
Using Multi-Agent MicroServices (MAMS) for
Agent Based Modelling

Martynas Jagutis, Sean Russell, and Rem W. Collier

School of Computer Science, University College Dublin, Dublin, Ireland
{rem.collier,sean.russell}@ucd.ie

Abstract. This paper demonstrates the use of the Multi-Agent Mi-
croServices (MAMS) architectural style through a case study based around
the development of a prototype traffic simulation in which agents model
a population of individuals who travel from home to work and vice versa
by car.

Keywords: Multi-Agent Systems · Microservices · Traffic Simulation

1 Introduction

Multi-Agent MicroServices (MAMS) [3] is an architectural style for deploying
Multi-Agent Systems (MAS) within Microservices architecture. This has been
achieved by introducing of a specific kind of agent, known as a MAMS Agent,
that has an associated body that consists of a set of web resources that are
accessible through REpresentational State Transfer (REST). MAMS agents act
like an interface agent for a microservice. Collectively, their bodies form a REST
interface that external microservices can use to interact with the MAS via the
MAMS agents. Within a microservice, MAMS agents are able to interact with
non-MAMS agents through traditional agent communication mechanisms.

MAMS has been applied to a number of problem domains, including: decision
support tools [2], building management [9] and digital twins for smart agriculture
[7]. Additionally, a prototype framework for implementing MAMS applications
[10] has been developed, built on a combination of CArtAgO [11] and the ASTRA
programming language [5]. The source code for the framework and a number of
example applications can be found on Gitlab1.

This paper illustrates a potential use of MAMS and microservices in Agent
Based Modelling (ABM) [1]. The basic idea is to decompose the environment
part of an ABM into a set of web resources. For example, a road network can be
decomposed into street and junction resources. Each resource is a kind of "micro-
environment" that agents can inhabit and interact with. They are created and
accessed through specially designed environment microservices. Inter-resource
relationships are modelled based on the URL associated with each resource. A
second set of microservices are used to implement the agent part of the ABM
by leveraging the MAMS architectural style.
1 https://gitlab.com/mams-ucd/

ar
X

iv
:2

30
7.

14
74

5v
1

 [
cs

.M
A

]
 2

7
Ju

l 2
02

3

https://gitlab.com/mams-ucd/

2 Martynas Jagutis, Sean Russell, and Rem W. Collier

2 Overview of Prototype

The scenario demonstrated in this paper is a simple traffic simulation scenario
in which agents model a population of individuals who travel from home to work
and vice versa by car. The environment for this scenario is decomposed into four
types of resource: home resources, work resources and the street and junction re-
sources that model the road network. These resources are implemented through
three sub-environment microservices. The design of the street and junction re-
sources is based on best practices drawn from established traffic simulators such
as MATSim [12] and SUMO [8].

Figure 1 illustrates the set of microservices, implemented using Java and
Spring Boot2, that underpin the prototype. This includes three sub-environment
microservices described above. The Road Network service is the most complex
of the three and is underpinned by the Neo4J database3 which maintains a graph
of the constituent streets and junctions. The Home and Work services provide
a minimal model that includes access to the current time and a single activity
(e.g. Watch TV or Work). A Clock Service provides a discrete time model for
the simulation; a Traffic Lights Service implements an algorithm to control
traffic lights in the Road Network and a Management Service supports the
configuration and execution of a simulation run. Finally, the Driver Service
implements the agent part of the system which is described next.

Fig. 1. Overview of Simulation Architecture

2 https://spring.io
3 https://neo4j.com/

https://spring.io
https://neo4j.com/

Using Multi-Agent MicroServices (MAMS) for Agent Based Modelling 3

To connect to the simulation, MAMS Agents must register with an envi-
ronment microservice based on the resource they wish to interact with. The
microservice can reject the request, but if accepted, it creates an agent body
resource4. The environment state is passed to the agent using a HTTP PUT
Request to a webhook associated with the MAMS agents body. Agents submit
actions using a HTTP PUT Request to the agents body on the environment
microservice. The environment microservice tracks which resource an agent is
associated with. When an agent moves to another resource (e.g. moving from a
junction to a street), the microservice registers the change. If the agent moves to
a resource that is located on a different microservice, its body is transferred to
the new microservice via a HTTP POST Request. Further details can be found
in [6] and the source code is available on Gitlab5.

3 Using MAMS to implement agent behaviours

This section focuses on the implementation of the Driver Service using the
MAMS prototype that has been developed for the ASTRA agent programming
language. A simplified version of the driver agent implementation used in the
demo is shown in Figure 2. The overall behaviour begins with the handling of
the !updatedObject(...) goal in the second rule. The argument of this goal is
a Java object that represents the environment state. The plan part of the plan
rule defines two sub-goals !decide(...) and !act(...) which must be achieved
in sequence. The last two rules in the program highlight two possible sub-plans
for achieving the !decide(...) goal. The agent will choose only one of these
options based on the current state of the environment. For example, the last rule
requires that the vehicle controlled by the agent be stopped. This is expressed
by the isStopped(...) belief. This belief is evaluated based on the second of
the inference rules at the top of the code snippet, which are denoted by the
inference keyword. The ObjectAccess module provides a generic mechanism
for the agent to query the internal state of Java objects. In this case it retrieves
the value of the vehicleSpeed field of the EnvironmentState object. The selec-
tion conditions are expressed by the context part which appears after the colon
(:) and before the opening brace ({) of the plan. The !act(..) goal sends the
chosen action to the server using the low level !put(...) goal provided by the
MAMS implementation.

MAMS is visible in two parts of the example code. The latter place is in the
rule associated with the !act(...) goal where the !put(...) goal is adopted
to submit the action to the server. The representation actually sent to the sim-
ulation has been simplified for readability. The former place where MAMS is
visible is in the rule that handles the !main(...) goal. The goals specified
in this rule connect the agent to the MAMS infrastructure and create a re-
source that is exposed on the web under the /{agent-name}/notification
URL. The simulation service sends the environment state to the agent in the
4 This is not the same as the MAMS body described above
5 https://gitlab.com/mams-ucd/examples/microservice_traffic_simulator

https://gitlab.com/mams-ucd/examples/microservice_traffic_simulator

4 Martynas Jagutis, Sean Russell, and Rem W. Collier

agent Driver extends mams . PassiveMAMSAgent {
module ObjectAccess oa ;

i n f e r e n c e a t I n t e r s e c t i o n (EnvironmentState s t a t e) :−
oa . i s F a l s e (s tate , " a t I n t e r s e c t i o n ") &
oa . g e t In t (s tate , " veh i c l eSpeed ") > 0 ;

i n f e r e n c e i sStopped (EnvironmentState s t a t e) :−
oa . g e t In t (s tate , " veh i c l eSpeed ") > 0 ;

r u l e +!main (l i s t args) {
MAMSAgent : : ! i n i t () ;
MAMSAgent : : ! c r ea ted ("base ") ;
PassiveMAMSAgent : :

! i temResource (" n o t i f i c a t i o n s " , "EnvironmentState ") ;
}

r u l e +!updatedObject (EnvironmentState s t a t e) {
! dec ide (s tate , oa . g e tS t r i ng (s tate , " type") , s t r i n g ac t i on) ;
! act (s tate , a c t i on) ;

}

r u l e +! act (EnvironmentState s tate , s t r i n g ac t i on) {
! put (oa . va lueAsStr ing (s tate , "webhook") ,

"{␣ ' act ion ' : ' "+act i on " '} " , HttpResponse response) ;
i f (! h t tpUt i l s . hasCode (response , 200)) system . f a i l () ;

}

r u l e +! dec ide (EnvironmentState s tate , " t r a f f i c " , s t r i n g ac t i on)
: time (t) & a t I n t e r s e c t i o n (s t a t e) {

ac t i on = "move" ;
}

ru l e +! dec ide (EnvironmentState s tate , " t r a f f i c " , s t r i n g ac t i on)
: time (t) & isStopped (s t a t e) & canAcce l e rate (s t a t e) {

ac t i on = " a c c e l e r a t e " ;
}

}

Fig. 2. ASTRA-MAMS Implementation

same way; by updating this resource using a PUT request. Upon the process-
ing of a new PUT request, the underlying MAMS infrastructure generates the
updatedObject(...) goal to trigger a response from the agent.

4 Conclusions

This paper presents an early prototype of an novel approach to Agent Based
Modelling (ABM) using a combination of microservices and the Multi-Agent
MicroServices (MAMS) architectural style. The prototype presented is a traffic
simulation scenario that decomposes the environment into four types of web
resource that are hosted across three microservices. Each resource acts as a
"micro-environment". Agents interact with a resource by registering a "body"
with the corresponding microservice, indicating which resource they wish to be
associated with. Hypermedia links are used to relate resources to one another,
for example, a junction resource in the road network can be linked to a home

Using Multi-Agent MicroServices (MAMS) for Agent Based Modelling 5

or work resource. A key part of the approach is the design of mechanisms to
allow agents to transition between web resources which can be achieved either
internally or via a HTTP POST request.

A number of shortcomings and opportunities were identified during its evalu-
ation [6]. The most interesting opportunity is the potential use of the linked data
structure to create decentralised knowledge graphs that capture global knowl-
edge of the simulation environment. Such knowledge could be consumed by in-
dividual agents and used in concert with local contextual knowledge of their
environment to offer improved decision making capabilities. Details of this pro-
posed approach can be found in [4].

References

1. Abar, S., Theodoropoulos, G.K., Lemarinier, P., O’Hare, G.M.: Agent based mod-
elling and simulation tools: A review of the state-of-art software. Computer Science
Review 24, 13–33 (2017)

2. Carneiro, J., Andrade, R., Alves, P., Conceição, L., Novais, P., Marreiros, G.: A
consensus-based group decision support system using a multi-agent microservices
approach. In: Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems. pp. 2098–2100 (2020)

3. Collier, R., O’Neill, E., Lillis, D., O’Hare, G.: Mams: Multi-agent microservices. In:
Companion Proceedings of The 2019 World Wide Web Conference. pp. 655–662.
ACM (2019)

4. Collier, R., Russell, S., Ghanadbashi, S., Golpayegani, F.: Towards the use of hyper-
media mas and microservices for web scale agent-based simulation. SN Computer
Science 3(6), 510 (2022)

5. Collier, R.W., Russell, S., Lillis, D.: Reflecting on agent programming with agents-
peak (l). In: International Conference on Principles and Practice of Multi-Agent
Systems. pp. 351–366. Springer (2015)

6. Jagutis, M., Russell, S., Collier, R.: Simulating traffic with agents, microservices
& rest. In: 15th International Symposium on Intelligent Distributed Computing
(IDC2023) (2022)

7. Kalyani, Y., Collier, R.: Towards a new architecture: Multi-agent based cloud-fog-
edge computing and digital twin for smart agriculture. In: Intelligent Distributed
Computing XV, pp. 111–117. Springer (2023)

8. Lopez, P.A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y.P., Hilbrich,
R., Lücken, L., Rummel, J., Wagner, P., Wießner, E.: Microscopic traffic simulation
using sumo. In: 2018 21st international conference on intelligent transportation
systems (ITSC). pp. 2575–2582. IEEE (2018)

9. O’Neill, E., Beaumont, K., Bermeo, N.V., Collier, R.: Building management using
the semantic web and hypermedia agents (2021)

10. O’Neill, E., Lillis, D., O’Hare, G., W Collier, R.: Delivering multi-agent microser-
vices using cartago. In: International Workshop on Engineering Multi-Agent Sys-
tems. pp. 1–20. Springer (2020)

11. Ricci, A., Viroli, M., Omicini, A.: Cartago: A framework for prototyping artifact-
based environments in mas. In: International Workshop on Environments for Multi-
Agent Systems. pp. 67–86. Springer (2006)

12. W Axhausen, K., Horni, A., Nagel, K.: The multi-agent transport simulation MAT-
Sim. Ubiquity Press (2016)

	Using Multi-Agent MicroServices (MAMS) for Agent Based Modelling

