
M-VAAL: Multimodal Variational Adversarial
Active Learning for Downstream Medical Image

Analysis Tasks

Bidur Khanal1, Binod Bhattarai4, Bishesh Khanal3, Danail Stoyanov5, and
Cristian A. Linte1,2

1 Center for Imaging Science, RIT, Rochester, NY, USA
2 Biomedical Engineering, RIT, Rochester, NY, USA

3 NepAl Applied Mathematics and Informatics Institute for Research (NAAMII)
4 University of Aberdeen, Aberdeen, UK
5 University College London, London, UK

Abstract. Acquiring properly annotated data is expensive in the med-
ical field as it requires experts, time-consuming protocols, and rigorous
validation. Active learning attempts to minimize the need for large an-
notated samples by actively sampling the most informative examples
for annotation. These examples contribute significantly to improving
the performance of supervised machine learning models, and thus, ac-
tive learning can play an essential role in selecting the most appropriate
information in deep learning-based diagnosis, clinical assessments, and
treatment planning. Although some existing works have proposed meth-
ods for sampling the best examples for annotation in medical image
analysis, they are not task-agnostic and do not use multimodal auxil-
iary information in the sampler, which has the potential to increase ro-
bustness. Therefore, in this work, we propose a Multimodal Variational
Adversarial Active Learning (M-VAAL) method that uses auxiliary in-
formation from additional modalities to enhance the active sampling.
We applied our method to two datasets: i) brain tumor segmentation
and multi-label classification using the BraTS2018 dataset, and ii) chest
X-ray image classification using the COVID-QU-Ex dataset. Our results
show a promising direction toward data-efficient learning under limited
annotations.

Keywords: multimodal active learning · annotation budget · brain tu-
mor segmentation and classification, chest X-ray classification

1 Introduction

Automated medical image analysis tasks, such as feature segmentation and dis-
ease classification play an important role in assisting with clinical diagnosis,
as well as appropriate planning of non-invasive therapies, including surgical in-
terventions [8,2]. In recent years, supervised deep learning-based methods have
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shown promising results in clinical settings. However, clinical translation of su-
pervised deep learning-based models is still limited for most applications, due to
the lack of access to a large pool of annotated data and generalization capability.

As medical data is expensive to annotate, some methods have explored the
generation of synthetic images with ground truth annotation [18]. However, gen-
erative models for synthesizing high-quality medical data have not yet achieved
a state where their distribution perfectly matches the distribution of real medi-
cal data, especially those containing rare cases [20,1]. This limitation can often
result in biased models and poor performance. Another approach with a grow-
ing interest is semi-supervised learning where very few labeled data along with
a large number of unlabeled data is used to train deep learning models [13,6,23].
Nevertheless, in a real-world scenario, semi-supervised learning still requires the
selection of a certain number of image samples to be annotated by experts.

Active learning attempts to sample the best subset of examples for anno-
tation from a pool of unlabeled examples to maximize the downstream task
performance. Methods to sample examples that provide the best improvement
with a limited budget have a long history [12], and several approaches have been
proposed in recent years [25]. Active learning (AL) has experienced increased
traction in the medical imaging domain, as it enables a human-in-the-loop ap-
proach to improve deployed AI models [5]. Recent works have proposed various
sampling methods in AL specific to tasks such as classification, segmentation,
and depth estimation in medical imaging. Shao et al. [16] used active sampling
to minimize annotation for nucleus classification in pathological images. Yang
et al. [24] proposed a framework to improve lymph node segmentation from
ultrasound images using only 50% training data. Laradji et al. [11] adopted
an entropy-based method for a region-based active sampler for COVID-19 le-
sion segmentation from CT images. Thapa et al. [22] proposed a task-aware AL
for depth estimation and segmentation from endoscopic images. Related to our
work, Sharma et al. [17] used uncertainty and representativeness to actively sam-
ple training examples for 2D brain tumor segmentation. Lastly, Kim et al. [10]
studied various AL approaches for 3D brain tumor segmentation task.

Task Agnostic: The methods described earlier require training of downstream
task-specific models precluding the possibility of training a task-agnostic model
from a given pool of unannotated input images when the intended downstream
task is not known a priori. On the other hand, task-agnostic methods could
enable the use of the same model for new tasks that may arise in real-world
continuous deployment settings. VAAL [19] is a promising task-agnostic method
that trains a variational auto-encoder (VAE) with adversarial learning. VAAL
produces a low-dimensional latent space that aims to capture both uncertainty
and representativeness from the input data, enabling effective sampling for AL.

Sampling from multimodal images: Clinicians rarely reach a clinical decision
by looking into a single medical image of a patient. They rely on other in-
formation, such as clinical symptoms, patient reports, multimodal images, and
auxiliary device information. We believe that sampling methods in AL could
benefit from using multimodal information. Although some recent works have
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explored multimodal medical images in the context of AL [5], none of the exist-
ing methods directly use the multimodal image as auxiliary information to learn
the sampler.

In this paper, we propose a task-agnostic method that exploits multimodal
imaging information to improve the AL sampling process. We modify the ex-
isting task-agnostic VAAL framework to enable exploiting multimodal images
and evaluate its performance on two widely used publicly available datasets: the
multimodal BraTS dataset [14] and COVID-QU-Ex dataset [21] containing lung
segmentation maps as additional information.

The contributions of this work are as follows: 1) We propose a novel mul-
timodal variational adversarial AL method (M-VAAL) that uses additional in-
formation from auxiliary modalities to select informative and diverse samples
for annotation; 2) Using the BraTS2018 and COVID-QU-Ex datasets, we show
the effectiveness of our method in actively selecting samples for segmentation,
multi-label classification, and multi-class classification tasks. 3) We show that
the sample selection in AL can potentially benefit from the use of auxiliary
information.

2 Methodology

In active learning, a subset of most informative samples Xs is selected from
a large pool of unlabelled set X∗ to query labels Ys. The number of samples
selected for label annotation is dictated by the set budget b of the sampler.
Let us consider (x, y) ∼ (X,Y ) as a labeled data pair initially present in the
dataset. After sampling b examples from an unlabelled pool X∗, they are labeled
and added to the labeled pool (X,Y ). The sampling process is iterative, such
that b examples are queried at each active sampling round and added to the
labeled pool. The labeled samples are used to train a task network at each round
by minimizing the task objective function. In our study, we have considered
three different downstream tasks: a) semantic segmentation of brain tumors, b)
multi-label classification of tumor types, and c) multi-class classification of chest
conditions. The overall workflow of our proposed method is shown in Fig. 1.

2.1 Task Learner (A)

Our objective is to enhance the performance of downstream tasks by utilizing
the smallest number of labeled samples. The task network is defined by the
parameter θT . For the segmentation task, we train a U-Net model [15] to generate
pixel-wise segmentation maps y′, given a labeled sample (x, y) ∼ (X,Y ), where
y is a binary image. We chose the U-Net model due to its simplicity, as our focus
is on evaluating the effectiveness of AL, not on developing a state-of-the-art
segmentation technique.

For the classification task, we use a ResNet-18 [9] classifier to predict y′, given
(x, y) ∼ (X,Y ) where y ⊆ {0, 1, 2, ..}. In a multi-label classification setting, y′

can contain more than one class, while in a multi-class setting, y′ belongs to only
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Fig. 1: M-VAAL Pipeline: Our active learning method uses multimodal informa-
tion (m1 and m2) to improve VAAL. M-VAAL samples the unlabelled images,
and selects samples complementary to the already annotated data, which are
passed to Oracle for annotation. Incorporating auxiliary information from the
second modality (m2) produces a more generalized latent representation for
sampling. Our method learns task-agnostic representations, therefore the latent
space can be used for both classification and segmentation tasks to sample the
best-unlabelled images for annotation. (Refer to 2.2 for the meaning of each no-
tation)

one class from the set. Once a task is trained using labeled samples, we move
on to the sampler (B) stage to select the best samples for annotation. After
annotating the selected samples, we add them to the labeled sample pool and
retrain the task learner using the updated sample set. Thus, the task learner
is completely retrained for multiple rounds, with an increased training budget
each time.

2.2 M-VAAL Sampler (B)

Our proposed M-VAALmethod extends the VAAL approach by using an encoder-
decoder architecture combined with adversarial learning to generate a lower di-
mensional latent space that captures sample uncertainty and representativeness.
Unlike other AL methods that directly estimate uncertainty or diversity using
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task representation, VAAL learns a separate task-agnostic representation, pro-
viding the freedom to model uncertainty independent of task representation. To
further strengthen the representation learning capability, we introduce a sec-
ond modality as auxiliary information. We modify the VAE to reconstruct the
original input image from modality m1 and the auxiliary image of modality
m2 using the same latent representation generated from the m1 images. The
objective function of the VAE is formulated as:

Lm1
VAE =E [log pθm1 (xm1 | z)] + E [log pθm1 (x

∗
m1 | z∗)] (1)

Lm2
VAE =E [log pθm2 (xm2 | z)] + E [log pθm2 (x

∗
m2 | z∗)] (2)

where pθm1
and pθm2

are the decoders for modality m1 and m2, respectively,
parameterized by θm1 and θm2. Likewise, z, xm1, and xm2 represent a latent
representation, an image of modality m1, and an image of modality m2, respec-
tively, of the samples belonging to the labelled set; similarly, z∗, x∗

m1, and x∗
m2

represent a latent representation, an image of modality m1, and an image of
modality m2, respectively, of the samples belonging to the unlabelled set. The
VAE also uses a Kullback-Leibler (KL) distance loss to regularize the latent
representation, formulated as:

LKL
VAE =−DKL (qϕm1 (z | xm1) ||p(z))−DKL (qϕm1 (z

∗ | x∗
m1) ||p(z)) (3)

where qϕm1 is the encoder of modality m1 parameterized by ϕm1 and p(z) is
the prior chosen as a unit Gaussian. It should be noted that only a single encoder
is used to generate the latent representation, while there are two decoders. Fi-
nally, an adversarial loss is added to encourage the VAE towards generating the
latent representation that can fool the discriminator in distinguishing labeled
from unlabelled examples (shown in Eq. 4). We train both the VAE and the
discriminator in an adversarial fashion. The discriminator (D) is trained on the
latent representation of an image to distinguish if an image comes from a labeled
set or an unlabeled set. The loss function for the discriminator is shown in Eq.
5. We used Wasserstein GAN loss with gradient penalty [7].

Ladv
VAE = E [D (qϕm1 (z | xm1))]− E [D (qϕm1 (z

∗ | x∗
m1))] (4)

LD = −E [D (qϕm1 (z | xm1))] + E [D (qϕm1 (z
∗ | x∗

m1))] + λE
[
(∥∇x̂D(x̂)∥ − 1)2

]
(5)

where the third term in Eq. 5 is the gradient penalty and x̂ = ϵxm1+(1− ϵ)x∗
m1

is a randomly weighted average between xm1 and x∗
m1, such that 0 ≤ ϵ ≤ 1.

During the sampling process, the top samples that the discriminator votes
as belonging to the unlabelled set are chosen; our intuition is that these sam-
ples contain information most different from the ones carried by the samples
already belonging to the labeled set. Fig. 2 shows that our method selects the
examples that are far from the distribution of labeled examples, thus captur-
ing diverse samples. The overall training and sampling sequence of M-VAAL
is shown in Algorithm 1. In the first round, the task network is trained only
with the initially labeled samples to minimize the task objective function LT .
Simultaneously, the M-VAAL sampler is also trained independently using all the
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Fig. 2: Histogram of the discriminator scores for unlabeled and labeled data at
third AL round. The discriminator is adversarially trained to push unlabeled
samples toward lower values and labeled samples toward higher values. Our
method involves selecting unlabelled instances that are far from the peak distri-
bution of the labeled data. The number of samples to select is dictated by the
AL budget.

Algorithm 1 Multimodal Variational Adversarial Active Learning

Given: Hyperparameters: epochs, γ1, γ2, γ3, δ1, δ2, δ3
Input: Labeled data (xm1, y, xm2), Unlabeled data (x∗

m1, x
∗
m2)

Initialize: Model parameters θT , θV AE = {θm1,θm2,ϕ}, and θD
1: for e = 1 to epochs do
2: sample (xm1, y, xm2) ∼ (Xm1, Y,Xm2)
3: sample (x∗

m1, x
∗
m2) ∼ (X∗

m1, X
∗
m2)

4: LVAE ← γ1Ladv
VAE + γ2Lm1

VAE + γ3Lm2
VAE + LKL

VAE

5: Update VAE: θ′V AE ← θV AE − δ1∇LVAE

6: Update D: θ′D ← θD − δ2∇LD

7: Train and update T : θ′T ← θT − δ3∇LT

Sampling Phase
Input: b,Xm1, X

∗
m1

Output: Xm1, X
∗
m1

1: Select samples X∗
m1(s) with minb{θD(z∗)}

2: ys ← ORACLE(X∗
m1(s))

3: (Xm1, Y )← (Xm1, Y ) ∪ (X∗
m1(s), Ys)

4: X∗
m1 ← X∗

m1 −X∗
m1(s)

5: return Xm1, X
∗
m1
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labeled and unlabelled examples, with the end goal of improving the discrimi-
nator at distinguishing between labeled and unlabelled pairs. After the initial
round of training, the trained discriminator is used to select the top b unlabelled
samples identified as belonging to the unlabelled set. These selected samples are
sent to the Oracle for annotation. Finally, the selected samples are removed from
the unlabelled set and then added to the pool of labeled sets, along with their
respective labels. The next round of AL proceeds in a similar fashion, but with
the updated labeled and unlabelled sets.

3 Experiments

3.1 Dataset

BraTS2018: We used the BraTS2018 dataset [14], which includes co-registered
3D MR brain volumes acquired using different acquisition protocols, yielding
slices of T1, T2, and T2-Flair images. To sample informative examples from un-
labelled brain MR images, we employed the M-VAAL algorithm using contrast-
enhanced T1 sequences as the main modality, and T2-Flair as auxiliary infor-
mation. Contrast-enhanced T1 images are preferred for tumor detection as the
tumor border is more visible [4]. In addition, T2-Flair, which captures cerebral
edema (fluid-filled region due to swelling), can also be utilized for diagnosis [14].
Our focus was on the provided 210 High-Grade Gliomas (HGG) cases, which
included manual segmentation verified by experienced board-certified neuro-
radiologists. There are three foreground classes: Enhancing Tumor (ET), Ede-
matous Tissue (ED), and Non-enhancing Tumor Core (NCR). In practice, the
given foreground classes can be merged to create different sub-regions such as
whole tumor and tumor core for evaluations [14]. The whole tumor entails all
foreground classes, while the tumor core only entails ET and NCR.

Before extracting 2D slices from the provided 3D volumes, we randomly split
the 210 volumes into training and test cases with an 80:20 ratio. The training
set was further split into training and validation cases using the same ratio of
80:20, resulting in 135 training, 33 validation, and 42 test cases. These splits were
created before extracting 2D slices to avoid any patient information leakage in
the test splits. Each 3D volume had 155 (240 × 240) transverse slices in axial
view with a spacing of 1 mm. However, not all transverse slices contained tumor
regions, so we extracted only those containing at least one of the foreground
classes. Some slices contained only a few pixels of the foreground segmentation
classes, so we ensured that each extracted slice had at least 1000 pixels repre-
senting the foreground class; any slice not meeting this threshold was discarded.
Consequently, the curated dataset comprised 3673 training images, 1009 valida-
tion images, and 1164 test images of contrast-enhanced T1, T2-Flair, and the
segmentation map.

We evaluated our method on two downstream tasks: whole tumor segmen-
tation and multi-label classification task. In the multi-label classification task,
our prediction classes consisted of ET, ED, and NCR, with each image having
either one, two, or all three classes. It’s worth noting that for the downstream
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task, only contrast-enhanced T1 images were used, while M-VAAL made use of
both contrast-enhanced T1 and T2-Flair images.

COVID-QU-Ex: The COVID-QU-Ex dataset is composed of 256× 256 chest
X-ray images from different patients that have been categorized into one of three
groups: COVID infection, Non-COVID infection, and Normal. The dataset has
two subsets: lung segmentation data and COVID-19 infection segmentation data,
and the latter was chosen for our experiment. In addition to the X-ray images, the
dataset also provides a segmentation mask for each image, which was utilized as
an auxiliary modality during training M-VAAL. The dataset has a total of 5,826
images, consisting of 1,456 Normal, 1,457 Non-COVID-19, and 2,913 COVID-
19 cases. These images are split into three sets: training, validation, and test,
with the training set containing 3,728 images, the validation set containing 932
images, and the test set containing 1,166 images. The downstream task was to
classify the input X-ray image into one of three classes.

3.2 Implementation Details

BraTS2018: All the input images have a single channel of size 240 × 240. To
preprocess the images, we removed 1% of the top and bottom intensities and
normalized them linearly by dividing each pixel with the maximum intensity,
bringing the pixel intensity to a range of 0 to 1. We also normalized the images by
subtracting and dividing them by the mean and standard deviation, respectively,
of the training data. For VAAL and M-VAAL, the images were center-cropped
to 210 x 210 pixels and resized to 128× 128 pixels. For the downstream task, we
used the original image size. Furthermore, to stabilize the training of VAAL and
M-VAAL under similar hyperparameters as the original VAAL [19], we converted
the single-channel input image to a three-channel RGB with the same grayscale
value across all channels.

For M-VAAL, we used the same β-VAE and discriminator as in original
VAAL [19], but added a batch normalization layer after each linear layer in
the discriminator. Additionally, instead of using vanilla GAN with binary-cross
entropy loss, we used WGAN with a gradient penalty to stabilize the adversarial
training [7], with λ = 1. The latent dimension of VAE was set to 64, and the
initial learning rate for both the VAE and discriminator was 1e−4. We tested γ3
in the range M = 0.2, 0.4, 0.8, 1 via an ablation study reported in Sec 5, while
γ1 and γ2 were set to 1. Both VAAL and M-VAAL used a mini-batch size of 16
and were trained for 100 epochs using the same hyperparameters, except for γ3,
which was only present in M-VAAL. For consistency, we initialized the model
at each stage with the same random seed and repeated three trials with three
different seeds for each experiment, recording the average score.

For the segmentation task, we used a U-Net [15] architecture with four down-
sampling and four up-sampling layers, trained with an initial learning rate of
1e−5 using the RMSprop optimizer for up to 30 epochs in a mini-batch size of
32. The loss function was the sum of the pixel-wise cross-entropy loss and Dice
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coefficient loss. The best model was identified by monitoring the best valida-
tion Dice score and used on the test dataset. For the multi-label classification,
we used a pre-trained ResNet18 architecture trained on the ImageNet dataset.
Instead of normalizing the input images with our training set’s mean and stan-
dard deviation, we used the ImageNet mean and standard deviation to make
them compatible with the pre-trained ResNet18 architecture. We used an initial
learning rate of 1e−5 with the Adam optimizer and trained up to 50 epochs in
a mini-batch size of 32. The best model was identified by monitoring the best
validation mAP score and used on the test set. We used AL to sample the best
examples for annotation for up to six rounds and seven rounds for segmentation
and classification tasks, respectively, starting with 200 samples and adding 100
examples (budget – b) at each round.

COVID-QU-Ex: All the input images were loaded as RGB, with all channels
having the same gray-scale value. To bring the pixel values within the range of 0
to 1, we normalized each image by dividing all the pixels by 255. Additionally, we
normalized the images by subtracting the mean and dividing by the standard
deviation, both with values of 0.5. The same hyperparameters were used for
both VAAL and M-VAAL as those used in BraTS, and we also downsampled
the original 256× 256 images to 128× 128 for both models. For the downstream
multi-class classification task, we utilized a pre-trained ResNet18 architecture
that was trained on the ImageNet dataset. We trained the model with an initial
learning rate of 1e−5 using the Adam optimizer and a mini-batch size of 32 for
up to 50 epochs. The best model was determined based on the highest validation
overall accuracy score, and we evaluated this model on the test set. We employed
an AL method that involved sampling up to seven rounds using an AL budget of
100 samples. The initial budget for classification before starting active sampling
was 100 samples.

We have released the GitHub repository for our source code implementation
6. We implemented our method using the standard Pytorch 12.1.1 framework in
Python 3.8 and trained in a single A100 GPU (40 GB).

3.3 Benchmarks and Evaluation Metrics

For our study, we employed two baseline control methods: random sampling and
VAAL – a state-of-the-art task agnostic learning method [19] that doesn’t use
any auxiliary information while training. To quantitatively evaluate the segmen-
tation, multi-label classification, and multi-class classification, we measured the
Dice score, mean Average Precision (mAP), and overall accuracy, respectively.

4 Results

Segmentation: Fig. 3 compares the whole tumor segmentation performance (in
terms of Dice score) between our proposed method (M-VAAL), the two baselines

6 https://github.com/Bidur-Khanal/MVAAL-medical-images
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Fig. 3: Whole tumor segmentation performance comparison of proposed (M-
VAAL) method against the VAAL and random sampling baselines according
to the Dice score.

Fig. 4: Qualitative comparison of test segmentation masks generated by U-Nets
trained on 400 samples using M-VAAL’s selection method at the second round of
AL phase. Columns 2-4 compare M-VAAl, VAAL, and random sampling against
ground truth. Columns 5-6, compare M-VAAL against VAAL and random sam-
pling. White denotes regions identified by both segmentation methods. Blue
denotes regions missed by the test method (i.e., method listed first), but iden-
tified by the reference method (i.e., method listed second). Red denotes regions
that were identified by the test method (i.e., method listed first), but not identi-
fied by the reference method (i.e., method listed second). Additionally, an arrow
indicates the features that were segmented.

(random sampling and VAAL), and a U-Net trained on the entire fully labeled
dataset, serving as an upper bound with an average Dice score of 0.789.

As shown, with only 800 labeled samples, the segmentation performance
starts to saturate and approaches that of the fully trained U-Net on 100% labeled
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data. Moreover, M-VAAL performs better than baselines in the early phase and
gradually saturates as the number of training samples increase.

Fig. 4 illustrates a qualitative, visual assessment of the segmentation masks
yielded by U-Net models trained with 400 samples selected by M-VAAL against
ground truth, VAAL, and random sampling, at the AL second round. White
denotes regions identified by both segmentation methods. Blue denotes regions
missed by the test method (i.e., method listed first), but identified by the ref-
erence method (i.e., method listed second). Red denotes regions that were iden-
tified by the test method (i.e., method listed first), but not identified by the
reference method (i.e., method listed second). As such, an optimal segmentation
method will maximize the white regions, while minimizing the blue and red re-
gions. Furthermore, Fig. 4 clearly shows that the segmentation masks yielded by
M-VAAL are more consistent with the ground truth segmentation masks than
those generated by VAAL or Random Sampling.

Multi-label Classification: In Fig. 6, a comparison is presented of the multi-
label classification performance, measured by mean average precision, between
the M-VAAL framework and two baseline methods (VAAL and random sam-
pling). The upper bound is represented by a fully fine-tuned ResNet18 network.
It should be noted that, on average, M-VAAL performs better than the two
baseline methods, particularly when fewer training data samples are used (i.e.
300 to 600 samples). The comparison models achieve a mean average precision
close to that of a fully trained model even with a relatively small number of
training samples, suggesting that not all training samples are equally informa-
tive. The maximum performance, which represents the upper bound, is achieved
when using all samples and is 96.56%

Fig. 5: Comparison of the mean average precision (mAP) for multi-label classifi-
cation of tumor types between the proposed M-VAAL method and two baseline
methods (VAAL and random sampling).
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Multi-class Classification: The classification performance of ResNet18 mod-
els in diagnosing a patient’s condition using X-ray images selected by M-VAAL
was compared with baselines. Fig. 5 illustrates that M-VAAL consistently out-
performs the other methods, albeit by a small margin. The maximum perfor-
mance, which represents the upper bound, is achieved when using all samples
and is 95.10%.

Fig. 6: Comparison of the overall accuracy for multi-class classification of
COVID, Non-COVID infections, and normal cases between the proposed M-
VAAL method and two baseline methods (VAAL and random sampling).

5 Ablation Study: M-VAAL

We conducted an ablation study to assess the effect of the multimodal loss com-
ponent, which involved varying the hyperparameter γ3 across a range of values
(M = 0.2, 0.4, 0.8, 1.0). The results suggested that both VAAL and M-VAAL were
sensitive to hyperparameters, which depended on the nature of the downstream
task (see Fig. 7). For example, M = 0.2 performed optimally for the whole tumor
segmentation task, while M = 1 was optimal for tumor-type multi-label classifi-
cation and Chest X-ray image classification. We speculate that the multimodal
loss components (see 1 and 2) in the VAE loss serve as additional regularizers
during the learning of latent representations. The adversary loss component, on
the other hand, contributes more towards guiding the discriminator in sampling
unlabelled samples that are most distinct from the distribution of the labeled
dataset.

6 Discussion and Conclusion

M-VAAL, while being sensitive to hyperparameters, samples more informative
samples than the baselines. Our method is task-agnostic, but we observed that
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(a)

(b)

(c)

Fig. 7: Comparing the performance of (a) whole tumor segmentation, (b) tumor
type multi-label classification, (c) chest X-ray infection multi-class classification
with different training budgets, using the samples selected by M-VAAL trained
with different values of M.

the optimal value of M differs for different tasks, as shown in Sec. 5. The type of
dataset also plays an important role in the effectiveness of AL. While AL is usu-
ally most effective with large pools of unlabelled data that exhibit high diversity
and uncertainty, the small dataset used in this study, coupled with the nature of
the labels, led to high-performance variance across each random initialization of
the task network. For instance, in the whole tumor segmentation task, as tumors
do not have a specific shape, the prediction was based on texture and contrast
information. Similarly, in the Chest X-ray image classification task, the images
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looked relatively similar, with only subtle minute features distinguishing between
classes. In addition, the evaluation test also plays a crucial role in accessing the
AL sampler. If the test distribution is biased and does not contain diverse test
cases, the effective evaluation of AL will be undermined. We conducted several
Student’s t-tests to evaluate the statistical significance of the performance re-
sults; nevertheless, we observed high variance across runs in downstream tasks
when smaller AL budgets are used as shown by the error bars in Fig. 6, 3, and
5, as a result, the scores are not always statistically significant, given the large
variance.

In the future, we plan to investigate this further by evaluating the benefit
of multimodal AL on a larger pool of unannotated medical data on diverse
multimodal datasets that guarantee a diversified distribution. Additionally, we
aim to explore the potential of replacing the discriminator with metric learning
[3] to contrast the labeled and unlabelled sets in the latent space. There is
also a possibility of extending M-VAAL to other modalities. For instance, depth
information can serve as auxiliary multimodal information to improve an AL
sampler for image segmentation and label classification on surgical scenes with
endoscopic images.

In this work, we proposed a task-agnostic sampling method in AL that can
leverage multimodal image information. Our results on the BraTS2018 and
COVID-QU-Ex datasets show initial promise in the direction of using multi-
modal information in AL. M-VAAL can consistently improve AL performance,
but the hyperparameters need to be properly tuned.
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7 Supplementary Materials

Here, we have compared the performance of M-VAAL with different baselines
in three downstream tasks: brain tumor segmentation, multi-label tumor classi-
fication, and chest infection multi-class classification, in Table 1, Table 2, and
Table 3, respectively.

Table 1: Summary of Dice Score (Mean ± Std. Dev.) for brain tumor segmenta-
tion between our proposed M-VAAL and baselines (VAAL and random sampling)
at each active sampling round.

Dice Score

AL budget M-VAAL VAAL Rand

200 0.611± 0.028 0.611± 0.028 0.611± 0.028
300 0.725± 0.006 0.702± 0.011 0.69± 0.006
400 0.745± 0.002 0.747± 0.009 0.72± 0.016
500 0.751± 0.007 0.739± 0.02 0.738± 0.011
600 0.757± 0.001 0.728± 0.004 0.743± 0.007
700 0.756± 0.001 0.743± 0.013 0.738± 0.016
800 0.763± 0.006 0.764± 0.016 0.763± 0.011

Table 2: Summary of mAP (Mean ± Std. Dev.) for multi-label of tumor types
between our proposed M-VAAL and baselines (VAAL and random sampling) at
each active sampling round.

Mean Average Precision (mAP)

AL budget M-VAAL VAAL Rand

200 0.931± 0.005 0.931± 0.005 0.931± 0.005
300 0.956± 0.008 0.948± 0.004 0.948± 0.006
400 0.959± 0.005 0.951± 0.007 0.951± 0.006
500 0.962± 0.005 0.958± 0.002 0.954± 0.009
600 0.967± 0.003 0.959± 0.003 0.961± 0.007
700 0.964± 0.002 0.961± 0.002 0.962± 0.008
800 0.966± 0.002 0.961± 0.004 0.962± 0.008
900 0.968± 0.002 0.964± 0.001 0.965± 0.005
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Table 3: Summary of Overall Accuracy (Mean ± Std. Dev.) for chest X-ray
infection multi-class classification of tumor types between our proposed M-VAAL
and baselines (VAAL and random sampling) at each active sampling round.

Overall Accuracy

AL budget M-VAAL VAAL Rand

100 0.722± 0.049 0.722± 0.049 0.722± 0.049
200 0.881± 0.007 0.876± 0.010 0.882± 0.007
300 0.902± 0.007 0.899± 0.008 0.899± 0.004
400 0.911± 0.010 0.909± 0.002 0.905± 0.008
500 0.923± 0.001 0.918± 0.002 0.916± 0.005
600 0.928± 0.001 0.924± 0.006 0.919± 0.007
700 0.932± 0.002 0.934± 0.004 0.925± 0.005
800 0.935± 0.001 0.933± 0.005 0.931± 0.005
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