®

Check for
updates

ChatGPT as a Fullstack Web Developer -
Early Results

Pekka Abrahamsson'®, Tatu Anttila', Jyri Hakala!, Juulia Ketola',
Anna Knappe!®, Daniel Lahtinen', Viin6 Liukko', Timo Poranen!(®9
Topi-Matti Ritala', and Manu Setéli?

! Tampere University, Tampere, Finland
2 Solita Ltd., Helsinki, Finland

Abstract. The arrival of ChatGPT has caused a lot of turbulence also
in the field of software engineering in the past few months. Little is
empirically known about the capabilities of ChatGPT to actually imple-
ment a complete system rather than a few code snippets. This paper
reports the first-hand experiences from a graduate level student project
where a real-life software platform for financial sector was implemented
from the scratch by using ChatGPT for all possible software engineer-
ing tasks. The main conclusions drawn are as follows: 1) these findings
demonstrate the potential for ChatGPT to be integrated into the soft-
ware engineering workflow, 2) it can be used for creating a base for
new components and for dividing coding tasks into smaller pieces, and
3) noticeable enhancements in ChatGPT-4, compared to ChatGPT-3.5,
indicate superior working memory and the ability to continue incomplete
responses, thereby leading to more coherent and less repetitive dialogues.

Keywords: Al assisted - software development - software
engineering * Al programming - ChatGPT - large language models -
artificial intelligence

1 Introduction

The introduction of ChatGPT into the landscape of technology has generated a
notable amount of disruption, especially within the field of software engineering.
However, despite this growing interest, empirical knowledge about the actual
capabilities of ChatGPT remains limited. This lack of comprehensive under-
standing is particularly evident when considering the potential of ChatGPT to
design and implement holistic systems as opposed to merely generating discrete
fragments of code. There exists a significant difference between crafting isolated
code snippets and deploying a fully realized software solution, a distinction that
is yet to be thoroughly explored in the context of ChatGPT.

This article describes a student software project that was created to explore
the use of artificial intelligence (AI) in software development. The main goal of
the project was to investigate the effectiveness of ChatGPT in practice.
© The Author(s) 2024

P. Kruchten and P. Gregory (Eds.): XP 2022/2023 Workshops, LNBIP 489, pp. 201-209, 2024.
https://doi.org/10.1007/978-3-031-48550-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48550-3_20&domain=pdf
http://orcid.org/0000-0002-4360-2226
http://orcid.org/0000-0002-1224-5908
http://orcid.org/0000-0002-4638-0243
https://doi.org/10.1007/978-3-031-48550-3_20

202 P. Abrahamsson et al.

Overall, this project contributes to the field of Al-assisted software develop-
ment by providing valuable experience of using ChatGPT as tool in software
development. The remainder of this article provides related research in Sect. 2,
a detailed description of the project and the research design in Sect. 3, results in
Sect. 4, and conclusions.

2 Al Assisted Software Development

Artificial Intelligence (Al) is a branch of computer science that focuses on cre-
ating intelligent machines that can perform tasks that typically require human
intelligence, such as understanding natural language, recognizing patterns, mak-
ing decisions, and solving problems.

One type of Al tool that has gained significant attention in recent years is the
large language model (LLM) like OpenAI’'s GPT-4 [7]. LLM is AI model that is
trained on massive amounts of data to generate human-like text output. GPT-4
uses transformer-style model to predict the content and structure of text based
on an input, usually text as well. This can be used in a wide range of natural
language processing tasks, such as language translation, text summarization,
and answering questions.

ChatGPT has provided a chatbot interface for interacting with OpenAl’s
GPT-models [2]. This has made the capabilities of LLMs more widely known,
which in turn has sparked the research around use cases for this technology. Cur-
rent research include studies related to prompt patters [13], human-bot collabo-
rative architecting [1] and using ChatGPT for programming numerical methods
[6]. Treude [11] has developed a prototype to compare different GPT model
solutions, and Dong and others [4] developed a self-collaboration code gener-
ation framework. Surameery and Shakor [10] have applied ChatGPT to solve
programming bugs.

3 Research Design

In this section we introduce the project background and project implementation
details including the implemented features.

3.1 Project Background

Solita Ltd. [8] is a large software consultancy company in the Nordic countries.
Solita collaborates with universities by inventing exercise topics and supervising
student exercises. They challenged the student team to undertake an Al-assisted,
large-scale project.

Project topic was chosen from well-defined public procurement requests on
the Hilma portal [5], a website for procurement in the Finnish public sector. It
was agreed in the project that the specifications would not be directly used as
input material for Al, but the prompts given to Al were written mostly by the

ChatGPT as a Fullstack Web Developer - Early Results 203

team themselves. However, the number of fields in the user interface was kept
the same as in the original request, etc.

The selected project, Valvontatyopoyta (VTP) is a platform for financial
supervision, designed to support the operations of an organization. The intended
user group for the VTP is financial professionals, including supervisors, man-
agers, and analysts.

3.2 Project Implementation

The VTP project [12] was proposed in the end of December 2022. The project
was then accepted by a seven member team. The project started in the end
of January 2023. The team consists of three master’s level students and four
Bachelor’s level students of Computer science or Information technology. None
of the team members had earlier experience on Al assisted software development.
General overview of the course’s practices and schedule are described by Sten
and others [9]. First was sprint 0 (one week) to plan the project and set up the
development environment, then five two-week implementation sprints, and then
one week quality assurance sprint. The total duration of the project is 15 weeks.
Sprint 5 and the QA sprint are not covered in this report as the project is
ongoing. Project phases and implemented features per sprint are show in Fig. 1.
The team utilized a Kanban board to manage tasks and issues.

23.01.-05.02. 06.02.-19.02. 20.02.-05.03. 06.03.-19.03. 20.03.-02.04. 03.04.-23.04. 24.04.-30.04.

Agreed on the Set up React Created apage Added ol Refactoring Ul

project front end, and navigation localization for Improvements components for

structure: created the first prototype frontend & bug fixes to better UX

divided rolesin ~ subcomponents P it both backend

the team, Continued & frontend e

decided the e) creating more Created a Expanding &

work methods, Created API components for style guide for modifying tests

tested endpoints the frontend the Ul Modifications and routes

ol e 0 the

prompting & database Backend

decided the Compared Added unit schema database

tools & licensing testing Corrected connection to

technologies to options and framework for routing use docker

be used added the back-end Drafted a test network
documents Started plan address instead

Wrote the Created amock connecting of localhost

project plan Fixed NPM datab anda backend with

document vulnerabilities preliminary SQL the frontend .)

database and Cl pipeline
tested its

functionality

Fig. 1. Project phases and implemented features per sprint.

3.3 Development Environment

The development environment was built piecemeal by consulting ChatGPT on
suitable technologies for the projects needs. The team fed ChatGPT prompts

204 P. Abrahamsson et al.

explaining what they were currently trying to accomplish and ChatGPT replied
with multiple recommendations. The team then cherry-picked from the recom-
mendations based on their own preferences and previous experience. The effect
of picking technologies with such a process is twofold. Firstly, ChatGPT is more
likely to recommend technologies it has knowledge of. Secondly, it makes the
teams’ efforts in reviewing the generated code easier.

Table 1. Technical implementation environment and technology selection criteria.

Item Description Selection criteria

Language JavaScript Recommended by ChatGPT
Language HTML and CSS Recommended by ChatGPT
Language Shell Developer decided
Containerization Docker Customer requirement
Database MySQL Recommended by ChatGPT
AT assistant ChatGPT 3.5 and 4.0 | Customer requirement
Front-end framework |React Recommended by ChatGPT
Back-end framework | Node.JS, Express Recommended by ChatGPT
Test framework Mocha, Chai Recommended by ChatGPT
Version control system | GitHub Team decided

Licence MIT Recommended by ChatGPT

Table 1 lists technologies used in the project with the corresponding selection
criteria. As seen in Table1 there are exceptions on which ChatGPT was not
consulted at all. These include using ChatGPT as the sole Al assistant, and
containerization of the produced application, both of which were requirements
laid out by the customer. The team decided to use GitHub as their version
control system to enable easy collaboration. The only exception in languages
used in the project comes from a Bash script used by the backend container to
wait for the database to fully initialize before trying to establish a connection.

3.4 Development Process

The team’s process of working with ChatGPT is illustrated in Fig.2. When a
task was related to existing code, the assigned team member would provide the
relevant code to ChatGPT and request it to generate a solution. If the task
was not related to existing code, the team member would first ask ChatGPT
for recommendations before requesting it to produce the code. Once ChatGPT
generated the code, the team member would review it for correctness. If the code
was deemed satisfactory, the team member would add it to the code base, save
the chat session as a markdown file, and create a pull request with the chat as
an attachment. If the code was not acceptable, the team member would provide

ChatGPT as a Fullstack Web Developer - Early Results 205

the problematic code back to ChatGPT and repeat the process, iterating until
a satisfactory solution was achieved or asking for a new recommendation for
another approach.

CODE NOT OK

T

- Is the task related a
Task/issue to be done on Kanban board to existing code? Ask ChatGPT to produce code Check the code is OK

6—, Ask recommendations from ChatGPT

. HUMAN TASK
Create a pull request with the chat as an attachment Save the chat as markdown
. CHATGPT TASK

Fig. 2. Process of working with ChatGPT.

Give the code to ChatGPT

The project team logged their weekly workings hours according to differ-
ent categories (Documentation, Requirements, Design, Implementation, Testing,
Meetings, Studying, Other, Lectures). After sprint 4 the project had a total 607 h
logged. Throughout the project, the project team met with the customer twice
a week to ensure quality assurance and planning were on track. This is a reason
why meetings (198 h, 33%) have such a considerable part in the logged hours.
So far the implementation has taken 131h (22%) and studying 116 h (19%). The
logged time also included university course related subjects, such as lectures
and other studying, which did not relate directly to the implementation of the
project.

3.5 Implemented Features

Based on ChatGPT’s suggestion, we began by setting up the foundation for our
React JavaScript project. Implemented features per sprints are shown in Fig. 1.
Following the wireframes in the original procurement requests, we commenced
implementing the Inspection Information page shown in Fig.3. We adopted a
component-by-component approach to building the application, and once the
first frontend components were completed, we proceeded to develop the backend
and database infrastructure.

To better comprehend the application’s functionality, we utilized the wire-
frame images to create a prototype. In our development process, we proceeded to
implement a new view for the application, the Inspection Plan page. Addition-
ally, we created localization possibility into the application, allowing for text to
be displayed in both Finnish and English. With the assistance of ChatGPT, we
created a style guide for the Ul and began implementing it into the application.

We proceeded to build the correct routing and to integrate the frontend
and backend together. Recognizing the need for adjustments to the database

206 P. Abrahamsson et al.

Tavoiteaikataulu

Tarkastuksen tiedot

[rS——

Fig. 3. Inspection information in VTP.

schema, we initiated revisions while concurrently addressing application styling
and adding several popup forms.

4 Results

In this section we observe ChatGPT discussions, code and lessons learned.

4.1 Discussions with ChatGPT

We stored ChatGPT conversations that were relevant to the project in Mark-
down format. The resulting Markdown files were included into the description
part of pull requests made to the project GitHub repository.

The conversation length varies a lot depending on how big changes were
requested and if any problems occurred. From sprint 0 to sprint 4, 39 pull
requests were merged to the codebase. In these conversations the number of
prompts made ranged from 1 to 129. On average a pull request had 19 prompts.
A common way to start conversation with ChatGPT was to describe the prob-
lem or wanted feature or to paste existing code and ask for needed changes. If
the AI model couldn’t give a solution directly based on the first prompt, the
developer would give more information or clarifications in an iterative manner
where the solution was found by fine-tuning the earlier answers.

4.2 Code

The application implements a basic three-tier architecture, where the front-end
communicates with the back-end through a REST API. Each tier runs in their
own Docker container and the whole system is managed with Docker Compose.

Table 2 provides a breakdown by type of file and line for the project’s code
base. File and blank, comment and code line counts were calculated from the

ChatGPT as a Fullstack Web Developer - Early Results 207

project’s repository using cloc [3]. The vast majority of lines shown are a result
of bootstrapping a React project to be used as the front-end client. This includes
most of the JSON lines that node package manager uses for managing depen-
dencies.

However, the team managed to use ChatGPT to generate all of the code
directly related to running the project. This includes containerization (both
Dockerfiles, a YAML file), CI pipeline (other YAML file), database initializa-
tion clauses (SQL), and the entire RESTful API that makes up the project’s
back-end, including unit tests for its routes. Furthermore, all React components,
their layout and styling (CSS) were created by ChatGPT based on the teams
instructions. The HTML files contain a style guide. In total, 4000 lines of code
were generated by ChatGPT.

Table 2. Output of the cloc [3] package based on the project’s repository as of 2.4.2023.

Language files | blank | comment | code
JSON 6 0 0 18932
JavaScript |36 |259 |68 2798
CSS 15 149 22 796
HTML 3 42 30 357
Bourne Shell | 1 12 6 164
Markdown |4 51 0 82
SQL 1 12 0 73
YAML 2 9 0 58
Dockerfile 2 14 3 20
SVG 1 0 0 1
SUM: 71 | 548 129 23281

In general, ChatGPT produces code that appears to be relatively high quality.
The code mostly works, it is laid out in a logical manner, and has well named
variables that make it easy to understand. Its two biggest pitfalls are consistency
and attention to detail. The former shows as stylistic differences in blocks of code
produced in separate replies by ChatGPT, which were sometimes incompatible
to the point of not functioning. The latter problem was mainly encountered
when attempting to fit pieces of the project together as it grew more complex
which meant conversations with ChatGPT needed more context to be provided.
The team noticed marked improvement in both areas when using GPT-4 over
GPT-3.5.

4.3 Lessons Learned

ChatGPT has both strengths and limitations in assisting with software devel-
opment tasks. While it can be helpful in creating a base for new components,

208 P. Abrahamsson et al.

fine-tuning and getting the final result may take longer. It may struggle with
updating code consistently, remembering to make changes, and handling errors.
Additionally, it can misunderstand questions, have issues with non-determinism,
and suffer from token limitations in answers. However, breaking requests into
smaller pieces, providing clear descriptions, and using various techniques to avoid
length restrictions can improve its effectiveness.

One team member described experience of working with ChatGPT like a
rubber ducking, but the duck actually responds. In similar vein to rubber duck-
ing, the output from the language model depends on how well the developer is
able to express the problem at hand. A Clear well defined prompt would return
better code than a prompt by someone with only a vague idea of what they
were trying to achieve. Good development practises still apply, even if the code
is written by Al

5 Conclusions

This paper presents first-hand experiences of using ChatGPT to develop a full-
stack software application. Overall, this study contributes to the growing body
of literature on the application of language models in software engineering. This
study also provides insights for researchers and practitioners interested in explor-
ing the use of ChatGPT for developing real-world software systems.

Based on early results from this exploratory study, the main conclusions
drawn were as follows: 1) these findings demonstrate the potential for ChatGPT
to be integrated into the software engineering workflow, 2) it can be used for
creating a base for new components and for dividing coding tasks into smaller
pieces, and 3) noticeable enhancements in ChatGPT-4, compared to ChatGPT-
3.5, indicate superior working memory and the ability to continue incomplete
responses, thereby leading to more coherent and less repetitive dialogues.

Next steps in the research will include reporting experiences from the remain-
ing sprints, test the application systematically, analyse code quality, and compare
ChatGPT generated code with the code written by the developers.

References

1. Ahmad, A., Waseem, M., Liang, P., Fehmideh, M., Aktar, M.S., Mikkonen, T.:
Towards human-bot collaborative software architecting with ChatGPT. arXiv
preprint arXiv:2302.14600 (2023)

2. ChatGPT. https://chat.openai.com/ (2023). Accessed 6 Apr 2023

3. cloc - Count lines of Code. https://github.com/AlDanial/cloc (2023). Accessed 13
Apr 4 2023

4. Dong, Y., Jiang, X., Jin, Z., Li, G.: Self-collaboration code generation via Chatgpt.
arXiv preprint arXiv:2304.07590 (2023)

5. Hilma - Public procurement. https://www.hankintailmoitukset.fi/en/ (2023).
Accessed: 31 Mar 2023

6. Kashefi, A., Mukerji, T.: ChatGPT for programming numerical methods. arXiv
preprint arXiv:2303.12093 (2023)

http://arxiv.org/abs/2302.14600
https://chat.openai.com/
https://github.com/AlDanial/cloc
http://arxiv.org/abs/2304.07590
https://www.hankintailmoitukset.fi/en/
http://arxiv.org/abs/2303.12093

®

10.

11.

12.

13.

ChatGPT as a Fullstack Web Developer - Early Results 209

OpenAl: GPT-4 Technical Report. arXiv preprint arXiv:2303.08774 (2023)

Solita company. https://www.solita.fi/en/company/ (2023). Accessed 31 Mar 2023
Sten, H., Ahtee, T., Poranen, T.: Evaluation of students’ capstone software devel-
opment projects. In: SEFT Annual Conference, pp. 531-540 (2018)

Surameery, N.M.S., Shakor, M.Y.: Use Chat GPT to solve programming bugs. Int.
J. Inf. Technol. Comput. Eng. (IJITC) 3(01), 17-22 (2023). ISSN: 2455-5290
Treude, C.: Navigating complexity in software engineering: a prototype for com-
paring GPT-n solutions. arXiv preprint arXiv:2301.12169 (2023)

VTP - Source code repository for the Valvontatyopoyta. https://github.com/Al-
Makes-IT/VTP (2023). Accessed 31 Mar 2023

White, J., Hays, S., Fu, Q., Spencer-Smith, J., Schmidt, D.C.: ChatGPT prompt
patterns for improving code quality, refactoring, requirements elicitation, and soft-
ware design. arXiv preprint arXiv:2303.07839 (2023)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium

or

format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/2303.08774
https://www.solita.fi/en/company/
http://arxiv.org/abs/2301.12169
https://github.com/AI-Makes-IT/VTP
https://github.com/AI-Makes-IT/VTP
http://arxiv.org/abs/2303.07839
http://creativecommons.org/licenses/by/4.0/

	ChatGPT as a Fullstack Web Developer - Early Results
	1 Introduction
	2 AI Assisted Software Development
	3 Research Design
	3.1 Project Background
	3.2 Project Implementation
	3.3 Development Environment
	3.4 Development Process
	3.5 Implemented Features

	4 Results
	4.1 Discussions with ChatGPT
	4.2 Code
	4.3 Lessons Learned

	5 Conclusions
	References

