to meet AR requirements. Recently, meta-analysis studies of existing
UI design patterns for AR have emerged, which provide a collection of best
practices [8,9].

1.2 AR Experiences Driven by Understanding Spatial Context

Creating AR experiences poses additional challenges compared to designing vir-
tual reality (VR) and 3D content (e.g., video games). When creating VR/3D
scenes, designers are in control of the virtual world they are building (even if it’s
programmatically generated), thus taking a sort of "god role”. AR experiences
take place in the uncontrolled real world, and scene understanding algorithms
detect the user’s spatial context. The AR experience is then driven by elements
detected in the real world, without having control over their occurrence and
timing during the creation process. Consequently, adapting VR and 3D design
patterns to AR do not fit well due to the loss of control in the real-world environ-
ment. It is therefore worth focusing on AR-specific design patterns that reflect
the dynamic scenography of AR/MR, experiences.

1.3 Motivation: Unifying High-level AR Patterns

The current generation of AR software libraries (ARKit [10], ARCore [11],
MRTK [12]), WebAR toolkits (AR.js [13], 8th Wall [14]), and AR frameworks
(OpenXR [15], Unity AR Foundation [16], Vuforia [17]) offer reusable system
components in run-time environments that provide a working system architec-
ture for AR applications. These tools reduce the complexity of developing AR
software, allowing developers to focus more on creating engaging AR experiences.

AR Patterns: Event-driven Design Patterns in AR 3

As a result, the use of design patterns has shifted from low-level software pro-
gramming and system architecture to more high-level best practices that focus
on the creation of compelling AR experiences.

When tackling high-level topics related to AR it is an obvious choice to focus
on design patterns for AR user interaction which are already well documented [8,
9]. However, while there is a large collection of UI design principles for AR/MR,
they tend to be either very generic (e.g., responsiveness, consistency, personal-
ization, learnability) or focused on low-level aspects (e.g., navigation, selection
and manipulation in 3D). As a result, it is challenging to identify which of the
patterns are essential for creating AR experiences. The use of large, unspecific
design pattern collections are of limited help in the authoring process.

The methodological approach employed in this paper is based on the anal-
ysis of the features and functionalities offered by existing Augmented Reality
Software Development Kits (AR SDKs). Special attention was given to examin-
ing generic features that can be accessed and utilized within low-code/no-code
AR editors such as Apple Reality Composer [18] and Adobe Aero [19]. The as-
sessment of these features involved identifying and validating common patterns
based on the author’s experience in developing a mobile AR browser [20] and its
associated editor toolkits [21].

The AR patterns proposed in this paper are motivated by the following
objectives:

— Focusing on high-level concepts that are relevant in creating AR experiences.

— Including only patterns that are specific to AR and related to AR (i.e.,
excluding generic software design patterns or VR UI patterns).

— Generalizing from specific device hardware (e.g., hand-held or head-mounted
devices), AR toolkits, and programming languages, so that the patterns can
be applicable in different contexts.

— Unifying the AR patterns so that they can be consistently documented and
presented as diagrams, making them easy to understand and apply.

2 Event-Condition-Action Pattern as Abstraction from
Reactive AR System Architectures

To design reactive systems, breaking down the system’s behavior into discrete
events, conditions, and actions provides a structured and modular approach.
An event is a signal that something has occurred, such as the start of an AR
session (on:start), a user tapping on an item (on:tap), or the detection of an
image marker (on:detect). The no-code editors in [18,19] are using a trigger-
action mechanism to define the behavior of an AR scenario. We propose to use
more flexible Event-Condition-Action (ECA) rules that perform an action in
response to an event, provided that certain conditions are met. ECA rules are
widely used in event-driven and reactive systems, such as active databases [22]
and workflow systems [23]. In the context of AR patterns, ECA rules provide a
generic abstraction of the reactive behavior of AR software systems.

4 Philipp Ackermann

Table 1: Event categories in AR applications.

Event Category

Event Producer

Cause — Event Examples

Session Event

AR Session

State change — on:start, on:locating

Invocation Event

Rule Initiation

Invocation — on:command, on:call

Detection Event

Installed Detector

Discovery of entity — on:detect

User Event

App User

User interaction — on:tap, on:select

Temporal Event

Time Scheduler

Elapsed time reached — in:time

Data-driven Event

Data Observer

Value change — on:altered, as:steady

Response Event

Remote Request

Response of REST call — on:response

Notification Event

Subscribed System

System change — on:enter, on:leave

2.1 Reactive AR using Active ECA Rules

AR systems utilize a variety of sensors, such as cameras, LIDAR, accelerators,
gyroscopes, magnetometers, and microphones, along with various event produc-
ers in operating system and user interfaces. These sensors and producers gen-
erate events asynchronously, which are then handled by event-driven programs.
Unlike traditional programs that make function calls to these event producers
themselves (in an inner loop), an event-driven program relies on the execution
environment to dispatch events to installed event handlers. Thus, control over
the execution of program logic is inverted (inversion of control).

To address the reactive nature of AR applications we promote ECA rules as a
means of loosely coupling AR patterns with the underlying system architecture,
while also abstracting from implementation details. AR patterns are designed to
be loosely bound to the specific run-time system, since events that trigger actions
within AR applications are not necessarily aware of the consequences of their
occurrence. As a result, creators of AR experiences are primarily responsible for
defining a set of event handling rules that govern how the system responds to
various arising signals and events.

2.2 Event Categories in AR Applications

In software systems, events are typically generated by a producer and triggered
by various circumstances. These events can vary greatly in nature. Regarding AR
systems, we organized typical events into distinct categories, as shown in Table 1.
Appendix A provides a list of common events within each event category for AR
applications. Compared to other interactive 3D applications, the event categories
detection events and data-driven events tend to dominate in AR.

Detection events are fundamental for AR experiences. Computer vision and
machine learning techniques are applied for detecting entities in 3D space and
continuously track their pose [24]. The behavior of an AR application is primar-
ily controlled by installing the necessary detectors to receive the corresponding

AR Patterns: Event-driven Design Patterns in AR 5

detection events. These events are produced when a particular type of object is
detected by the specialized detector, including:

— Location Detector: Tracks world location and device pose in environment.
— Feature Detector: classifies feature as video stream label.

— Segment Detector: tracks feature as image segment in video stream.

— Plane Detector: detects plane in 3D space.

— Image Detector: recognizes and tracks image or marker in 3D space.

— Teat Detector: detects text matched by regular expression in video or 3D.
— Code Detector: detects QR/barcode matched by regex in video or 3D.

— Object Detector: detects object by shape in image or 3D.

— Face Detector: tracks facial parts of humans in video or 3D.

— Hand Detector: tracks hand, fingers, and gestures in 3D.

— Body Detector: tracks body parts and joints of humans in video or 3D.

— Speech Detector: recognizes voice commands.

— Transmitter Detector: locates signal and position of wireless sender.

Data-driven events are events that are generated as an AR session progresses
and the understanding of the scene improves. The AR system may detect various
entities, such as horizontal planes, vertical planes, and recognized objects. These
entities can be transformed into application-specific data models, such as a floor,
table, wall, door, window, or collision environment for a physical simulation. The
detection and tracking of such entities has significantly improved with the use of
machine learning techniques. Data changes can be observed at the key-value level
and then trigger an event. When using a state machine, both value changes and
state transitions can generate data-driven events, taking into account previous
values (see Appendix A.5). This dynamic triggering turns ECA to active rules.

2.3 Condition Evaluation within Spatial AR Context

The data model reflecting the AR context is exposed for condition evaluation
for any ECA rule. This model typically includes the following types of data:

— Session Data: time, date, device data, temporary data variables, Ul mode
Location Data: longitude, latitude, address, country, ambience

— User Data: position, orientation (tilt, yaw), name, user settings

Detected Occurrences: results of installed detectors

Augmentation Items: model elements with visual representation (scene nodes)

Conditions are typically formulated by predicates as logical statements using
an expression syntax that has access to key-values in the data model. Addition-
ally spatial functions can be included in condition evaluations such as:

— Euzistence: does item with ID exist in AR world

Visibility: is item with ID visible to user

Prozimity: distance in meters from user (virtual camera) to item with ID
— Gazing: is user gazing at item with ID

Geo-Distance: distance in meters from user to place in latitude/longitude

6 Philipp Ackermann

2.4 Actions in AR Applications

Common actions in AR applications are listed by category in Appendix B. Many
of these actions are concerned with manipulating augmentation items as data
model (B.1) and their visual representation (B.2), or with audible feedback as
well as user interface activities (B.3).

Augmentation items are visual and audible enhancements of the world that
are presented in the AR application. They can be categorized as follows:

— Visual Items:
o 2D View Overlay: 2D graphics, images, and Ul elements as flat overlay
o 3D World Embedding: spatial geometry as node in 3D scene graph
— Audible Items:
e Speech: recorded voice or generated voice by text-to-speech system
e Sonification: sound effect driven by data or by user interaction
o Music and ambient sound: play-back of audio files
— Haptic Items: visual or non-visual items with haptic feedback on collision

Staging of augmentation items is based on the content composition principle
(do:add). It involves assigning unique identifiers to visual and audible items
and positioning them within the observed world relative to anchors of detected
entities. By doing so, the AR experience becomes more immersive, as the virtual
objects are seamlessly integrated into the user’s physical environment.

2.5 AR Pattern Diagram using ECA Rule Blocks

In order to provide a compact representation of active ECA rules we developed
a diagram consisting of rule-reaction blocks [25]. The first line of the diagram
shows the active rule as an Event-Condition-Action triple. Following the rule is
a blockquoted line that depicts the changed state as reaction (see Fig. 1). If no
condition is defined, it evaluates to true, and the diagram shows an immediate
execution arrow (—, Fig. 2). To illustrate the use of the diagram, consider the
example shown in Fig. 3, which presents an active rule triggered by a temporal
event (in 20 seconds). If no item is found in the current AR session (the condi-
tion), the action will execute voice feedback (the reaction) using a text-to-speech
system.

| Event ‘ Condition ’ Action ‘ ‘ Event ’ > ‘ Action ‘ ‘ in:20 sec | if:items.@count == @ ’ do:say ‘

| changed state as reaction | changed state as reaction | "youmay add an item" @

Fig.1: ECA rule block Fig.2: Immediate EA Fig. 3: Timed reaction rule

An action may dynamically load and run new rules. These rules are displayed
as indented block quote (see Fig. 4) consisting of several sequential lines. All rules
in a block are loaded and installed in sequence, yet not (all) executed at loading
time, but triggered by their corresponding event.

AR Patterns: Event-driven Design Patterns in AR 7

’ on:start ’ -> ‘ do:request |

{ do:run ¢« on:response --+ $SERVER/actions/doit.json ‘ on:tap ‘ > ‘ do:assign |

| on:command ’ -> ‘ do:assign | | data.flag = 1

| data.flag = 1 ‘ as:stated | if:data.flag == 1 ‘ do:add ‘
| in:5 sec | > | do:assign ‘ | ‘vellow.sphere' +

I data.flag = @

Fig. 5: Indirect reaction.

Fig. 4: Consecutive loading of rules.

The proposed AR pattern diagram has been designed to be technology-
agnostic but still enable easy transformation from existing program code or
declarative scripts. As demonstrated in this paper, all examples have been trans-
formed from declarative code to the Markdown language and rendered as styled
text (see Fig. 17). The mapping to Markdown is defined in [25]. With the pro-
posed solution, AR patterns may be seamlessly incorporated into the authoring
process, ultimately improving both documentation and communication.

3 Behavioral Patterns

The real world context during an AR session can be seen as stage. The dynamic
behavior of an AR experience is determined by its ECA rules, which are trig-
gered by events occurring in the actual real-world context. Table 2 lists common
behavioral patterns in AR that result from ECA rules.

3.1 Instant Reaction Pattern

An instant reaction is directly triggered by the invocation of a rule and causes
the immediate, singular execution of the action (see Fig. 6). It is equivalent to
a function call.

3.2 Timed Reaction Pattern

Timed reactions are ECA rules that are fired after a given interval to carry out
their action. Once the timed rule is initiated, an internal job scheduler triggers
the rule at the time interval specified (Fig. 7)

3.3 Conditional Reaction Pattern

An ECA rule’s condition is tested on the data available in the current AR session
at the time of evaluation. The outcome of the condition evaluation is either true
or false. Only if true the action of the ECA rule will be executed. In addition,
a conditional reaction can be combined with a timed reaction (Fig. 3 and 8).
Together, these reactions form the core of the continuous evaluation pattern.

8 Philipp Ackermann

Table 2: Behavioral patterns in AR applications.

Behavioral Pattern

Description

Examples

Instant Reaction
Pattern

Direct execution of action
triggered by invocation of rule

Immediate command of ac-
tion or call of function

Timed Reaction
Pattern

Temporally executed action

Delayed action or sequence of
timed actions

Conditional Reaction
Pattern

Execute an action only when
a condition is fulfilled after
being triggered by event

State-driven, asynchronous
programming logic

Continuous Evaluation
Pattern

Continuous polling of state
changes that will triggers
rules

Continuous checks on value
change, existence, visibility,
proximity

Publish-Subscribe
Notification Pattern

Receive notifications via a
message queue from a sub-
scribed system

From speech recognition sys-
tem or from WebRTC system
in collaboration session

Request-Response
Pattern

Remote procedure call result-
ing in asynchronously receiv-
ing ECA rules or media assets

REST API call to a server via
a Web URL to load rules or
assets (images, 3D models)

Chain Reaction

Course of events processed as

Rule changing data that will

Pattern indirect reactions of running |trigger a rule to update an
subsequenced rules item’s visual as a follow-up
Complementary Two active rules with oppo- | Reacting on toggling states

Reactions Pattern

site reactions

with two complementary ac-
tive rules

Detector Reactivation
Pattern

Reactivate detector with a
only-once reaction

Reactivate detector after re-
sulting augmentation is no
longer existing

‘ on:command | > ‘ do:say ‘

‘ in:3 sec ‘ > | do:say | ‘ in:7 sec | if:location.city == 'Berlin' ’ do:say

I Hi" @

Fig. 6: Instant reaction Fig. 7: Timed r.

| "how are you?" @:

3.4 Continuous Evaluation Pattern

| "Hello Berlin!" @

Fig.8: Timed conditional reaction

The continuous evaluation of rules can be driven by a constant time interval
(first rule in Fig. 9) or by each state change of the data model (second rule in

Fig. 9).

A built-in state management is observing the data model and does dispatch
the processing of rules according to the data-driven events (Appendix A.5) that
are bound to the ECA rules.

AR Patterns: Event-driven Design Patterns in AR 9

’ as:repeated each 60 secs | if:data.countdown == true | do:say |

‘ on:leave ‘ > ’ do:say

| "Another minute." @:

| "Participant left session." @:
‘ as:stated ’ if:function('info.panel', 'proximity') < 1.2 ’ do:unhide |

| ‘info.panel’ Fig. 10: Notification

pattern.
Fig.9: Continuous evaluation pattern.

3.5 Publish-Subscribe Notification Pattern

In a similar manner to monitoring changes in the data model, changes in sub-
systems can also generate events that trigger rules. Subsystems can be observed
through a publish-subscribe notification mechanism. For instance, a speech recog-
nition system might be initiated (by a do:listen action) and subscribed to.
When a voice command is recognized, an on:voice event is published as mes-
sage. Another example is the usage of a collaboration subsystem that sends
notifications when a participant joins or leaves a session (Fig. 10).

3.6 Request-Response Pattern

The Request-Response Pattern is a method of communicating with remote ser-
vices through non-blocking asynchronous communication. This pattern is com-
monly used to request media assets such as images, audio files, video streams, or
3D models, as well as scripts such as additional ECA rules (Fig. 4). Because of
the temporal decoupling of request and response, an event is required to signal
the arrival of the received data from the server. This allows an ECA rule to
handle the result as soon as it is available.

3.7 Chain Reaction Pattern

A reaction of a rule can trigger a new event that invokes subsequent rules. In
turn, these subsequent rules may have reactions that again invoke rules, lead-
ing to a chain of reactions. The Chain Reaction pattern consists of consecutive
loaded rules (Fig. 4) and of indirect reactions (Fig. 5) which lead to a cascade
of triggered rules with their corresponding reactions. To better illustrate this
concept, consider the example shown in Fig. 16, which demonstrates how the
Chain Reaction pattern can be used to detect and augment an image.

3.8 Complementary Reactions Pattern

Complementary reactions are constructed using two rules that have opposite
conditions and actions with opposite results. When these two rules are evaluated
continuously, they exhibit a toggling state by flipping their mutual rule execution
(Fig. 11).

10 Philipp Ackermann

‘ on:start ‘ -> ‘ do:add ahead 0.0 1.0 -0.9 | on:command ‘ > ‘ do:detect:plane ‘
| ‘red.box' + Install plane detector ¢ "seat" @
‘ on:stated ‘ if:function('red.box', 'visible') == true | do:say ‘ | on:detect | > | do:execute:op ‘
| "yousee ared box" @: | function('Please sit.', 'say')
‘ on:stated ‘ if:function('red.box', 'visible') == false ‘ do:say ‘ | in:300 ‘ i ‘ do:redetect |
| "now you don't" @ | ‘'detect.plane.seat’
Fig. 11: Complementary reactions. Fig. 12: Detector reactivation.

3.9 Detector Reactivation Pattern

Some detectors halt after capturing a first occurrence of an entity and need to
be reactivated by a do:redetect action. The reactivation can be driven by a
separate active rule, for instance, after a specific period of time (Fig. 12) or by
assessing the existence or visibility of the item added by the detector based on
a corresponding condition.

4 Augmentation Patterns

While a VR/3D designer is placing virtual objects using positions in a controlled
world coordinate system, an AR content creator primarily specifies object place-
ment intents relative to appearing anchors, which are dynamically produced by
detectors. These spatial anchors serve as reference points for pinning objects.
Generally in AR Patterns, the augmentation intents are formulated as ECA
rules that are triggered by detector events. When a detector event occurs, ECA
rule’s reaction will add augmentation items to the AR scene.

Fig. 13 depicts a rule that invokes an image detection action if a command
event is received. As reaction, the image named 'marker.png’ is requested and
downloaded. Once the image is downloaded, an image detector is installed and
a subsequent rule is loaded to be triggered when the image is detected in the
real world. Upon detecting the image, an instant reaction pins an item with the
id ’scene.3D’ to the anchor of the detected image.

Another example of scene augmentation is shown in Fig. 14. In this example
a detector is installed that is capturing planes of type ’seat’. When detected,
this results in indirect reactions that include the creation of audible and visible
augmentations.

Table 3 outlines several common placement intents for event-driven augmen-
tation patterns that can be used to stage AR experiences. In AR, the real world
serves as the spatial context for the stage, making users both spectators and
performers. Their movements and perspectives influence the firing of events,
leaving limited control over time and space for AR scenography (in contrast to
film, theater, and VR/3D/game design). The augmentation patterns differ by
the purpose of the added augmentation items (depicted by title), where they are
placed (position in space), and how they are aligned (orientation, see Fig. 15).

AR Patterns: Event-driven Design Patterns in AR 11

| on:command ‘ > ‘ do:detect:plane ‘

Install plane detector ¢« "seat" @

‘ on:command ‘ > ‘ do:detect:image ‘

| on:detect | -> | do:execute:op ‘
Install image detector 0.1x0.1 ¢ on:response --- marker.png @

| function('Please sit down', 'say')

‘ on:detect | > ‘ do:add to AR anchor ‘

| on:detect | > | do:add to AR anchor ‘

| 'scene3D' +
| 'detected.plane.seat' +

Fig. 13: Augmentation intent as ECA rule.
Fig.14: Rules for adding audi-

ble and visual augmentations.

4.1 Geolocated Remark Pattern

A geolocated remark is a rule that is triggered by GPS location data (latitude
and longitude) or by address data (i.e., country, city, street, building name).
Typically, the reaction to a geolocated remark is presented as text in the 2D
user interface or as audio feedback. Due to the precision restrictions of GPS
signals, the reaction is not precisely placed in 2D or 3D space.

placed: no | aligned: no ‘

4.2 Segment Overlay Pattern

By utilizing computer vision and machine learning techniques, a segment de-
tector can recognize and track designated landmarks and image segments. The
outcomes of the image segmentation process may include:

point (pizel): room corner, object corner, pupil center, ...

— edge: horizon line, wall-floor edge, ...

bounding box: depicting rectangle border of detected text, image, face, ...
— path (open path): eyebrow, body skeleton, ...

contour (closed path): face, mouth, eye, ...

— tmage mask: sky, grass, hair, ...

In the AR view, the overlay is positioned based on the pixels relative to the
segment within the 2D image, on top of the video stream.

placed: on screen at image segment | aligned: flat on top as overlay

4.3 Area Enrichment Pattern

The Area Enrichment Pattern uses detected image segments to calculate the
spatial 3D area resulting from perspective projection of the segment into depth
of space. The calculated 3D area can then be used to populate the space with
virtual items.

placed: in 8D area at image segment | aligned: to area / towards user

12 Philipp Ackermann

Table 3: Augmentation patterns in AR applications.
Augmentation Description Examples
Pattern

Geolocated Remark
Pattern

Triggering of action or of user
feedback based on GPS loca-
tion data or on address data

Visual or audio feedback
about location-based point
of interest

Segment Overlay
Pattern

Presentation of 2D overlay on
top of image segment detected
in video stream

Attaching 2D text descrip-
tion to a detected image
segment

Area Enrichment
Pattern

Approximately placing 3D con-
tent at area of image segment

Presenting balloons in sky
area

Captured Twin
Pattern

Captured element of real world
added to 3D data model

Captured walls and doors in
an indoor AR session

Anchored Supplement
Pattern

Presentation of 3D content
aligned to detected entity for
enhancement

Attaching visual 3D ele-
ments to a detected image
(marker) or captured object

Superimposition Presentation of 3D content re- | Cover a detected object
Pattern placing a detected entity with a virtual one
Tag-along Presentation of 3D content | Place 3D control panel that
Pattern within user’s field of view while | follows the user

head-locked

Hand/Palm Pop-up
Pattern

Presentation of 3D content on
hand or palm while visible

Place 3D UI elements at
palm of user’s one hand

Ahead Staging
Pattern

Presentation of 3D content

ahead of user

Placing 3D item on floor in
front of spectator

Pass-through Portal
Pattern

Present partly hidden 3D con-
tent to force user to go through

Placing 3D scene behind a
portal / behind an opening

Staged Progression
Pattern

Ordered, linear story: temporal
order or interaction flow of 3D
presentations

Sequence of 3D content
with forth and optionally
back movements

Attention Director
Pattern

Guide user’s attention to rele-
vant place

Use animated pointers to
direct user’s attention

Contextual Plot
Pattern

Spatio-temporal setting that
aggregates diverse AR patterns
to form a non-linear plot

Scenography of dynamic,
interactive, and animated

AR

4.4 Captured Twin Pattern

A captured twin is a virtual replica of a physical element. It is created using data
collected from sensors, cameras, and other sources. A captured twin can then, for
example, be virtually visualized as a contour or as a transparent 3D bounding
box to keep the real object recognizable. In Fig. 15a, a real-world chair has been
detected as an object and is indicated with a virtual bounding box and a text

AR Patterns: Event-driven Design Patterns in AR 13

(a) with object (b) geo-referenced (c) towards user (d) to environment

Fig. 15: Alignment of augmentations in 3D.

label of the object type. A captured twin may also have no virtual representation
but becomes available in the spatial data model (e.g., for collision detection or
as a reference for spatial alignment).

placed: on object | aligned: with object |

4.5 Anchored Supplement Pattern

Anchored supplements provide additional information that is aligned with a
detected entity. For instance, a 3D info panel can be anchored beside a detected
image, as demonstrated by the pattern diagram in Fig. 16. Similarly, a guiding
sign can be anchored towards a detected door to assist with navigation.

‘placed: relative to object | aligned: with object or towards object / user |

| on:start | if:location['city'] == 'Paris' && location['building'] == 'Louvre' | do:request GET:JSON |

{ do:run ¢ on:response --- $SERVER/detectors/detectPainting.json

‘ on:command | > | do:detect:image |

Install image detector 0.52x0.85 ¢ on:response -+ $SERVER/img/painting.jpg @

| on:detect ‘ > | do:execute:op ‘

| function('This painting is from the 19th century', 'say')

| on:detect ‘ -> | do:add to AR anchor |

I 'detected.image.painting.panel' 4

| as:stated ‘ if:function('detected.image.painting.panel’, 'visible') == false ‘ do:remove

['detected.image.painting.panel' X

Fig. 16: Example of an anchored supplement using image detection.

14 Philipp Ackermann

In Fig. 16, an example is shown where an ECA rule is executed at the begin-
ning of an AR session to determine whether the current location is suitable for
detecting an image as a painting. If the location is a match, an image is loaded
from a remote server and installed as active rule set which provides audible and
visible augmentations in case of detecting the image in the real world. The vis-
ible augmentation takes the form of an info panel that is monitored by a rule
which removes it when it is no longer visible from the user’s perspective.

4.6 Superimposition Pattern

Superimposition aims to cover a detected entity with a virtual one rather than
simply supplementing it. For example, if an image is detected, it could be covered
with a downloaded image, or if an object is recognized, it could be replaced with
a virtual 3D object that hides the real one.

placed: on object | aligned: with object

4.7 Tag-along Pattern

A tag-along augmentation attempts to always stay within the user’s view range,
which is constrained to their eye position. To achieve this, the augmentation is
typically always oriented towards the user’s face using billboarding techniques.
The main advantage of tag-along augmentations is that they ensure the pre-
sented interaction elements are always visible and easily accessible to the user.
In AR applications for head-mounted displays, tag-along augmentations are usu-
ally designed to fit within the user’s arm-length range, ensuring they can interact
with the elements without stretching or straining themselves. An example is the
‘Near Menu’ UX component of the Mixed Reality Toolkit [12].

‘placed: constraint ahead of user | aligned: constraint towards user ‘

4.8 Hand/Palm Pop-up Pattern

The hand/palm pop-up is a prevalent design pattern used to present interaction
elements for AR using head-mounted displays. Rather than constantly displaying
these elements, they are shown only when the palm or back of the hand is visible
(and optionally, when a hand gesture was detected beforehand). The other hand
can then be used to interact with the presented 3D UI elements. An example is
the ‘Hand Menu’ UX component of the Mixed Reality Toolkit [12].

‘placed: constraint on palm | aligned: constraint towards user ‘

4.9 Ahead Staging Pattern

Ahead staging is a technique for presenting 3D content in a way that it is aligned
to spectator’s position and view direction. The scene is launched at a default

AR Patterns: Event-driven Design Patterns in AR 15

distance (1-2m) in front of the user using a world-locked anchor, often relative
to the ground floor plane. The alignment can be directed towards geolocated
references (e.g., as a guide as in Fig. 15b), towards the user (Fig. 15¢), or can
also consider nearby objects in the environment (e.g., a wall as in Fig. 15d or the
room axis). After the initial staging, users can interact with the virtual scene
from their current position or move toward and around the staged content.

’placed: initial ahead of user | aligned: initial towards user, object, or georef‘

4.10 Pass-through Portal Pattern

A pass-trough portal is an augmentation that is initially occluded by a virtual
object, which prevents the user from seeing the entire scene. This design is
intended to encourage users to engage with the experience by requiring them to
pass through a gateway to become fully immersed.

placed: initial ahead of user | aligned: initial towards user or object

4.11 Staged Progression Pattern

A staged progression refers to presenting a linear story in a structured and
sequential manner in AR, with an explicit beginning. This typically involves the
ordered presentation of 3D content, which can be unidirectional or bidirectional
(going back and forth). The story usually starts staged ahead of the user, but it
can also begin at the anchor of a detected entity. The story’s progress is governed
by rules triggered by user events, temporal events, or data-driven events.

‘placed: initial ahead of user | aligned: initial towards user or object‘

4.12 Attention Director Pattern

An attention director uses animated pointers (bubbles, arrows), light rays, or
spatial sound to direct where users should pay attention if the relevant area is
not visible or not in focus.

placed: initial ahead of user | aligned: pointing towards point of interest

4.13 Contextual Plot Pattern

A contextual plot combines a variety of augmentation patterns and behavioural
patterns to create a non-linear and immersive experience. It builds a scenogra-
phy that blends seamlessly with the spatio-temporal setting of the real world. A
contextual plot reacts to diverse event types, triggering rules that will dynami-
cally control interactive and animated reactions. One of the defining features of
a contextual plot is its dependence on the real-world context. The experience is
affected by how the user is interacting with and exploring the scenario.

placed: multiple all over spatial context | aligned: diverse

16 Philipp Ackermann

5 Using AR Patterns in Authoring Tool

5.1 Declarative Creation of AR Content

The proposed AR patterns were elaborated and validated during the develop-
ment of the ARchi VR App [20]. Instead of using a programming language to
algorithmically define how AR content should be created and behave, the app
uses a declarative approach that focuses on specifying what needs to be accom-
plished with each AR asset. To achieve this, the app interprets declarations in
JSON data structures that do not include conventional programming code, but
instead use active ECA rules to define the behavior of the AR experience [21].

ece @ Showcase s ® ® © ® declARe Documentor @ 0 8 8 O
+Aadd @ @ ® d i
etect.json .
Project ShowCase
@ Settings Name: detectjson
v @ detectors Type: Extension poster.json
(5] detectjson QG LIYTE Poster Detector
& posterjson
+Add.. @For. [EDoc. MAlte. / Edi M G sae Image Detector
v B images
@ logo.pn t [lonistart | i:Lacationt‘eity'] == 'London’ | dorequest GET:JSON
SRR "$schema”: "https://service.metason.net/ar/schemas/
@ Posterjpg | action.json”, L do:run < on:response «-+ $SERVER/detectorsfdetect json
"items” : [
v &% 30 { on:start | > | do:skip
@ TV.usdz
| floor detection me
@ BabyBed..
© Diaperch R on:command | > | do:detectiimage
© BabyStrol.. I i Install image detector 0.62x0.90 « on:response «+ $SERVER/images/Poster.jpg @
{
anel json "do” : "skip",
(=) el ot | function('Check out this poster’, 'say')
v curations "
{ - > | do:add to AR anchor
@ index.html rdo" : "detect”,
EP extjson e + "0.90" | “posterhint' +
. poster.hint”,
> gitf " “$SERVER/images/Poster.jpg", ‘ as:stated ‘ if:function(‘poster.hint’, ‘'visible') == false | do:remove
. function('Check out this poster', 'say')",
" : "0.62" | "poster.hint' x
g
{ in:5sec | > | dorequest
. 5",
. request”, 4 do:run « on:response «++ SSERVER/actions/panel json >>
url" : "$SERVER/actions/panel.json”
i ‘ on:command ‘ if:items.@count == 0 | do:add ahead 01.2-1.5
1
i | ‘help.panel’ +

Fig.17: Generated AR pattern diagram (right) from code (left) in an AR IDE.

5.2 Generation of AR Pattern Diagrams

When using such a declarative authoring approach many simple ECA rules are
created and encoded (in case of the ARchi VR App in many separate JSON
files). This helps to keep local focus when creating AR scenes, but it can be
challenging to maintain an overview of the entire rule system that defines all the
intents of the AR world. To address this challenge and better understand how
rules are loaded and run in sequence, an integrated development environment
(IDE) could support on-the-fly generation of AR pattern diagrams [25] from the
encoded rules (see Fig. 17) to visualize an overall view of intended AR scenario.

AR Patterns: Event-driven Design Patterns in AR 17
6 Conclusions and Perspectives

6.1 Summary

The proposed event-driven AR design patterns have shown to be a convincing
way of documenting high-level concepts in creating AR applications. AR pat-
terns serve as a valuable means of communicating proven, reusable solutions to
recurring design problems encountered during AR development. Once AR pat-
terns are understood, learning new AR toolkits might become more accessible,
as the used design patterns are familiar.

During the technical design and development process, AR patterns may also
serve as a requirements catalog to clarify the specification of features and func-
tions that an AR application should support. If an editor facilitates the creation
of AR content, it might make sense to support the generation of AR pattern
diagrams from code. In addition, AR design patterns may also be a useful or-
ganizational structure for providing solution templates, such as code snippets in
AR authoring tools. This would allow developers to incorporate common pat-
terns into their AR applications efficiently, improving development speed and
overall quality.

6.2 Community-driven Validation

We are strongly convinced that AR patterns can be applied to hard-coded,
scripted, and no-code implementations making them widely applicable. Yet the
approach was showcased in only a few development, research, and student projects.
Therefore the soundness and comprehensiveness of this proposal should be fur-
ther elaborated and validated:

— Do the proposed AR Patterns resonate within the AR community?

— Are common high-level AR patterns missing?

— Are the proposed AR patterns useful in the AR design process?

— How can guidelines foster learning and applying of AR patterns?

— Is the Event-Condition-Action pattern a generic abstraction mechanism?
— Can AR Pattern diagrams be in fact used ”technology-agnostic“?

One way to improve the expressiveness of the proposed catalog of high-level
AR patterns would be to display rendered AR user interfaces as samples and
to provide implementation-specific code examples. While this paper provides a
starting point, future research should further expand the catalog besides the
documented behavioral patterns and augmentation patterns. Other important
AR-related design patterns should be explored, e.g., covering gesture- and voice-
based interactions, human-human AR collaboration [27], and human-robot AR
collaboration [28]. This paper addresses the need for AR patterns in the hope
that it contributes to diverse innovations ahead of us within the AR commu-
nity. Contributions are welcome and are planned to be coordinated via arpat-
terns.dev [29] and the AR Patterns catalog repository [30].

18 Philipp Ackermann

6.3 ECA Rules as Foundation for AR Interoperability

For exchanging AR worlds between applications from different providers, open
standards are in demand. The Event-Condition-Action rule could serve as a
common pattern in defining standardized exchange formats for augmentation
and behavior of AR content and metaverse assets (as addressed by the Metaverse
Standards Forum [26]). This requires further clarifications and feasibility studies.

6.4 Generating Code from AR Patterns

A visionary idea (mentioned by a paper reviewer) is the generation of code from
AR patterns. Yet it has not even for software design patterns became a wide-
spread approach in IDEs (although some papers appeared). Recent development
in generative Al (e.g., Co-Pilot) could be a solution to fulfill the vision of gener-
ating code from design patterns. As a prerequisite for such a generative approach
the AR community needs to establish a common understanding of AR design
patterns and has to provide sample code organized according to AR patterns.

Acknowledgements. The author would like to thank Yanick Lukic and Stefan
Schmidlin for their comments and proofreading.

A Common AR Event Types

A.1 Session Events
— on:start: immediately after start of AR session or after loading action
— on:locating: on locating in the world (by GPS, by SLAM device positioning)
— on:stable: when spatial registration of AR device gets stable
— on:load: after loading 3D item to AR view, e.g., to animate or occlude node
— on:stop: before AR session ends

A.2 Invocation Events

— on:command: on command initiation
— on:call: on function call

A.3 TUser Events

— on:tap: when tapped on item

— on:press: when long-pressed on item

— on:drag: when dragging an item

— on:select: when selected from options of pop-up menu

— on:dialog: when selected from options of pop-up dialog panel
— on:poi: when selected a point of interest in a map or minimap

A.4 Temporal Events
— in:time: when elapsed time in seconds is reached
— as:always: several times per seconds
— as:repeated: like as:always, but only triggered each seconds

AR Patterns: Event-driven Design Patterns in AR 19

A.5 Data-driven Events

— on:change: on each change of data value

— as:stated: like as:always, but action only is triggered once when if-condition
result is altered from false to true

— as:steady: like as:stated, but action only is triggered when condition result stays
true for a certain time in seconds.

— as:activated: like as:always, but action always is triggered when if-condition
result becomes true

— as:altered: like as:always, but action always is triggered when if-condition result
is altered from false to true or from true to false

A.6 Response Events
— on:response: on receiving response from request
— on:error: on error of handling request

A.7 Detection Event
— on:detect: on detecting occurrence of depicted type
— on:track: on tracked changes in occurrence of depicted type

A.8 Notification Events
on:voice: on voice command from speech recognition system
— on:enter: on enter of participant in collaboration session
— on:message: on message from participant in collaboration session
— on:leave: on leave of participant in collaboration session

B Common AR Actions

B.1 Item-related Actions
Items are elements of the application model. An item can be represented as 3D object
in the AR scene or as 2D overlay (sprite image, text label, UI element, ...) on top of
the AR view.
— do:add at: add and anchor item at position

— do:add onto: add and anchor item onto another item

— do:add to: add item as child to another item

— do:add ahead: add and anchor item ahead to user position and orientation

— do:add overlayed: add 2D item flat on top of AR view

— do:remove: remove item from scene

— do:replace: replace item with another item at same position

— do:move to/by: move item absolute/relative to new position

— do:turn to/by: turn item absolute/relative to new orientation

— do:tint: set color of item

— do:lock/unlock: lock/unlock item to control allowed manipulation

B.2 Visual-related Actions
Visual-related actions do change the visual representation of items in the AR scene but
are not reflected or stored in the application model.

— do:hide/unhide: hide/unhide visual representation of item

— do:translate to/by: move absolute/relative

— do:rotate to/by: rotate absolute/relative

— do:scale to/by: scale absolute/relative

— do:animate key: create animation of graphical parameter (key)

— do:stop key: stop animation of graphical parameter (key)

— do:occlude: set geometry of 3D node as occluding but not visible

— do:illuminate: add additional lightning to hot spot (from above or from camera)

20 Philipp Ackermann

B.3 Ul-related Actions

Common actions to control the user interface of an AR application.
— do:prompt: show instruction in a pop-up panel
— do:confirm: get a YES/NO confirmation via an pop-up dialog panel
— do:warn: set warning or status label
— do:vibrate: vibrate device
— do:play: play system sound
— do:stream: play remote audio file
— do:pause: pause current audio stream
— do:say: say something using text-to-speech (TTS) system
— do:listen: start speech recognition system and subscribe
— do:open service: open service menu
— do:open catalog: open item catalog
— do:install: install item catalog entry or service menu entry
— do:filter: filter item catalog or service menu
— do:screenshot: take screen snapshot
— do:snapshot: take photo shot

B.4 Data-related Actions

— do:assign: set a data variable to a value

— do:concat: concatenate a string with an existing variable

— do:select: select a value from a menu and assign to data variable
— do:eval: set a data variable by evaluating an expression

— do:fetch: fetch data from remote and map to internal data

— do:clear: delete data variable

B.5 Process-related Actions
— do:save: save the AR scene / application model
— do:exit: end AR session
— do:execute: execute function(s)
— do:service: execute service action
— do:workflow: execute workflow action
— do:request: request action from remote server and execute

B.6 Detector-related Actions
— do:detect type: install detector for type (feature, text, plane, image, ...)
— do:halt: deactivate detector
— do:redetect: reactivate detector

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Pearson (1995)

2. Nystrom, Robert: Game programming patterns. Genever Benning, (2014).

3. Zollmann, S., Langlotz, T., Grasset, R., Lo, W. H., Mori, S., Regenbrecht, H.: Vi-
sualization techniques in augmented reality: A taxonomy, methods and patterns.
In: IEEE transactions on visualization and computer graphics, 27(9), 3808-3825,
(2020).

AR Patterns: Event-driven Design Patterns in AR 21

4. Koreng, R., Kromker, H.: User Interface Pattern for AR in Industrial Applications.
Information (2021); 12:251. https://doi.org/10.3390/info12060251

5. ETSI GS ARF 003: Augmented Reality Framework (ARF) - AR framework archi-
tecture. www.etsi.org (2020)

6. MacWilliams, A., Reicher, Th., Klinker, G., Bruegge, B.: Design patterns for aug-
mented reality systems. In: Proceedings of the International Workshop exploring
the Design and Engineering of Mixed Reality Systems, Funchal, Madeira (2004)

7. Makamara, G., Adolph, M.: A Survey of Extended Reality (XR) Standards. In: ITU
Kaleidoscope-Extended reality—How to boost quality of experience and interoper-
ability, 1-11 (2022). https://doi.org/10.23919/ITUK56368.2022.10003040

8. Gorlich, D.; Akincir, T., Meixner, G.: An overview of user interface and interaction
design patterns for VR, AR, and MR applications. In: Mensch und Computer, Work-
shopband, Darmstadt (2022). https://doi.org/10.18420/muc2022-mci-ws06-419

9. Borsting I, Karabulut C, Fischer B, Gruhn V.: Design Patterns for Mobile Aug-
mented Reality User Interfaces - An Incremental Review. Information (2022);
13(4):159. https://doi.org/10.3390/info13040159

10. Apple ARKit: https://developer.apple.com/augmented-reality /arkit/

11. Google ARCore: https://developers.google.com/ar?hl=en

12. Microsoft MRTK: Microsoft Mixed Reality Toolkit;
https://learn.microsoft.com/windows/mixed-reality /mrtk-unity /mrtk3-overview

13. AR.js - Augmented Reality on the Web: https://ar-js-org.github.io/AR.js-Docs/

14. Niantic 8th Wall: https://www.8thwall.com/products-web

15. OpenXR Standard: https://www.khronos.org/openxr

16. Unity AR Foundation: https://unity.com/unity /features/arfoundation

17. PTC Vuforia: https://www.ptc.com/en/products/vuforia

18. Apple Reality Composer: https://developer.apple.com/augmented-reality/tools/

19. Adobe Aero: https://www.adobe.com/products/aero.html

20. ARchi VR App: https://archi.metason.net

21. ARchi VR Content Creation: Technical Documentation;
https://service.metason.net/ar/docu/

22. Paton, N. W. (ed.): Active rules in database systems. Springer Science & Business
Media, (2012).

23. Miiller, R., Greiner, U., Rahm, E.: AGENTWORK: A workflow system support-
ing rule-based workflow adaptation. Data & Knowledge Engineering. 51. 223-256,
(2004). https://doi.org/10.1016/j.datak.2004.03.010

24. Rambach, J., Pagani, A., Stricker, D.: Principles of Object Tracking and Map-
ping. In: Springer Handbook of Augmented Reality (pp. 53-84). Cham: Springer
International Publishing (2023).

25. AR Pattern Diagram: https://github.com/ARpatterns/diagram

26. The Metaverse Standards Forum: https://metaverse-standards.org

27. Pidel, C., Ackermann, P.: Collaboration in virtual and augmented reality: a sys-
tematic overview. In Augmented Reality, Virtual Reality, and Computer Graphics:
7th International Conference, AVR 2020, Lecce, Italy, Proceedings, Part I 7 (pp.
141-156). Springer International Publishing, (2020).

28. J. Delmerico et al.: Spatial Computing and Intuitive Interaction: Bringing Mixed
Reality and Robotics Together; in: IEEE Robotics & Automation Magazine, vol.
29, no. 1, pp. 45-57, March 2022, https://doi.org/ 10.1109/MRA.2021.3138384.

29. AR Patterns: https://arpatterns.dev

30. AR Patterns Catalog: https://github.com/ARpatterns/catalog

