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Abstract. The increasing number of recorded energy time series enables
the automated operation of smart grid applications such as load analy-
sis, load forecasting, and load management. However, to perform well,
these applications usually require clean data that well represents the
typical behavior of the underlying system. Unfortunately, recorded time
series often contain anomalies that do not reflect the typical behavior of
the system and are, thus, problematic for automated smart grid appli-
cations such as automated forecasting. While various anomaly manage-
ment strategies exist, a rigorous comparison is lacking. Therefore, in the
present paper, we introduce and compare three different general strate-
gies for managing anomalies in energy time series forecasting, namely the
raw, the detection, and the compensation strategy. We compare these
strategies using a representative selection of forecasting methods and
real-world data with inserted synthetic anomalies. The comparison shows
that applying the compensation strategy is generally beneficial for man-
aging anomalies despite requiring additional computational costs because
it mostly outperforms the detection and the raw strategy when the input
data contains anomalies.

Keywords: Anomalies · Anomaly management · Forecasting · Energy
time series

1 Introduction

Since energy systems around the world transition to an increasing share of renew-
able energy sources in energy supply, the implementation of smart grids support-
ing this transition also advances. Smart grid implementation implies a growing
number of smart meters that record power or energy consumption and genera-
tion as time series [4]. These recorded energy time series are characterized by
a multi-seasonality, an aggregation-level dependent predictability, and a depen-
dence on exogenous influences such as weather [16]. The increasing number of
recorded energy time series enables a wide range of possible applications for this
data and the goal of their automated operation. Exemplary applications for the
smart grid that support the transition to renewable energy sources include cus-
tomer profiling, load analysis, load forecasting, and load management [39,47].
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However, to perform well, these applications usually require clean data that
represents the typical behavior of the underlying system well [30,47].

Unfortunately, recorded time series are usually not clean, but contain anoma-
lies [13]. Anomalies are patterns that deviate from what is considered normal [10].
They can occur in energy time series for many reasons, including smart meter
failures [46], unusual consumption [32,40], and energy theft [24]. All anomalies
have in common that they potentially contain data points or patterns that repre-
sent false or misleading information, which can be problematic for any analysis of
this data performed by the mentioned applications [47]. For example, anomalies
such as positive or negative spikes may strongly deviate from what is considered
normal, and a subsequent forecasting method that uses the data as input in an
automated manner may generate an incorrect forecast. This forecast could in
turn lead to an inappropriate energy schedule and ultimately affect the stability
of the energy system in an automated smart grid setting.

Therefore, managing anomalies in energy time series – in the sense of dealing
with their presence – is an important issue for applications in the energy system
such as billing and forecasting [47]. In energy time series forecasting, the impor-
tance of an adequate anomaly management is generally known, e.g. [2,3,36]. For
this reason, various anomaly management strategies exist, including the use of
robust forecasting methods [23,28], the use of information on detected anoma-
lies [43], and the compensation of detected anomalies [9,14,37,50]. However, it is
not clear which strategy is the best for managing anomalies in energy time series
forecasting regarding the obtained accuracy and also the associated necessary
effort, which is why a rigorous comparison of available strategies is needed.

Therefore, the present paper introduces and compares different general
strategies for managing anomalies in energy time series forecasting. For this
purpose, we build on the typically used strategies mentioned above and describe
three different general strategies based on them, namely the raw, the detec-
tion, and the compensation strategy. While the raw strategy applies forecasting
methods directly to the data input without any changes, the detection strategy
provides information on anomalies detected in the input data to the forecast-
ing method. The compensation strategy cleans the input data by detecting and
thereafter compensating anomalies in the input data before applying a forecast-
ing method.

To comparatively evaluate these strategies, we use a representative selection
of forecasting methods, including naive, simple statistical, statistical learning,
and machine learning methods. We also make use of real-world energy time
series with inserted synthetic anomalies derived from real-world data. Given
these forecasting methods and data, we compare the obtained forecast accuracy
of all proposed strategies and present an example of how these strategies work
and perform.

The remainder of the present paper is structured as follows: After describing
related work in Sect. 2, Sect. 3 introduces the strategies for managing anomalies
in energy time series forecasting. In Sect. 4, we evaluate the presented strategies.
Finally, we discuss the results and the strategies in Sect. 5 and conclude the
paper in Sect. 6.
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2 Related Work

Since anomalies are potentially limiting the performance of any downstream
application, dealing with their presence is generally a well-known topic. For
example, all kinds of pre-processing methods aim to raise data quality to ensure
the validity and reliability of data analysis results, e.g. [5,19,37]. Similarly, the
influence of the choice of preprocessing methods on the accuracy of forecasting
methods is also known, e.g. [1,3]. In energy time series forecasting, several works
also address how to deal with the presence of anomalies. We organize these works
along three strategies.

Works of the first strategy focus on the robustness of forecasting methods.
These works, for example, develop forecasting methods that are robust against
anomalies, e.g. [23,28,29,51,53], strengthen existing forecasting methods, e.g.
[54], or at least investigate the robustness of forecasting methods with respect to
anomalous data, e.g. [27,52]. The second strategy consists of works that make use
of information on detected anomalies. In [43], for example, the information on
predicted anomalies is used to adapt the energy production. Works of the third
strategy detect anomalies and replace the detected anomalies with appropriate
values, e.g. [9,14,30,33], or even remove the detected anomalies, e.g. [11].

Despite these works on specific anomaly management strategies, it is not
known which strategy is the best for managing anomalies in energy time series
forecasting. For this reason, a rigorous comparison of the available strategies –
as done in the present paper – is lacking.

3 Strategies for Managing Anomalies in Energy Time
Series Forecasting

In this section, we present three general strategies for managing anomalies in
energy time series forecasting, which build on the previously described anomaly
management strategies in literature.1 All of these strategies apply a forecasting
method f(◦) to create a forecast for an input power time series y = {yt}t∈T

with T measured values. This forecasting method creates a forecast based on
historical values of the input power time series and exogenous features e such
as calendar information or weather forecasts. More specifically, the forecasting
method combines the most recent N historical values of the input power time
series yt = yt−(N−1), . . . , yt with the exogenous features et+H = et+1, . . . et+H

for the forecasting horizon H. Using this combination, the forecasting method
then generates a forecast at time point t

ŷt+H = f(yt, et+H), (1)

where ŷt+H = ŷt+1, . . . ŷt+H is the forecast value for the input power time series
for each time step in the forecast horizon. Nevertheless, the considered strategies
1 The implementation of the proposed and evaluated strategies is available at https://

github.com/KIT-IAI/ManagingAnomaliesInTimeSeriesForecasting.

https://github.com/KIT-IAI/ManagingAnomaliesInTimeSeriesForecasting
https://github.com/KIT-IAI/ManagingAnomaliesInTimeSeriesForecasting
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comprise different steps and thus differ in the inputs to the applied forecasting
method (see Fig. 1). We thus describe the included steps, the used input, and
the underlying assumptions for each strategy in the following.

Input power
time series con-
taining anomalies

Anomaly
detection

Power time series
with detected
anomalies

Anomaly
compensation

Power time series
with compensated
detected anomalies

Forecast

Forecast of power
time series

Anomaly
detection

ForecastForecast

Raw
strategy

Detection
strategy

Compensation
strategy

Fig. 1. The three strategies for managing anomalies in energy time series forecast-
ing. The raw strategy directly uses the input power time series to create a forecast.
The detection strategy first detects anomalies in the input power time series, before
providing a forecast using the information on the detected anomalies from the power
time series with detected anomalies. The compensation strategy detects anomalies and
additionally compensates the detected anomalies before performing a forecast based
on the power time series with compensated detected anomalies.

Raw Strategy. The first strategy is the so-called raw strategy. It directly uses a
power time series containing anomalies as input to a forecasting method. Given
this input, the applied forecasting method provides a forecast of the input power
time series. Formally, the raw strategy thus creates a forecast at time point t

ŷraw
t+H = f(yt, et+H), (2)
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where yt are the historical values of the input power time series containing
anomalies and H, et+H , and ŷt+H are defined as above.

The raw strategy assumes that the anomalies contained in the input time
series do not strongly affect the forecast of the applied forecasting method or
that the applied forecasting method is robust against anomalies. Therefore, the
applied forecasting method is assumed to still achieve an accurate forecast.

Detection Strategy. The second strategy is the so-called detection strategy. This
strategy first applies an anomaly detection method to the power time series con-
taining anomalies to detect contained anomalies whereby the anomaly detection
method can be supervised or unsupervised. The resulting power time series with
detected anomalies serves as input to the forecasting method that then provides
the forecast of the power time series. Formally, the detection strategy, therefore,
results in a forecast at time point t

ŷdetection
t+H = f(yt,dt+H , et+H), (3)

where dt+H = dt+1, . . . dt+H are the labels of the detected anomalies for the
forecasting horizon H and yt, et+H , and ŷt+H are defined as above.

The assumption of the detection strategy is that the applied forecasting
method can incorporate information about detected anomalies in its model so
that the consideration of detected anomalies leads to an accurate forecast.

Compensation Strategy. The third strategy is the so-called compensation strat-
egy. It also first applies a supervised or unsupervised anomaly detection method
to the power time series containing anomalies to identify the contained anoma-
lies. However, this strategy then uses the power time series with detected anoma-
lies as input to an anomaly compensation method c(◦) that replaces the detected
anomalies with realistic values, i.e.,

ỹt+H = c(yt,dt+H , ◦), (4)

where ỹt+H is the power time series with compensated detected anomalies and
◦ are additional parameters of the compensation method. This power time series
with compensated detected anomalies ỹt+H serves as input to the forecasting
method that provides the forecast of the power time series. Formally, we describe
the forecast of the compensation strategy at time point t with

ŷcompensation
t+H = f(ỹt, et+H), (5)

where ỹt are the historical values of the input power time series with compen-
sated detected anomalies and H, et+H , and ŷt+H are defined as above.

The compensation strategy assumes that anomalies have to be detected and
compensated in order to enable the applied forecasting method to provide an
accurate forecast.

4 Evaluation

To evaluate the proposed strategies for managing anomalies in energy time series
forecasting, we compare the forecasting accuracy of all strategies using different
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forecasting methods. Before presenting the results, we detail the performed eval-
uation: We introduce the used data and the inserted synthetic anomalies, the
anomaly detection methods applied in the detection and compensation strate-
gies, and the anomaly compensation method applied in the compensation strat-
egy. We also describe the used forecasting methods and the experimental setting.

4.1 Data and Inserted Synthetic Anomalies

For the evaluation, we use real-world data in which we insert synthetic anomalies.
The chosen data set is the “ElectricityLoadDiagrams20112014 Data Set”2 from
the UCI Machine Learning Repository [18]. It includes electrical power time
series from 370 clients with different consumption patterns [38]. The 370 time
series are available in a quarter-hourly resolution for a period of up to four years,
namely from the beginning of 2011 until the end of 2014. We choose the power
time series MT 200 for the evaluation to cover the entire four-year period, to
account for the electrical load of a typical client, and to consider a time series
that is anomaly-free compared to other time series in the data set (see Fig. 2).

Fig. 2. Overview of the data used for the evaluation.

Since the chosen time series does not include labeled anomalies and thus do
not allow for controlled experimental conditions, we insert synthetic anomalies
in the complete chosen time series. For this, we consider the two anomaly groups
used in [44], namely technical faults in the metering infrastructure and unusual
consumption. Using the corresponding available anomaly generation method3,
we insert four types of anomalies from each group: Anomalies of types 1 to 4 are
from the group of technical faults and based on anomalies identified in real-world
power time series in [45]. These anomalies violate the underlying distribution
corresponding to normal behavior. Anomalies of types 5 to 8 are from the group
of unusual consumption and represent unusual behavior as described in [44].
These anomalies are characterized by unusually low or high power consumption.
We give formulas and examples for all types of anomalies in Appendix 1.

2 https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014.
3 https://github.com/KIT-IAI/EnhancingAnomalyDetectionMethods.

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://github.com/KIT-IAI/EnhancingAnomalyDetectionMethods
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For the evaluation, we insert once 20 anomalies of types 1 to 4 each from
the group of technical faults and once 20 anomalies of types 5 to 8 each from
the group of unusual consumption into the selected time series. We insert 20
anomalies per type to consider a reasonable number of anomalies and we insert
all four types of anomalies from a group at once to consider their simultaneous
occurrence [44,45]. The inserted anomalies correspond to 5% of the data for the
technical faults and 11% of the data for the unusual consumption.

4.2 Applied Anomaly Detection Methods

For the evaluation of the detection and compensation strategies, we choose
anomaly detection methods based on the evaluation results in [44], where a vari-
ety of anomaly detection methods is already evaluated on the selected data. More
specifically, we choose the method from the evaluated supervised and unsuper-
vised anomaly detection methods that overall performs best for the considered
groups of anomalies. For both groups of anomalies, the best-performing method
is an unsupervised anomaly detection method, namely the Variational Autoen-
coder (VAE) for the technical faults and the Local Outlier Factor (LOF) for
the unusual consumption. We briefly introduce both chosen anomaly detection
methods, before we describe their application.

The Variational Autoencoder (VAE) learns to map its input to its output
using the probability distribution of ideally anomaly-free data in the latent space,
so it is trained to only reconstruct non-anomalous data [26]. The Local Outlier
Factor (LOF) estimates the local density of a sample by the distance to its
k-nearest neighbors and uses low local densities compared to its neighbors to
determine anomalies [8].

To enhance the detection performance of the selected anomaly detection
methods, we apply them to the latent space representation of the selected data
as suggested in [44] and visualized in Fig. 8 in Appendix 2. We choose the gen-
erative method to create these latent space representations for each selected
anomaly detection method based on the evaluation results in [44]: We create the
latent space data representations for the vae with a conditional Invertible Neural
Network (cINN) [6] and the latent space data representation for the LOF with
a conditional Variational Autoencoder (cVAE) [41]. We detail the architecture
and training of the used cINN and cVAE in Appendix 2. Given the created latent
space representation, we apply the selected anomaly detection methods to the
entire selected time series of the chosen data as in [44].

4.3 Applied Anomaly Compensation Method

For the anomaly compensation in the evaluation of the proposed compensation
strategy, we use a Prophet-based imputation method because of its superior
imputation performance for power time series determined in [48]. The Prophet-
based imputation method [48] is built on the forecasting method Prophet which
is capable of estimating a time series model on irregularly spaced data [42].
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Prophet uses a modular regression model that considers trend, seasonality, and
holidays as key components. It can be described as

y(t) = g(t) + s(t) + h(t) + εt, (6)

where g models the trend, s the seasonality, h the holidays, and εt all other
changes not represented in the model. The Prophet-based imputation method
trains the regression model using all values available in the power time series.
Given the trained regression model, the Prophet-based imputation method con-
siders all anomalies in the power time series as missing values and imputes them
with the corresponding values from the trained regression model.

4.4 Anomaly-Free Baseline Strategy

In the evaluation, we examine the proposed raw, detection, and compensation
strategies all based on the selected data containing inserted synthetic anomalies.
For the evaluation of these strategies, we additionally provide an anomaly-free
baseline. This baseline strategy comprises forecasts that are calculated on that
selected data but without any inserted anomalies (see Fig. 3).

Input power time
series without inserted
synthetic anomalies

Forecast

Forecast of power
time series

Anomaly-free baseline strategy

Fig. 3. For evaluating the proposed strategies on the data with inserted synthetic
anomalies, we use the forecast calculated on the input power time series without
inserted anomalies as an anomaly-free baseline strategy.

4.5 Applied Forecasting Methods

For the evaluation of the proposed strategies, we consider a multi-step 24 h-ahead
forecast with a multiple output strategy for which we apply a representative
selection of forecasting methods to the selected data. Due to the quarter-hourly
resolution of the selected data, the forecast comprises 96 values. For forecasting
methods with hyperparameters, we use hyperparameters that we initially choose
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based on best practices and then verify. We first present the selected forecasting
methods and their input data for the raw and compensation strategies, before we
describe them for the detection strategy and the anomaly-free baseline strategy.
We lastly present the used train-test split.

Methods Applied in Raw and Compensation Strategies. To examine the raw and
compensation strategies comprehensively, we consider methods with different
learning assumptions. We apply eight forecasting methods, namely two naive
and six advanced methods. The advanced methods comprise a simple statistical
method, a simple and two more complex machine learning methods, and two
statistical learning methods.

The first naive method is the Last Day Forecast. It uses the values of the
previous 24 h for the values to be predicted, i.e.,

ŷt,h = yt−96+h, (7)

where ŷt,h is the forecast value of the electrical load for the forecast horizon h
at time t and yt is the electrical load at time t.

The second naive method is the Last Week Forecast. It takes the correspond-
ing values of the last week as the forecast values, i.e.,

ŷt,h = yt−672+h, (8)

where ŷt,h is the forecast value of the electrical load for the forecast horizon h
at time t and yt−672 is the electrical load one week ago at time t − 672.

The first advanced method is the Linear Regression (LinR). As a statistical
method, it models the forecast values as a linear relationship between the his-
torical load values and calendar information and determines the corresponding
parameters using ordinary least squares. It is defined as

ŷt,h = ch +
∑

j

βh,j · yt−j +
∑

k

γh,k · Ct,k + ε, (9)

where c is a constant, index j iterates over the lagged load features yt−j , index
k iterates over the calendar information Ct,k, and ε is the error.

The second advanced method is a commonly applied simple machine learn-
ing method, namely a Neural Network (NN). It organizes a network of inter-
connected nodes in input, hidden, and output layers to apply different functions
that activate the corresponding nodes to learn the relationship between input
and output (e.g., [31,49]). The implementation of the used NN is detailed in
Table 6 in Appendix 3. For its training, we use a batch size of 64, the Adam
optimizer [25] with default parameters, and a maximum of 50 epochs.

The third advanced method is the Profile Neural Network (PNN) [21] as a
state-of-the-art and more complex machine learning method. It combines statis-
tical information in the form of standard load profiles with convolutional neural
networks (CNNs) to improve the forecasting accuracy. For this, it decomposes
a power time series into a standard load profile module, a trend module, and
a colorful noise module, before aggregating their outputs to obtain the forecast
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[21]. For the training, the PNN uses a batch size of 512, the Adam optimizer
[25], and a maximum of 50 epochs.

The fourth advanced method is the Random Forest (RF) Regressor represent-
ing a statistical learning method. It creates several randomly drawn regression
trees and takes the mean of each individual tree’s forecast as forecast [7], i.e.,

ŷt,h =
1
B

B∑

b=1

tb,h(x), (10)

where B is the number of bootstrap samples of the training set, tb is an individual
fitted tree, and x are the values from the test set. For the evaluation, we use
B = 100.

The fifth advanced method is the Support Vector Regression (SVR) and
represents another statistical learning method. It determines a regression plane
with the smallest distance to all data points used for the training. The data
points closest to the regression plane on both sides are the so-called support
vectors [17]. We apply the SVR with a linear kernel, C = 1.0, and ε = 1.0.

The sixth advanced method is the XGBoost Regressor, which represents a
more complex machine learning method. It iteratively creates regression trees
and uses gradient descent to minimize a regularized objective function [12].

All introduced forecasting methods use the historical values of the selected
power time series that contains inserted synthetic anomalies. The advanced
methods also consider calendar information as input (see Table 5 in Appendix 3
for more details). While the naive methods directly use the mentioned historical
load values, all other methods obtain the normalized load of the last 24 h and
the calendar information for the first value to be predicted.

Methods Applied in Detection Strategy. For the detection strategy that can use
the information on the detected anomalies for the forecast, we apply the fore-
casting methods introduced for the raw and compensation strategies. This way,
we also evaluate the detection method using forecasting methods with different
learning assumptions. However, we adapt the previously introduced methods as
follows: We change the Last Day Forecast so that it uses the value from a week
ago in the case of a detected anomaly. Similarly, we modify the Last Week Fore-
cast so that it uses the corresponding value of the second to last week as the
forecast value if the value to be predicted is a detected anomaly. In accordance
with the detection strategy, all other forecasting methods obtain the information
on the detected anomalies of the last 24 h as additional features.

Methods Applied in Anomaly-Free Baseline Strategy. To calculate the anomaly-
free baseline strategy for the data containing synthetic anomalies, we apply all
forecasting methods described for the raw and compensation strategies to the
same data but without inserted synthetic anomalies. These forecasting methods
obtain the inputs in the way described for the raw and compensation strategies.

Train-Test Split. Regardless of the considered strategy, we use the same train-test
split for all evaluated forecasting methods. Each forecasting method is trained on
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80% of the available data and tested on the remaining 20%. For all strategies,
the available data is the selected time series without the first 96 data points.
When calculating the anomaly-free baseline strategy for this data, we use the
same period of time, i.e., all values except the first 96 data points.

4.6 Experimental Setting

For evaluation, we use evaluation metrics in a defined hard- and software setting.

Metrics. In order to evaluate the proposed strategies for managing anomalies in
energy time series forecasting, we examine the accuracy of the obtained forecasts
compared to the data without inserted synthetic anomalies using two metrics.

The first metric is the commonly used root mean squared error (RMSE).
Given N data points to be predicted, it is defined as

RMSE =

√√√√ 1
N

N∑

t=1

(yt − ŷt)2, (11)

with the actual value yt of the anomaly-free time series and the forecast value
ŷt. Due to the squared differences considered, the RMSE is sensitive to outliers.

Therefore, we also consider a second commonly used metric, the mean abso-
lute error (MAE), which is robust to outliers. It is defined as

MAE =
1
N

N∑

t=1

|yt − ŷt| (12)

with N data points to be forecast, the actual value yt of the anomaly-free time
series, and the forecast value ŷt.

Hard- and Software. In order to obtain comparable results, we use the same
hardware throughout the evaluation and implement all evaluated strategies and
used anomaly detection, anomaly compensation, and forecasting methods in
Python (see Appendix 4 for more details).

4.7 Results

To examine the presented strategies, we compare their accuracy on the selected
time series with the described inserted synthetic anomalies and using the
described anomaly detection, anomaly compensation, and forecasting meth-
ods. After presenting the results of this comparison for the technical faults and
unusual consumption, we show a part of the selected time series as an example
of how the different strategies work and perform.
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(a) Technical faults (RMSE).

L
in
R

L
as
t
D
ay

L
as
t
W
ee
k

N
N

P
N
N

R
F

X
G
B
oo

st

SV
R

0

50

100

(b) Unusual consumption (RMSE).
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(c) Technical faults (MAE).
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(d) Unusual consumption (MAE).

Fig. 4. The accuracy of the eight forecasting methods applied to the data with 20
synthetic anomalies of each type from the technical faults and unusual consumption. For
each forecasting method introduced in Sect. 4.5, the bars indicate the average RMSE or
MAE for the raw strategy, detection strategy, compensation strategy, and anomaly-free
baseline strategy. The error bars show the observed standard deviation across all runs
on the test data set. Note that the anomaly-free baseline strategy generally performs
best because it uses data that does not contain inserted synthetic anomalies.

Comparison. For the comparison, we apply all proposed strategies to the
selected data with synthetic anomalies from the technical faults and unusual
consumption. For both groups of anomalies, we insert 20 anomalies of each type
belonging to this group. Figure 4a and 4c show the resulting RMSE and MAE for
the technical faults and Fig. 4b and 4d for the unusual consumption. For each
considered forecasting method, the bars indicate the average RMSE or MAE
for the raw strategy, the detection strategy, the compensation strategy, and the



Managing Anomalies in Energy Time Series for Automated Forecasting 15

anomaly-free baseline strategy. The error bars show the observed standard devi-
ation across all runs on the test data set.

Technical Faults. Regarding the technical faults, all considered forecasting meth-
ods except the Last Day Forecast, the Last Week Forecast, the LinR, and the NN
have both the lowest RMSE and MAE when using the compensation strategy.
The SVR has only the lowest RMSE with the compensation strategy but the low-
est MAE with the raw strategy. Even though the difference to the compensation
strategy is only small, the Last Day Forecast, the Last Week Forecast, and the
NN achieve their lowest RMSE and MAE using the detection strategy and the
LinR with the raw strategy. Moreover, the difference between the RMSE when
using the compensation strategy and the RMSE using the second best strategy
is largest for the XGBoost Regressor, the RF Regressor, and the SVR. Similarly,
the difference between the MAE when using the compensation strategy and the
MAE using the second best strategy is largest for the XGBoost Regressor, the
PNN, and the RF Regressor. Additionally, we see the largest difference between
the RMSEs in the use of the raw, detection, and compensation strategies for
the Last Day Forecast and the Last Week Forecast, followed by the XGBoost
Regressor. With respect to the MAE, we observe the largest differences for the
PNN, the XGBoost Regressor, and RF Regressor.

Compared to the anomaly-free baseline strategy, the RMSE of all forecasting
methods, especially of the Last Day Forecast, the Last Week Forecast, the SVR,
and the XGBoost Regressor, is also noticeably greater for all three strategies.
Concerning the MAE, we also see large differences between the anomaly-free
baseline strategy and the three other strategies for all forecasting methods but
especially the Last Day Forecast, the XGBoost Regressor, the LinR, and the
SVR. Considering the actual accuracy, the LinR, the PNN, and the NN form
the group of forecasting methods that achieve the lowest RMSE and the SVR,
the PNN, and the LinR the group with the lowest MAE.

Unusual Consumption. For the unusual consumption, all considered forecasting
methods except the NN achieve both the lowest RMSE and MAE using the
compensation strategy. The NN has its lowest RMSE with the detection strategy.
The Last Day Forecast also has its lowest RMSE using the compensation strategy
but its lowest MAE using the detection strategy. The difference in the RMSE
and MAE between using the compensation strategy and using the second best
strategy is large for the XGBoost Regressor, the LinR, the RF Regressor, the
SVR, and small for the NN, the PNN, the Last Day Forecast, and the Last Week
Forecast. Moreover, we observe the largest differences between the RMSEs for
using the raw, detection, and compensation strategies for the LinR, the RF
Regressor, and the SVR. The largest observed differences in the MAE of these
three strategies are for the LinR, the XGBoost Regressor, and the NN.

In comparison to the anomaly-free baseline strategy, the RMSE and MAE
of all forecasting methods is clearly larger for all three strategies. With regard
to their actual accuracy, the PNN achieves the lowest RMSE, followed by the
SVR and the LinR. Considering the accuracy in terms of the MAE, the SVR,
the PNN, and the Last Day Forecast achieve the lowest MAE.
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Example. To demonstrate how the different strategies work and perform, we
finally look at a part of the time series used for the evaluation in more detail.
Using three days of this time series from June 2014, Fig. 5 illustrates an inserted
synthetic anomaly, how this anomaly is detected, and what the resulting forecasts
of the different strategies look like.

More specifically, Fig. 5a illustrates the selected original time series, which we
assume to be anomaly-free, and the time series with inserted synthetic anomalies.
In the latter, we observe an anomaly of type 8 which increases the load values for
about one of the three days. In addition to these two time series, Fig. 5b shows the
data points of the time series with inserted synthetic anomalies that are detected
as anomalous by the LOF, which is the applied anomaly detection method. We
observe that the LOF, detects various but not all data points of the inserted
synthetic anomaly as anomalous. Figure 5c then illustrates how these detected
anomalous data points are compensated using the Prophet-based imputation
method. With regard to the compensated detected anomalous data points, our
observation is that compensated values are all close to the original anomaly-free
time series.

Finally, Fig. 5d additionally shows the multi-step 24 h-ahead forecasts of the
four different strategies using the PNN and given the previously described infor-
mation. We observe that all strategies result in different forecasts: The forecast
of the compensation strategy, that is based on the time series with compen-
sated synthetic anomalies introduced in Fig. 5c, is closest to the forecast of the
anomaly-free baseline strategy. Moreover, the forecast of the detection strategy,
that uses the information on the detected anomalous data points introduced in
Fig. 5b, is closer to the forecast of the anomaly-free baseline strategy than the
forecast of the raw strategy.

5 Discussion

In this section, we first discuss the results from the evaluation of the pro-
posed strategies for managing anomalies in energy time series forecasting, before
reviewing the evaluation regarding its limitations and insights.

In the comparison of the accuracy of the proposed strategies, we observe
that using the compensation strategy yields the lowest RMSE and MAE for
most forecasting methods and both groups of anomalies. However, while the
results are generally consistent across both accuracy metrics, some forecasting
methods benefit from the two other strategies with respect to the RMSE, the
MAE, or both: The NN and the Last Day Forecast perform best using the
detection strategy for the technical faults and unusual consumption, the Last
Week Forecast using the detection strategy for only the technical faults, and the
LinR and the SVR using the raw strategy for the technical faults. However, it is
worth noting that the compensation strategy is often the second-best strategy
in these cases with similar accuracy, so it could serve as a default strategy.

Nevertheless, using the compensation and also the detection strategy is asso-
ciated with additional computational costs because of the necessary anomaly
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Fig. 5. Three exemplary days of the power time series used for the evaluation, where
a synthetic anomaly of type 8 is inserted, detected, and compensated. Finally, the
inserted anomaly is dealt with differently in the forecast depending on the strategy.
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detection and anomaly compensation. In case of the anomaly detection, the
computational costs also include the creation of the latent space representation
that we use to enhance the detection performance. Whether the improvement
in accuracy over the raw strategy of using the data essentially as-is justifies
this additional computational cost depends on the forecasting method and the
anomalies contained in the data and requires careful consideration. From these
results, one could infer that applying strategies that actively handle anomalies,
namely the compensation and the detection strategies, is generally beneficial
and, more specifically, that using the compensation strategy is mostly benefi-
cial. Based on this inference, a best practice could be to apply the compensation
strategy in energy time series forecasting. Additionally, given the nature of the
data used for the evaluation, we assume that the gained insights also apply to
similar periodic data, for example, from the areas of solar power generation,
mobility, and sales.

Moreover, the comparison of the accuracy of all strategies shows that there
is no clearly best-performing forecasting method for technical faults and unusual
consumption. Instead, there are rather groups of similarly well-performing fore-
casting methods, for example, the LinR and the PNN for the technical faults
and the PNN and the SVR for the unusual consumption. Additionally, regard-
ing their actual accuracy, we observe that even naive forecasting methods can
provide reasonable forecasts, which can serve as a computationally light baseline
when looking for competitive forecasts.

Furthermore, the example of three days from the time series used for the
evaluation illustrates how the strategies differ. By showing an inserted synthetic
anomaly, the data points of this anomaly that are detected as anomalous, and
how the detected anomalous data points are compensated, the example presents
the inputs for the raw, detection, and compensation strategies. Additionally,
the example includes the resulting forecasts of all strategies for the next day.
Thereby, the influence of the different inputs on the forecast accuracy of the dif-
ferent strategies becomes comprehensible. Considering the results of the example,
we also observe that the compensation strategy provides the comparatively best
forecast although it is dependent on the only partly detected and compensated
inserted synthetic anomaly. With regard to the detection performance of the
detection method, however, it should be noted that anomaly types of unusual
consumption are difficult to be detected from experience.

Nevertheless, we note that these results are associated with certain limi-
tations. One limitation is that we only evaluate the proposed strategies with
the selected anomaly detection, anomaly compensation, and forecasting meth-
ods since the performance of the proposed strategies highly depends on these
methods. For example, forecasting methods vary by design in their sensitivity
to anomalies and detection methods may not detect all anomalous data points.
While we believe that the different selected methods are a representative sample
of existing methods, it would be interesting to extend the evaluation to fur-
ther anomaly detection, anomaly compensation, and forecasting methods. The
performance of the selected methods additionally depends on the used hyperpa-
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rameters. Although the hyperparameters used are carefully selected, their opti-
mal choice could be investigated. Moreover, the reported results are based on the
selected data. Although we perceive the selected time series based on our domain
knowledge as comparatively anomaly-free, it could contain anomalies that influ-
ence the results. For example, the contained anomalies could worsen the results
of the raw strategy and improve the results of the detection and compensation
strategies. However, in this case, the relative comparison of the strategies would
remain the same. Nevertheless, future work could examine more closely whether
anomalies are contained and affect the results. In addition to contained anoma-
lies, the results also depend on the inserted anomalies and might change with
different numbers and types of inserted anomalies. Future work could thus also
examine the influence of the inserted anomalies on the results. Furthermore, the
data used for the evaluation represents the electrical power consumption on a
client level. In future work, it might, therefore, be interesting to use other data
to investigate how the aggregation level of the data influences the results.

Overall, we conclude from the performed evaluation that the compensation
strategy is generally beneficial as it mostly allows for better or at least similar
forecasting results as the other evaluated strategies when the input data contains
anomalies. By favoring precise forecasts, the compensation strategy provides
a means for appropriately managing anomalies in forecasts using energy time
series, which could also be beneficial for automated machine learning forecasting.

6 Conclusion

In the present paper, we evaluate three general strategies for managing anoma-
lies in automated energy time series forecasting, namely the raw, the detection,
and the compensation strategy. For the evaluation, we apply a representative
selection of forecasting methods to real-world data containing inserted synthetic
anomalies in order to compare these strategies regarding the obtained forecast
accuracy. We also present an example of how these strategies work and perform.

Despite requiring additional computational costs, the compensation strategy
is generally beneficial as it mostly outperforms the detection and the raw strategy
when the input data contains anomalies.

Given the proposed strategies for managing anomalies in energy time series,
future work could address several follow-up questions. For example, future work
could verify the results by applying other data including labeled data, anomaly
detection methods, and anomaly compensation methods. Similarly, future work
could evaluate the proposed strategies with further forecasting methods. Fur-
thermore, future work could integrate the proposed strategies into existing
approaches for automated machine learning to include them in the optimiza-
tion problem of finding the best forecast for a given data set.
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Appendix 1: Inserted Synthetic Anomalies

For the evaluation, we insert anomalies of the two anomaly groups used in [44],
namely technical faults in the metering infrastructure and unusual consumption.
For both groups, we consider four types of anomalies each. Each anomaly p̂j,i
of type j has a start index i and is inserted in the given power time series
P = p1, p2, ...pN with length N .

Technical Faults

The considered technical faults comprise the anomalies of types 1 to 4 taken
from [45]. Figure 6 shows an example of each of these types, which we define in
the following.

Anomaly Type 1

p̂1,i+n =

⎧
⎪⎨

⎪⎩

−1 · mean(P ) + rs · std(P ), n = 0
0, 0 < n < l − 1∑i+l−1

t=1 pt, n = l − 1,

(13)

where the length l ∼ U[5,24] and the random scaling factor rs = 2 + r · 3 with
r ∼ U[0,1].

Anomaly Type 2

p̂2,i+n =

{
0, 0 ≤ n < l − 1∑i+l−1

t=i pt, n = l − 1,
(14)

where the length l ∼ U[5,24].

Anomaly Type 3
p̂3,i = −rs · mean(P ), (15)

where the random scaling factor rs = 0.01 + r · 3.99 with r ∼ U[0,1].

Anomaly Type 4
p̂4,i = r · mean(P ), (16)

where the random scaling factor rs = 3 + r · 5 with r ∼ U[0,1].
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(a) Anomaly type 1: negative power
spike followed by zero values and posi-
tive spike.
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(b) Anomaly type 2: zero power values
followed by a positive spike.
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(c) Anomaly type 3: negative power
spike.
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(d) Anomaly type 4: positive power
spike.

Fig. 6. Examples of the anomaly types 1 to 4 from the technical faults taken from [45]
that we insert as synthetic anomalies into the selected data. The anomalies are plotted
in red. Note that the anomalies of types 3 and 4 actually have a length of one but are
marked together with their previous value to be recognizable. (Color figure online)

Unusual Consumption

The considered unusual consumption comprise the anomalies of types 5 to 8
taken from [44]. Figure 7 shows an example of each of these types, which we
define in the following.

Anomaly Type 5

p̂5,i+n = pi − r · pmin, 0 < n < l − 1, (17)

where the length l ∼ U[48,144], the random scaling factor r ∼ U[0.3,0.8], and
pmin = min{pi, pi+1, . . . , pi+l−1}.

Anomaly Type 6

p̂6,i+n = pi + r · pmin, 0 < n < l − 1, (18)

where the length l ∼ U[48,144], the random scaling factor r ∼ U[0.5,1], and pmin =
min{pi, pi+1, . . . , pi+l−1}.
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(a) Anomaly type 5: abrupt small tem-
porary reduction in the power values.
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(b) Anomaly type 6: abrupt small tem-
porary increase in the power values.
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(c) Anomaly type 7: small temporary re-
duction in the power values with a grad-
ual start and end.
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(d) Anomaly type 8: small temporary in-
crease in the power values with a gradual
start and end.

Fig. 7. Examples of the anomaly types 5 to 8 from the unusual consumption taken
from [44] that we insert as synthetic anomalies into the selected data. The anomalies
are plotted in red. (Color figure online)

Anomaly Type 7

p̂7,i =

⎧
⎪⎨

⎪⎩

pi − r · pmin · l
10 · i, 0 < n < l

10

pi − r · pmin,
l
10 ≤ n ≤ 1 − l

10

pi − r · pmin · l
10 · (1 − i), 1 − l

10 < n < l − 1,

(19)

where the length l ∼ U[48,144], the random scaling factor r ∼ U[0.3,0.8], and
pmin = min{pi, pi+1, . . . , pi+l−1}.

Anomaly Type 8

p̂8,i =

⎧
⎪⎨

⎪⎩

pi + r · pmin · l
10 · i, 0 < n < l

10

pi + r · pmin,
l
10 ≤ n ≤ 1 − l

10

pi + r · pmin · l
10 · (1 − i), 1 − l

10 < n < l − 1,

(20)

where the length l ∼ U[48,144], the random scaling factor r ∼ U[0.5,1], and pmin =
min{pi, pi+1, . . . , pi+l−1}.
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Appendix 2: Applied Anomaly Detection

Applied Latent Space-Based Anomaly Detection. To enhance their detection per-
formance, we apply the selected anomaly detection methods to the latent space
representation of the selected data which we create by a trained generative
method (see Fig. 8).

Trained
generative
method

Input
time series
containing
anomalies

Latent space
representation

of input
time series
containing
anomalies

Calendar
and

statistical
information

Anomaly
detection
method

Fig. 8. According to the selected anomaly detection approach from [44], a trained
generative method creates the latent space data representation of an input time series
containing anomalies. The latent space data representation then serves as input to an
anomaly detection method.

Architecture of Generative Methods. For our evaluation, we use the conditional
Invertible Neural Network (cINN) [6] and the conditional Variational Autoen-
coder (cVAE) [41] as described in [22,44] and as detailed in Tables 1 and 4.

Table 1. Architecture of the used cINN [44].

Element Description

Number of blocks 10

Layers per block Glow coupling layer and random permutation

Subnetwork in each block Fully connected NN (see Table 2)

Conditioning network Fully connected NN (see Table 3)

Training of Generative Methods. The training of the used cINN and cVAE follows
the training described in [44]: We apply the unsupervised cINN and cVAE to the
data with inserted synthetic anomalies under the assumption of 10% of the data
points are anomalies by setting the contamination parameter of the unsupervised
cINN and cVAE to 0.1. Both generative methods obtain standardized data points
of the selected time series as samples with a size of 96. Both generative methods
also use the mean of the considered time series sample as statistical information
as well as the hour of the day, the month of the year, and the weekday as calendar
information.
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Table 2. Details of the subnetwork in the used cINN [44].

Layer Description

Input [Output of previous coupling layer, conditional information]

1 Dense 32 neurons; activation: tanh

2 Dense horizon neurons; activation: linear

Table 3. Details of the conditioning network in the used cINN [44].

Layer Description

Input [Calendar information, statistical information]

1 Dense 8 neurons; activation: tanh

2 Dense 4 neurons; activation: linear

Table 4. Architecture of the encoder and decoder in the used cVAE [44].

(a) Encoder

Layer Description

Input [Normal data, conditional information]

1 Dense 64 neurons; activation: tanh

2 Dense 32 neurons; activation: tanh

3 μ: dense latent dimension; activation: linear

4 σ: dense latent dimension; activation: linear

(b) Decoder

Layer Description

Input [Latent data, conditional information]

1 Dense 32 neurons; activation: tanh

2 Dense 64 neurons; activation: tanh

3 Dense horizon neurons; activation: linear

Appendix 3: Applied Forecasting Methods

Table 5. Overview of the used calendar information.

Calendar information Implementation

Weekday Boolean

Workdays (Monday to Friday) Boolean

Hour of the day sin(2 · π · hour/24) and cos(2 · π · hour/24)

Day of the month sin(2 · π · day/days of the month)

Month of the year sin(2 · π · month/12) and cos(2 · π · month/12)
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Table 6. Details of the applied NN.

Layer Description

Input [Load data, encoded calendar information]

1 Dense 256 neurons; activation: relu

2 Dense 128 neurons; activation: relu

Output Dense 96 neuron; activation: linear

Appendix 4: Hard- and Software

Hardware. The used hardware is an HPC system with two Intel Xeon Gold 5118
CPUs and with 256 GB RAM.

Software. For the anomaly detection using the respective latent space data rep-
resentation created by the selected cINN or cVAE, we apply the implementation
described in [44]. It uses FrEIA4 and PyTorch5 [34] for the cINN, PyTorch [34]
for the cVAE, Keras6 [15] for the VAE, and scikit-learn7 [35] for the LOF.

For the anomaly compensation, we apply the implementation of the Prophet-
based method described in [48] that is based on the available Prophet implemen-
tation8 [42].

For the forecasting methods, we use Keras for the NN and scikit-learn for the
LinR, SVR, and RF Regressor. Additionally, we apply the available implemen-
tation9 [12] for the XGBoost Regressor, and adapt the available implementation
of the PNN10 [21] to work without weather data.

We finally use pyWATTS11 [20] to implement the proposed strategies and to
automate their evaluation.
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with conditional invertible neural networks. arXiv:1907.02392 (2019)

7. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.
1023/A:1010933404324

8. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based
local outliers. In: Proceedings of the 2000 ACM SIGMOD International Confer-
ence on Management of Data, pp. 93–104. ACM (2000). https://doi.org/10.1145/
342009.335388

9. Chakhchoukh, Y., Panciatici, P., Mili, L.: Electric load forecasting based on sta-
tistical robust methods. IEEE Trans. Power Syst. 26(3), 982–991 (2011). https://
doi.org/10.1109/TPWRS.2010.2080325

10. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-
put. Surv. 41(3), 15:1–15:58 (2009). https://doi.org/10.1145/1541880.1541882

11. Charlton, N., Singleton, C.: A refined parametric model for short term load
forecasting. Int. J. Forecast. 30(2), 364–368 (2014). https://doi.org/10.1016/j.
ijforecast.2013.07.003

12. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 785–794. ACM (2016). https://doi.org/10.1145/2939672.2939785

13. Chen, W., Zhou, K., Yang, S., Wu, C.: Data quality of electricity consumption
data in a smart grid environment. Renew. Sustain. Energy Rev. 75, 98–105 (2017).
https://doi.org/10.1016/j.rser.2016.10.054

14. Chen, X., Kang, C., Tong, X., Xia, Q., Yang, J.: Improving the accuracy of bus
load forecasting by a two-stage bad data identification method. IEEE Trans. Power
Syst. 29(4), 1634–1641 (2014). https://doi.org/10.1109/TPWRS.2014.2298463

15. Chollet, F., et al.: Keras (2015). https://keras.io
16. Dannecker, L.: Energy Time Series Forecasting. Springer Fachmedien, Wiesbaden

(2015). https://doi.org/10.1007/978-3-658-11039-0
17. Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A., Vapnik, V.: Support vector

regression machines. In: Mozer, M.C., Jordan, M., Petsche, T. (eds.) Advances in
Neural Information Processing Systems, vol. 9. MIT Press, Cambridge (1996)

18. Dua, D., Graff, C.: UCI machine learning repository (2019). https://archive.ics.
uci.edu/ml

19. Fan, C., Chen, M., Wang, X., Wang, J., Huang, B.: A review on data preprocessing
techniques toward efficient and reliable knowledge discovery from building opera-
tional data. Front. Energy Res. 9, 652801 (2021). https://doi.org/10.3389/fenrg.
2021.652801

20. Heidrich, B., et al.: pyWATTS: Python workflow automation tool for time series.
arXiv:2106.10157 (2021)

https://doi.org/10.1109/TPWRS.2017.2656939
https://doi.org/10.1109/TPWRS.2017.2656939
https://doi.org/10.1109/TII.2015.2414355
https://doi.org/10.1109/TII.2015.2414355
https://doi.org/10.36478/jeasci.2017.4102.4107
https://doi.org/10.36478/jeasci.2017.4102.4107
http://arxiv.org/abs/1907.02392
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/342009.335388
https://doi.org/10.1145/342009.335388
https://doi.org/10.1109/TPWRS.2010.2080325
https://doi.org/10.1109/TPWRS.2010.2080325
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1016/j.ijforecast.2013.07.003
https://doi.org/10.1016/j.ijforecast.2013.07.003
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1016/j.rser.2016.10.054
https://doi.org/10.1109/TPWRS.2014.2298463
https://keras.io
https://doi.org/10.1007/978-3-658-11039-0
https://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml
https://doi.org/10.3389/fenrg.2021.652801
https://doi.org/10.3389/fenrg.2021.652801
http://arxiv.org/abs/2106.10157


Managing Anomalies in Energy Time Series for Automated Forecasting 27

21. Heidrich, B., Turowski, M., Ludwig, N., Mikut, R., Hagenmeyer, V.: Forecasting
energy time series with profile neural networks. In: The Eleventh ACM Interna-
tional Conference on Future Energy Systems (e-Energy ’20), pp. 220–230 (2020).
https://doi.org/10.1145/3396851.3397683

22. Heidrich, B., et al.: Controlling non-stationarity and periodicities in time series
generation using conditional invertible neural networks. Appl. Intell. 53, 8826–
8843 (2023). https://doi.org/10.1007/s10489-022-03742-7

23. Jiao, J., Tang, Z., Zhang, P., Yue, M., Yan, J.: Cyberattack-resilient load fore-
casting with adaptive robust regression. Int. J. Forecast. 38(3), 910–919 (2022).
https://doi.org/10.1016/j.ijforecast.2021.06.009

24. Jokar, P., Arianpoo, N., Leung, V.C.M.: Electricity theft detection in AMI using
customers’ consumption patterns. IEEE Trans. Smart Grid 7(1), 216–226 (2016).
https://doi.org/10.1109/TSG.2015.2425222

25. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd Inter-
national Conference on Learning Representations (ICLR 2015) (2015)

26. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv:1312.6114v10
(2014)

27. Luo, J., Hong, T., Fang, S.C.: Benchmarking robustness of load forecasting models
under data integrity attacks. Int. J. Forecast. 34(1), 89–104 (2018). https://doi.
org/10.1016/j.ijforecast.2017.08.004

28. Luo, J., Hong, T., Fang, S.C.: Robust regression models for load forecasting. IEEE
Trans. Smart Grid 10(5), 5397–5404 (2018). https://doi.org/10.1109/TSG.2018.
2881562

29. Luo, J., Hong, T., Gao, Z., Fang, S.C.: A robust support vector regression model
for electric load forecasting. Int. J. Forecast. 39(2), 1005–1020 (2023). https://doi.
org/10.1016/j.ijforecast.2022.04.001

30. Luo, J., Hong, T., Yue, M.: Real-time anomaly detection for very short-term load
forecasting. J. Mod. Power Syst. Clean Energy 6(2), 235–243 (2018). https://doi.
org/10.1007/s40565-017-0351-7

31. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
32. Nordahl, C., Persson, M., Grahn, H.: Detection of residents’ abnormal behaviour

by analysing energy consumption of individual households. In: 2017 IEEE Inter-
national Conference on Data Mining Workshops (ICDMW), pp. 729–738. IEEE
(2017). https://doi.org/10.1109/ICDMW.2017.101

33. Park, S., Jung, S., Jung, S., Rho, S., Hwang, E.: Sliding window-based LightGBM
model for electric load forecasting using anomaly repair. J. Supercomput. 77(11),
12857–12878 (2021). https://doi.org/10.1007/s11227-021-03787-4

34. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., D’Alché-Buc, F., Fox, E.,
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