
An Automated Market Maker Minimizing
Loss-Versus-Rebalancing

Conor McMenamin1, Vanesa Daza1,2, and Bruno Mazorra1

1 Department of Information and Communication Technologies, Universitat Pompeu
Fabra, Barcelona, Spain

2 CYBERCAT - Center for Cybersecurity Research of Catalonia

Abstract. The always-available liquidity of automated market makers
(AMMs) has been one of the most important catalysts in early cryp-
tocurrency adoption. However, it has become increasingly evident that
AMMs in their current form are not viable investment options for passive
liquidity providers. This is large part due to the cost incurred by AMMs
providing stale prices to arbitrageurs against external market prices, for-
malized as loss-versus-rebalancing (LVR) [Milionis et al., 2022].
In this paper, we present Diamond, an automated market making proto-
col that aligns the incentives of liquidity providers and block producers
in the protocol-level retention of LVR. In Diamond, block producers ef-
fectively auction the right to capture any arbitrage that exists between
the external market price of a Diamond pool, and the price of the pool it-
self. The proceeds of these auctions are shared by the Diamond pool and
block producer in a way that is proven to remain incentive compatible for
the block producer. Given the participation of competing arbitrageurs to
capture LVR, LVR is minimized in Diamond. We formally prove this re-
sult, and detail an implementation of Diamond. We also provide compar-
ative simulations of Diamond to relevant benchmarks, further evidencing
the LVR-protection capabilities of Diamond. With this new protection,
passive liquidity provision on blockchains can become rationally viable,
beckoning a new age for decentralized finance.

1 Introduction

CFMMs such as Uniswap [17] have emerged as the dominant class of AMM
protocols. CFMMs offer several key advantages for decentralized liquidity pro-
vision. They are efficient computationally, have minimal storage needs, match-
ing computations can be done quickly, and liquidity providers can be passive.
Thus, CFMMs are uniquely suited to the severely computation- and storage-
constrained environment of blockchains.

Unfortunately, the benefits of CFMMs are not without significant costs. One
of these costs is definitively formalized in [14] as loss-versus-rebalancing (LVR).
It is proved that as the underlying price of a swap moves around in real-time,
the discrete-time progression of AMMs leave arbitrage opportunities against
the AMM. In centralized finance, market makers typically adjust to new price

ar
X

iv
:2

21
0.

10
60

1v
2

 [
cs

.G
T

]
 9

 A
ug

 2
02

3

2 McMenamin, Daza and Mazorra

Fig. 1: Toxicity of Uniswap V3 Order Flow [16]. This graph aggregates the PnL
(toxicity) of all trades on the Uniswap V3 WETH/USDC pool, measuring PnL
of each order after 5 minutes, 1 hour, and 1 day. These are typical time periods
within which arbitrageurs close their positions against external markets. This
demonstrates the losses being incurred in existing state-of-the-art DEX protocols
are significant, consistent, and unsustainable; toxic.

information before trading. This comes at a considerable cost to AMMs (for
CFMMs, [14] derives the cost to be quadratic in realized moves), with similar
costs for AMMs derived quantitatively in [15,6], and presented in Figure 1.

These costs are being realized by liquidity providers in current AMM proto-
cols. All of these factors point towards unsatisfactory protocol design, and a dire
need for an LVR-resistant automated market maker. In this paper, we provide
Diamond, an AMM protocol which formally protects against LVR.

1.1 Our Contribution

We present Diamond, an AMM protocol which isolates the LVR being captured
from a Diamond liquidity pool, and forces some percentage of these LVR pro-
ceeds to be returned to the pool. As in typical CFMMs, Diamond pools are de-
fined with respect to two tokens x and y. At any given time, the pool has reserves
of Rx and Ry of both tokens, and some pool pricing function3 PPF(Rx, Ry). We
demonstrate our results using the well-studied Uniswap V2 pricing function of
PPF(Rx, Ry) =

Rx

Ry
.

In Diamond, block producers are able to capture the block LVR of a Diamond
pool themselves or auction this right among a set of competing arbitrageurs.
In both cases, the block producer revenue approximates the arbitrage revenue.
Therefore, block producers are not treated as traditional arbitrageurs, but rather
as players with effective arbitrage capabilities due to their unique position in
blockchain protocols.

3 See Equation 1 for a full description of pool pricing functions as used in this paper

An Automated Market Maker Minimizing Loss-Versus-Rebalancing 3

For each Diamond pool, we introduce the concept of its corresponding CFMM
pool. Given a Diamond pool with token reserves (Rx, Ry) and pricing function
PPF(Rx, Ry) =

Rx

Ry
, the corresponding CFMM pool is the Uniswap V2 pool with

reserves (Rx, Ry). If a block producer tries to move the price of the corresponding
CFMM pool adding Υx tokens and removing Υy, the same price is achieved in
the Diamond pool by adding (1− β)Υx tokens for some β > 0, with β the LVR
rebate parameter. The block producer receives (1 − β)Υy. In our framework, it
can be seen that PPF(Rx+(1−β)Υx, Ry− (1−β)Υy) < PPF(Rx+Υx, Ry−Υy),

which also holds in our example, as Rx+(1−β)Υx

Ry−(1−β)Υy
< Rx+Υx

Ry−Υy
. A further υy tokens

are removed from the Diamond pool to move the reserves to the same price as
the corresponding CFMM pool, with these tokens added to a vault.

Half of the tokens in the vault are then periodically converted into the other
token (at any time, all tokens in the vault are of the same denomination) in one
of the following ways:

1. An auction amongst arbitrageurs.
2. Converted every block by the block producer at the final pool price. If the

block producer must buy η
2 tokens to convert the vault, the block producer

must simultaneously sell η
2 futures which replicate the price of the token to

the pool. These futures are then settled periodically, either by
(a) Auctioning the η

2 tokens corresponding to the futures amongst competing
arbitrageurs with the protocol paying/collecting the difference.

(b) The use of a decentralized price oracle. In this paper, we consider the
use of the settlement price of an on-chain frequent batch auction, such
as that of [13], which is proven to settle at the external market price in
expectancy.

Importantly, these auctions are not required for protocol liveness, and can be
arbitrarily slow to settle. We prove that all of these conversion processes have 0
expectancy for the block producer or Diamond pool, and prove that the LVR of a
Diamond pool is (1−β) of the corresponding CFMM pool. Our implementation
of Diamond isolates LVR arbitrageurs from normal users, using the fact that
arbitrageurs are always bidding to capture LVR. Specifically, if an LVR oppor-
tunity exists at the start of the block, an arbitrageur will bid for it in addition to
ordering normal user transactions, meaning the proceeds of a block producer are
at least the realized LVR, with LVR corresponding to the difference between the
start- and end-states of an AMM in a given block. This ensures the protections
of Diamond can be provided in practice while providing at least the same trading
experience for normal users. Non-arbitrageur orders in a Diamond pool can be
performed identically to orders in the corresponding CFMM pool after an arbi-
trageur has accepted to interact with the pool through a special arbitrageur-only
transaction. Although this means user orders may remain exposed to the front-
running, back-running and sandwich attacks of corresponding CFMMs, the LVR
retention of Diamond pools should result in improved liquidity and reduced fees
for users.

We discuss practical considerations for implementing Diamond, including de-
creasing the LVR rebate parameter, potentially to 0, during periods of protocol

4 McMenamin, Daza and Mazorra

inactivity until transactions are processed, after which the parameter should be
reset. This ensures the protocol continues to process user transactions, which
becomes necessary when arbitrageurs are not actively extracting LVR. If arbi-
trageurs are not arbitraging the pool for even small LVR rebate parameters, it
makes sense to allow transactions to be processed as if no LVR was possible.
In this case, Diamond pools perform identically to corresponding CFMM pools.
However, if/when arbitrageurs begin to compete for LVR, we expect LVR rebate
parameters to remain high.

We present a series of experiments in Section 7 which isolate the benefits
of Diamond. We compare a Diamond pool to its corresponding Uniswap V2
pool, as well as the strategy of holding the starting reserves of both tokens,
demonstrating the power of Diamond. We isolate the effects of price volatility,
LVR rebate parameter, pool fees, and pool duration on a Diamond pool. Our
experiments provide convincing evidence that the relative value of a Diamond
pool to its corresponding Uniswap V2 pool is increasing in each of these variables.
These experiments further evidence the limitations of current CFMMs, and the
potential of Diamond.

1.2 Organization of the Paper

Section 2 analyzes previous work related to LVR in AMMs. Section 3 outlines
the terminology used in the paper. Section 4 introduces the Diamond protocol.
Section 5 proves the properties of Diamond. Section 6 describes how to imple-
ment the Diamond protocol, and practical considerations which should be made.
Section 7 provides an analysis Diamond over multiple scenarios and parameters,
including a comparison to various reference strategies. We conclude in Section
8.

2 Related Work

There are many papers on the theory and design of AMMs, with some of the most
important including [2,1,14,3,4]. The only peer-reviewed AMM design claiming
protection against LVR [12] is based on live price oracles. The AMMmust receive
the price of a swap before users can interact with the pool. Such sub-block
time price data requires centralized sources which are prone to manipulation,
or require the active participation of AMM representatives, a contradiction of
the passive nature of AMMs and their liquidity providers. We see this as an
unsatisfactory dependency for DeFi protocols.

Attempts to provide LVR protection without explicit use of oracles either use
predictive fees for all players [8] and/or reduce liquidity for all players through
more complex constant functions [5]. Charging all users higher fees to compen-
sate for arbitrageur profits reduces the utility of the protocol for genuine users,
as does a generalized liquidity reduction. In Diamond, we only reduce liquidity
for arbitrageurs (which can also be seen as an increased arbitrageur-specific fee),

An Automated Market Maker Minimizing Loss-Versus-Rebalancing 5

providing at least the same user experience for typical users as existing AMMs
without LVR protection.

A recent proposed solution to LVR published in a blog-post [10] termedMEV-
capturing AMMs (McAMMs) considers auctioning off the first transaction/series
of transaction in an AMM among arbitrageurs, with auction revenue paid in
some form to the protocol. Two important benefits of Diamond compared to the
proposed McAMMs are the capturing of realized LVR in Diamond as opposed
to predicted LVR in McAMMs, and decentralized access to Diamond compared
to a single point of failure in McAMMs.

In McAMMs, bidders are required to predict upcoming movements in the
AMM. Bidders with large orders to execute over the period (e.g. private price
information, private order flow, etc.) have informational advantages over other
bidders. Knowing the difference between expected LVR excluding this private
information vs. true expected LVR allows the bidder to inflict more LVR on
the AMM than is paid for. As this results in better execution for the winner’s
orders, this may result in more private order flow, which exacerbates this effect.
Diamond extracts a constant percentage of the true LVR, regardless of private in-
formation. McAMMs also centralize (first) access control to the winning bidder.
If this bidder fails to respond or is censored, user access to the protocol is prohib-
ited/more expensive. Diamond is fully decentralized, incentive compatible and
can be programmed to effectively remove LVR in expectancy. Future McAMM
design improvements based on sub-block time auctions are upper-bounded by
the current protection provided by Diamond.

3 Preliminaries

This section introduces the key terminology and definitions needed to understand
LVR, the Diamond protocol, and the proceeding analysis. In this work we are
concerned with a single swap between token x and token y. We use x and y
subscripts when referring to quantities of the respective tokens. The external
market price of a swap is denoted by ε, while pool prices and price functions are
denoted using a lowercase p and uppercase P respectively. The price of a swap
is quoted as the quantity of token x per token y.

In this work we treat the block producer and an arbitrageur paying for the
right to execute transactions in a block as the same entity. This is because
the the arbitrageur must have full block producer capabilities, and vice versa,
with the payoff for the block producer equal to that of an arbitrageur under
arbitrageur competition. For consistency, and to emphasize the arbitrage that is
taking place in extracting LVR, we predominantly use the arbitrageur naming
convention. That being said, it is important to remember that this arbitrageur
has exclusive access to building the sub-block of Diamond transactions. Where
necessary, we reiterate that it is the block producer who control the per-block
set of Diamond transactions, and as such, the state of the Diamond protocol.

6 McMenamin, Daza and Mazorra

3.1 Constant Function Market Makers

A CFMM is characterized by reserves (Rx, Ry) ∈ R2
+ which describes the total

amount of each token in the pool. The price of the pool is given by pool price
function PPF : R2

+ → R taking as input pool reserves (Rx, Ry). PPF has the
following properties:

(a) PPF is everywhere differentiable, with
∂PPF

∂Rx
> 0,

∂PPF

∂Ry
< 0.

(b) lim
Rx→0

PPF = 0, lim
Rx→∞

PPF = ∞, lim
Ry→0

PPF = ∞, lim
Ry→∞

PPF = 0.

(c) If PPF(Rx, Ry) = p, then PPF(Rx + cp,Ry + c) = p, ∀c > 0.
(1)

These are typical properties of price functions. Property (a) states the price
of y is increasing in the number of x tokens in the pool and decreasing in the
number of y tokens. Property (b) can be interpreted as any pool price value is
reachable for a fixed Rx, by changing the reserves of Ry, and vice versa. Property
(c) states that adding reserves to a pool in a ratio corresponding to the current
price of the pool does not change the price of the pool. These properties trivially
hold for the Uniswap V2 price function of Rx

Ry
, and importantly allow us to

generalize our results to a wider class of CFMMs.
For a CFMM, the feasible set of reserves C is described by:

C = {(Rx, Ry) ∈ R2
+ : PIF(Rx, Ry) = k} (2)

where PIF : R2
+ → R is the pool invariant and k ∈ R is a constant. The pool is

defined by a smart contract which allows any player to move the pool reserves
from the current reserves (Rx,0, Ry,0) ∈ C to any other reserves (Rx,1, Ry,1) ∈ C
if and only if the player provides the difference (Rx,1 −Rx,0, Ry,1 −Ry,0).

Whenever an arbitrageur interacts with the pool, say at time t with reserves
(Rx,t, Ry,t), we assume as in [14] that the arbitrageur maximizes their profits by
exploiting the difference between PPF(Rx,t, Ry,t) and the external market price
at time t, denoted εt. To reason about this movement, we consider a pool value
function V : R+ → R defined by the optimization problem:

V (εt) = min
(Rx,Ry)∈R2

+

εtRy +Rx, such that PIF(Rx, Ry) = k (3)

Given an arbitrageur interacts with the pool with external market price εt, the
arbitrageur moves the pool reserves to the (Rx, Ry) satisfying V (εt).

3.2 Loss-Versus-Rebalancing

LVR, and its prevention in AMMs is the primary focus of this paper. The formal-
ization of LVR [14] has helped to illuminate one of the main costs of providing
liquidity in CFMMs. The authors of [14] provide various synonyms to concep-
tualize LVR. In this paper, we use the opportunity cost of arbitraging the pool

An Automated Market Maker Minimizing Loss-Versus-Rebalancing 7

against the external market price of the swap, which is proven to be equivalent to
LVR in Corollary 1 of [14]. The LVR between two blocks Bt and Bt+1 where the
reserves of the AMM at the end of Bt are (Rx,t, Ry,t) and the external market
price when creating block Bt+1 is εt+1 is:

Rx,t +Ry,tεt+1 − V (εt+1) = (Rx,t −Rx,t+1) + (Ry,t −Ry,t+1)εt+1. (4)

As this is the amount being lost to arbitrageurs by the AMM, this is the quantity
that needs to be minimized in order to provide LVR protection. In Diamond,
this minimization is achieved.

3.3 Auctions

To reason about the incentive compatibility of parts of our protocol, we outline
some basic auction theory results.

First-price-sealed-bid-auction: There is a finite set of players I and a
single object for sale. Each bidder i ∈ I assigns a value of Xi to the object.
Each Xi is a random variable that is independent and identically distributed
on some interval [0, Vmax]. The bidders know its realization xi of Xi. We will
assume that bidders are risk neutral, that they seek to maximize their expected
payoff. Per auction, each player submit a bid bi to the auctioneer. The player
with the highest bid gets the object and pays the amount bid. In case of tie, the
winner of the auction is chosen randomly. Therefore, the utility of a player i ∈ I
is

ui(bi, b−i) =

{
xi−bi
m , if bi = maxi{bi},

0, otherwise

where m = |argmaxi{bi}|. In our protocol, we have an amount of tokens z that
will be auctioned. This object can be exchanged by all players at the external
market price ε. In this scenario, we have the following lemma. Proofs are included
in the Appendix

Lemma 1. Let I be a set of players that can exchange at some market any
amount of tokens x or y at the external market price ε. If an amount z of
token y is auctioned in a first-price auction, then the maximum bid of any Nash
equilibrium is at least zε.

4 Diamond

This section introduces the Diamond protocol. When the core protocol of Sec-
tion 4.2 is run, some amount of tokens are removed from the pool and placed
in a vault. These vault tokens are eventually re-added to the pool through a
conversion protocol. Sections 4.3 and 4.4 detail two conversion protocols which
can be run in conjunction with the core Diamond protocol. Which conversion
protocol to use depends on the priorities of the protocol users, with a discussion
of their trade-offs provided in Section 7, and represented graphically in Figure
2. These trade-offs can be summarized as follows:

8 McMenamin, Daza and Mazorra

– The process of Section 4.3 forces the arbitrageur to immediately re-add the
removed tokens to the Diamond pool, while ensuring the ratio of pool tokens
equals the external market price. This ratio is achieved by simultaneously
requiring the arbitrageur to engage in a futures contract tied to the pool
price, with the arbitrageur taking the opposite side of the contract. These
futures offset any incentive to manipulate the ratio of tokens. This results
in a higher variance of portfolio value for both the Diamond pool and the
arbitrageur. In return for this risk, this process ensures the pool liquidity is
strictly increasing in expectancy every block, with the excess value (reduced
LVR) retained by the vault immediately re-added to the pool. This process
can be used in conjunction with a decentralized price oracle to ensure the
only required participation of arbitrageurs is in arbitraging the pool (see
process 2 in Section 4.3). It should be noted that these futures contracts have
collateral requirements for the arbitrageur, which has additional opportunity
costs for the arbitrageur.

– The process in Section 4.4 converts the vault tokens periodically. This can
result in a large vault balance accruing between conversions, with this value
taken from the pool. This means the quality (depth) of liquidity is decreasing
between conversions, increasing the impact of orders. From the AMM’s per-
spective, this process incurs less variance in the total value of tokens owned
by the pool (see Figure 2), and involves a more straightforward and well-
studied use of an auction (compared to a trusted decentralized oracle). There
is also no collateral requirement for the arbitrageur outside of the block in
which the arbitrage occurs. 4

Section 5 formalizes the properties of Diamond, culminating in Theorem 1,
which states that Diamond can be parameterized to reduce LVR arbitrarily close
to 0. It is important to note that Diamond is not a CFMM, but the rules for
adjusting pool reserves are dependent on a CFMM.

4.1 Model Assumptions

We outline here the assumptions used when reasoning about Diamond. In keep-
ing with the seminal analysis of [14], we borrow a subset of the assumptions
therein, providing here a somewhat more generalized model.

1. External market prices follow a martingale process.
2. The risk-free rate is 0.
3. There exists a population of arbitrageurs able to frictionlessly trade at the

external market price, who continuously monitor and periodically interact
with AMM pools.

4. An optimal solution (R∗
x, R

∗
y) to Equation 3 exists for every external market

price ε ≥ 0.

4 As the arbitrageur and block producer are interchangeable from Diamond’s perspec-
tive, we see the requirement for the block producer/arbitrageur to provide collateral
in a block controlled by the block producer as having negligible cost.

An Automated Market Maker Minimizing Loss-Versus-Rebalancing 9

The use of futures contracts in one version of the Diamond protocol makes
the risk-free rate an important consideration for implementations of Diamond.
If the risk free rate is not 0, the profit or loss related to owning token futures
vs. physical tokens must be considered. Analysis of a non-zero risk-free rate is
beyond the scope of the thesis.

4.2 Core Protocol

We now describe the core Diamond protocol, which is run by all Diamond varia-
tions. A Diamond pool Φ is described by reserves (Rx, Ry), a pool pricing func-
tion PPF(), a pool invariant function PIF(), an LVR rebate parameter β ∈ (0, 1),
and conversion frequency τ ∈ N.

We define the corresponding CFMM pool of Φ, denoted CFMM(Φ), as the
CFMM pool with reserves (Rx, Ry) whose feasible set is described by pool in-
variant function PIF() and pool constant k = PIF(Rx, Ry). Conversely, Φ is
the corresponding Diamond pool of CFMM(Φ). It is important to note that the
mapping of Φ to CFMM(Φ) is only used to describe the state transitions of Φ,
with CFMM(Φ) changing every time the Φ pool reserves change.

Consider pool reserves (Rx,0, Ry,0) in Φ at time t = 0 (start of a block), and
an arbitrageur wishing to move the price of Φ at time t = 1 (end of the block)

to p1 =
Rx,1

Ry,1
̸= Rx,0

Ry,0
. In Diamond, to interact with the pool at time t = 0,

the arbitrageur must deposit some amount of collateral, (Cx, Cy) ∈ R2
+. This

is termed the pool unlock transaction. After the pool unlock transaction, the
arbitrageur can then execute arbitrarily many orders (on behalf of themselves or
users) against Φ, exactly as the orders would be executed in CFMM(Φ), as long
as for any intermediate reserve state (Rx,i, Ry,i) after an order, the following
holds:

Cx ≥ β(Rx,0 −Rx,i) and Cy ≥ β(Ry,0 −Ry,i). (5)

For end of block pool reserves (Rx,1, Ry,1), WLOG let Υy = Ry,1 −Ry,0 > 0,
and Υx = Rx,0 − Rx,1 > 0 (the executed orders net bought x from Φ, and net
sold y to Φ). The protocol then removes βΥy tokens from Φ, sending them to the
arbitrageur, and adds βΥx tokens to Φ, taking these tokens from Cx. After this,
it can be seen that PPF(Rx,1 + βΥx, Ry,1 − βΥy) < p1. To ensure the reserves
correspond to a PPF equal to p1, a further υx > 0 tokens are removed such that:

PPF(Rx,1 + βΥx − υx, Ry,1 − βΥy) = p1.
5 (6)

These υx tokens are added to the vault of Φ. Summarizing the transition from
t = 0 to t = 1 from the arbitrageur’s perspective, this is equivalent to:

1. Adding (1− β)Υy tokens to Φ and removing (1− β)Υx tokens from Φ.
2. Adding υx > 0 tokens to the Φ vault from the Φ pool such that PPF(Rx,0 −

(1− β)Υx − υx, Ry,0 + (1− β)Υy) = p1. Note, this is with respect to starting
reserves. 6

5 Achievable as a result of properties(a) and (b) of Equation 1.
6 If Υy > 0 tokens are to be removed from CFMM(Φ) with Υx > 0 tokens to be added
in order to achieve p1, then (1 − β)Υy tokens are removed from Φ and (1 − β)Υx

10 McMenamin, Daza and Mazorra

If only a single arbitrageur order is executed on Φ apart from the pool unlock
transaction, the arbitrageur receives Υx tokens from the order, and must repay
βΥx as a result of the pool unlock transaction. Any other sequence of orders
resulting in a net Υx tokens being removed from Φ is possible, but βΥx tokens
must always be repaid to the pool by the arbitrageur. As the arbitrageur has
full control over which orders are executed, such sequences of orders must be at
least as profitable for the arbitrageur as the single arbitrage order sequence. 7

Vault Rebalance. After the above process, let there be (vx, vy) ∈ R2
+ tokens in

the vault of Φ. If vyε1 > vx, add (vx,
vx
ε1
) tokens into Φ from the vault. Otherwise,

add (vyε1, vy) tokens into Φ from the vault. This is a vault rebalance.
Every τ blocks, after the vault rebalance, the protocol converts half of the

tokens still in the vault of Φ (there can only be one token type in the vault after
a vault rebalance) into the other token in Φ according to one of either conversion
process 1 (Section 4.3) or 2 (Section 4.4). The goal of the conversion processes is
to add the Diamond vault tokens back into the Diamond liquidity pool in a ratio
corresponding to the ε, while preserving the value of the tokens to be added to
the pool.

To understand why half of the tokens are converted, assume WLOG that
there are vx tokens in the vault. Given an external market price ε, vx

2 tokens can
be exchanged for vy = vx

2
1
ε tokens, and vice versa. Both conversion processes are

constructed to ensure the expected revenue of conversion is at least vy = vx
2

1
ε .

Therefore, after conversion, there are at least vx
2 and vy = vx

2
1
ε tokens in the

vault, with
vx
2

vy
= ε. The conversion processes then add the unconverted vx

2

and converted vy tokens back into the Φ pool, with the ratio of these tokens
approximating the external market price. Importantly, these tokens have value
of at least the original vault tokens vx.

4.3 Per-block Conversion vs. Future Contracts

After every arbitrage, the arbitrageur converts η equal to half of the total tokens
in the vault at the pool price pc. Simultaneously, the arbitrageur sells to the pool
η future contracts in the same token denomination at price pc. Given the pool
buys η future contracts at conversion price pc, and the futures settle at price pT ,
the protocol wins η(pT − pc).

These future contracts are settled every τ blocks, with the net profit or
loss being paid in both tokens, such that for a protocol settlement profit of
PnL measured in token x and pool price pT , the arbitrageur pays (sx, sy) with

tokens are added to Φ, with a further υy > 0 removed from Φ and added to the vault
such that PPF(Rx,0 + (1− β)Υx, Ry,0 − (1− β)Υy − υy) = p1.

7 An example of such a sequence is an arbitrage order to the external market price,
followed by a sequence of order pairs, with each pair a user order, followed by an
arbitrageur order back to the external market price. There are arbitrarily many other
such sequences.

An Automated Market Maker Minimizing Loss-Versus-Rebalancing 11

PnL = sx + sypT and sx = sypT . These contracts can be settled in one of the
following (non-exhaustive) ways:

1. Every τ blocks, an auction takes place to buy the offered tokens from the
arbitrageurs who converted the pool at the prices at which the conversions
took place. For a particular offer, a positive bid implies the converter lost/the
pool won to the futures. In this case the converter gives the tokens to the
auction winner, while the pool receives the winning auction bid. A negative
bid implies the converter won/the pool lost to the futures. In this case, the
converter must also give the tokens to the auction winner, while the pool
must pay the absolute value of the winning bid to the auction winner.

2. Every τ blocks, a blockchain-based frequent batch auction takes place in the
swap corresponding to the pool swap. The settlement price of the frequent
batch auction is used as the price at which to settle the futures.

4.4 Periodic Conversion Auction

Every τ blocks, η equal to half of the tokens in the vault are auctioned to all
players in the system, with bids denominated in the other pool token (bids for
x tokens in the vault must be placed in y tokens, and vice versa). For winning
bid b in token x (or token y), the resultant vault quantities described by (sx =
b, sy = η) (or (sx = η, sy = b)) are added to the pool reserves. In this case, unlike
in Section 4.3, there are no restrictions placed on sx

sy
.

5 Diamond Properties

This section outlines the key properties of Diamond. We first prove that both
conversion process have at least 0 expectancy for the protocol.

Lemma 2. Converting the vault every block vs. future contracts has expectancy
of at least 0 for a Diamond pool.

Lemma 3. A periodic conversion auction has expectancy of at least 0 for a
Diamond pool.

Corollary 1. Conversion has expectancy of at least 0 for a Diamond pool.

With these results in hand, we now prove the main result of the paper. That
is, the LVR of a Diamond pool is (1− β) of the corresponding CFMM pool.

Theorem 1. For a CFMM pool CFMM(Φ) with LVR of L > 0, the LVR of Φ,
the corresponding pool in Diamond, has expectancy of at most (1− β)L.

12 McMenamin, Daza and Mazorra

6 Implementation

We now detail an implementation of Diamond. The main focus of our implemen-
tation is ensuring user experience in a Diamond pool is not degraded compared
to the corresponding CFMM pool. To this point, applying a β-discount on ev-
ery Diamond pool trade is not viable. To avoid this, we only consider LVR on
a per-block, and not a per-transaction basis. Given the transaction sequence,
in/exclusion and priority auction capabilities of block producers, block produc-
ers can either capture the block LVR of a Diamond pool themselves, or auction
this right among arbitrageurs.

From an implementation standpoint, who captures the LVR is not important,
whether it is the producer themselves, or an arbitrageur who won an auction to
bundle the transactions for inclusion in Diamond. As mentioned already, we
assume these are the same entity, and as such it is the arbitrageur who must
repay the LVR of a block. To enforce this, for a Diamond pool, we check the
pool state in the first pool transaction each block and take escrow from the
arbitrageur. This escrow is be used in part to pay the realized LVR of the block
back to the pool. The first pool transaction also returns the collateral of the
previous arbitrageur, minus the realized LVR (computable from the difference
between the current pool state and the pool state at the beginning of the previous
block). To ensure the collateral covers the realized LVR, each proceeding pool
transaction verifies that the LVR implied by the pool state as a result of the
transaction can be repaid by the deposited collateral.

We can reduce these collateral restrictions by allowing the arbitrageur to
bundle transactions based on a coincidence-of-wants (CoWs) (matching buy and
sell orders, as is done in CoWSwap [7]). This can effectively reduce the required
collateral of the arbitrageur to 0. Given the assumed oversight capabilities of
arbitrageurs is the same as that of block producers, we do not see collateral
lock-up intra-block as a restriction, although solutions like CoWs are viable
alternatives.

Our implementation is based on the following two assumptions:

1. An arbitrageur always sets the final state of a pool to the state which max-
imizes the LVR.

2. The block producer realizes net profits of at least the LVR corresponding
to the final state of the pool, either as the arbitrageur themselves, or by
auctioning the right to arbitrage amongst a set of competing arbitrageurs.

If the final price of the block is not the price maximizing LVR, the arbitrageur
has ignored an arbitrage opportunity. The arbitrageur can always ignore non-
arbitrageur transactions to realize the LVR, therefore, any additional included
transactions must result in greater or equal utility for the arbitrageur than the
LVR.

6.1 Core Protocol

The first transaction interacting with a Diamond pool Φ in every block is the
pool unlock transaction, which deposits some collateral, (Cx, Cy) ∈ R2

+. Only

An Automated Market Maker Minimizing Loss-Versus-Rebalancing 13

one pool unlock transaction is executed per pool per block. Every proceeding
user order interacting with Φ in the block first verifies that the implied pool
move stays within the bounds of Equation 5. Non pool-unlock transactions are
executed as they would be in the corresponding CFMM pool CFMM(Φ) (without
a β discount on the amount of tokens that can be removed). These transactions
are executed at prices implied by pushing along the CFMM(Φ) curve from the
previous state, and as such, the ordering of transactions intra-block affects the
execution price. If a Diamond transaction implies a move outside of the collateral
bounds, it is not executed.

The next time a pool unlock transaction is submitted (in a proceeding block),
given the final price of the preceding block was p1, the actual amount of token
x or y required to be added to the pool and vault (the βΥ and υ of the required
token, as derived earlier in the section) is taken from the deposited escrow, with
the remainder returned to the arbitrageur who deposited those tokens.

Remark 1. Setting the LVR rebate parameter too high can result in protocol
censorship and/or liveness issues as certain arbitrageurs may not be equipped
to frictionlessly arbitrage, and as such, repay the implied LVR to the protocol.
To counteract this, the LVR rebate parameter should be reduced every block
in which no transactions take place. As arbitrageurs are competing through the
block producers to extract LVR from the pool, the LVR rebate parameter will
eventually become low enough for block producers to include Diamond transac-
tions. After transactions have been executed, the LVR rebate parameter should
be reset to its initial value. Rigorous testing of initial values and decay curves
are required for any choice of rebate parameter.

6.2 Conversion Protocols

The described implementations in this section assume the existence of a decen-
tralized on-chain auction.8

Per-block Conversion vs. Futures Given per-block conversion (Section 4.3),
further deposits from the arbitrageur are required to cover the token require-
ments of the conversion and collateralizing the futures. The conversions for a
pool Φ resulting from transactions in a block take place in the next block a pool
unlock transaction for Φ is called. Given a maximum expected percentage move
over τ blocks of σT , and a conversion of λy tokens at price p, the arbitrageur
collateral must be in quantities πx and πy such that if the arbitrageur is long
the futures:

1. πx + πy
p

1 + σT
≥ λy(p−

p

1 + σT
), and 2.

πx

πy
=

p

1 + σT
. (7)

8 First-price sealed-bid auctions can be implemented using a commit-reveal protocol.
An example of such a protocol involves bidders hashing bids, committing these to
the blockchain along with an over-collaterlization of the bid, with bids revealed when
all bids have been committed.

14 McMenamin, Daza and Mazorra

If the arbitrageur is short the futures it must be that:

1. πx + πyp(1 + σT) ≥ λypσT , and 2.
πx

πy
= p(1 + σT). (8)

The first requirement in both statements is for the arbitrageur’s collateral to be
worth more than the maximum expected loss. The second requirement states
the collateral must be in the ratio of the pool for the maximum expected loss
(which also ensures it is in the ratio of the pool for any other loss less than the
maximum expected loss). This second requirement ensures the collateral can be
added back into the pool when the futures are settled.

At settlement, if the futures settle in-the-money for the arbitrageur, tokens
are removed from the pool in the ratio specified by the settlement price with
total value equal to the loss incurred by the pool, and paid to the arbitrageur.
If the futures settle out-of-the-money, tokens are added to the pool from the
arbitrageur’s collateral in the ratio specified by the settlement price with total
value equal to the loss incurred by the arbitrageur. The remaining collateral is
returned to the arbitrageur. The pool constant is adjusted to reflect the new
balances.

Remark 2. As converting the vault does not affect pool availability, the auctions
for converting the vault can be run sufficiently slowly so as to eliminate the risk
of block producer censorship of the auction. We choose to not remove tokens
from the pool to collateralize the futures as this reduces the available liquidity
within the pool, which we see as an unnecessary reduction in benefit to users
(which would likely translate to lower transaction fee revenue for the pool). For
high volatility token pairs, τ should be chosen sufficiently small so as to not to
risk pool liquidation.

If Diamond with conversion versus futures is run on a blockchain where the
block producer is able to produce multiple blocks consecutively, this can have
an adverse effect on incentives. Every time the vault is converted and tokens are
re-added to the pool, the liquidity of the pool increases. A block producer with
control over multiple blocks can move the pool price some of the way towards
the maximal LVR price, convert the vault tokens (which has 0 expectancy from
Lemma 2), increase the liquidity of the pool, then move the pool towards the
maximal LVR price again in the proceeding block. This process results in a
slight increase in value being extracted from the pool in expectancy compared to
moving the pool price immediately to the price corresponding to maximal LVR.
Although the effect on incentives is small, re-adding tokens from a conversion
slowly/keeping the pool constant unchanged mitigates/removes this benefit for
such block producers.

Periodic Conversion Auction Every τ blocks, η equal to half the tokens
in the vault are auctioned off, with bids denominated in the other token. The
winning bidder receives these η tokens. The winning bid, and the remaining η
tokens in the vault, are re-added to the pool.

An Automated Market Maker Minimizing Loss-Versus-Rebalancing 15

Fig. 2 Fig. 3

7 Experimental Analysis

This section presents the results of several experiments, which can be reproduced
using the following public repository [9]. The results provide further evidence of
the performance potential of a Diamond pool versus various benchmarks. These
experiments isolate the effect that different fees, conversion frequencies, daily
price moves, LVR rebate parameters, and days in operation have on a Diamond
pool. Each graph represents a series of random-walk simulations which were run,
unless otherwise stated, with base parameters of:

– LVR rebate parameter: 0.95.
– Average daily price move: 5%.
– Conversion frequency: Once per day.
– Blocks per day: 10.
– Days per simulation: 365.
– Number of simulations per variable: 500.

Parameter Intuition. For a Diamond pool to be deployed, we expect the
existence of at least one tradeable and liquid external market price. As such,
many competing arbitrageurs should exist, keeping the LVR parameter close to
1. 5% is a typical daily move for our chosen token pair. Given a daily move of 5%,
the number of blocks per day is not important, as the per block expected moves
can be adjusted given the daily expected move. Given a simulator constraint of
5,000 moves per simulation, we chose 10 blocks per day for a year, as opposed
to simulating Ethereum over 5,000 blocks (less than 1 day’s worth of blocks), as
the benefits of Diamond are more visible over a year than a day.

Each graph plots the final value of the Diamond Periodic Conversion Auction
pool (unless otherwise stated) relative to the final value of the corresponding
Uniswap V2 pool. The starting reserve values are $100m USDC and 76, 336 ETH,
for an ETH price of $1, 310, the approximate price and pool size of the Uniswap
ETH/USDC pool at the time of simulation [17]. Figure 2 compares four strategies
over the same random walks. Periodic Conversion Auction and Conversion vs.
Futures replicate the Diamond protocol given the respective conversion strategies

16 McMenamin, Daza and Mazorra

Fig. 4 Fig. 5

(see Section 4). HODL (Hold-On-for-Dear-Life), measures the performance of
holding the starting reserves until the end of the simulation. The final pool value
of these three strategies are then taken as a fraction of the corresponding CFMM
pool following that same random walk. Immediately we can see all three of these
strategies outperform the CFMM strategy in all simulations (as a fraction of the
CFMM pool value, all other strategies are greater than 1), except at the initial
price of 1310, where HODL and CFMM are equal, as expected.

The Diamond pools outperform HODL in a range around the starting price,
as Diamond pools initially retain the tokens increasing in value (selling them
eventually), which performs better than HODL when the price reverts. HODL
performs better in tail scenarios as all other protocols consistently sell the token
increasing in value on these paths. Note Periodic Conversion slightly outperforms
Conversion vs. Futures when finishing close to the initial price, while slightly
underperforming at the tails. This is because of the futures exposure. Although
these futures have no expectancy for the protocol, they increase the variance
of the Conversion vs. Futures strategy, outperforming when price changes have
momentum, while underperforming when price changes revert.

Figure 3 identifies a positive relationship between the volatility of the price
and the out-performance of the Diamond pool over its corresponding CFMM
pool. This is in line with the results of [14] where it is proved LVR grows quadrat-
ically in volatility. Figure 4 demonstrates that, as expected, a higher LVR rebate
parameter β retains more value for the Diamond pool.

Figure 5 shows that higher conversion frequency (1 day) has less variance for
the pool value (in this experiment once per day conversion has mean 1.011234
and standard deviation 0.000776 while once per week conversion has mean
1.011210 and standard deviation 0.002233). This highlights an important trade-
off for protocol deployment and LPs. Although lower variance corresponding to
more frequent conversion auctions is desirable, more frequent auctions may cen-
tralize the players participating in the auctions due to technology requirements.
This would weaken the competition guarantees needed to ensure that the auction
settles at the true price in expectancy.

An Automated Market Maker Minimizing Loss-Versus-Rebalancing 17

Fig. 6 Fig. 7

Figure 6 compares Diamond to the CFMM pool under the specified fee struc-
tures (data-points corresponding to a particular fee apply the fee to both the
Uniswap pool and the Diamond pool) assuming 10% of the total value locked
in each pool trades daily. The compounding effect of Diamond’s LVR rebates
with the fee income every block result in a significant out-performance of the
Diamond protocol as fees increase. This observation implies that given the LVR
protection provided by Diamond, protocol fees can be reduced significantly for
users, providing a further catalyst for a DeFi revival. Figure 7 demonstrates that
the longer Diamond is run, the greater the out-performance of the Diamond pool
versus its corresponding CFMM pool.

8 Conclusion

We present Diamond, an AMM protocol which provably protects against LVR.
The described implementation of Diamond stands as a generic template to ad-
dress LVR in any CFMM. The experimental results of Section 7 provide strong
evidence in support of the LVR protection of Diamond, complementing the for-
mal results of Section 5. It is likely that block producers will be required to
charge certain users more transaction fees to participate in Diamond pools to
compensate for this LVR rebate, with informed users being charged more for
block inclusion than uninformed users. As some or all of these proceeds are paid
to the pool with these proceeds coming from informed users, we see this as a
desirable outcome.

9 Acknowledgements

We thank the reviewers for their detailed and insightful reviews, as well as Ste-
fanos Leonardos for his guidance in preparing this camera-ready version. This
paper is part of a project that has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement num-
ber 814284, and is supported by the AEI-PID2021-128521OB-I00 grant of the
Spanish Ministry of Science and Innovation.

18 McMenamin, Daza and Mazorra

References

1. Adams, H., Keefer, R., Salem, M., Zinsmeister, N., Robinson, D.: Uniswap V3 Core
(2021), https://uniswap.org/whitepaper-v3.pdf

2. Adams, H., Zinsmeister, N., Robinson, D.: Uniswap V2 Core (2020), https://
uniswap.org/whitepaper.pdf

3. Bartoletti, M., Chiang, J.H.y., Lluch-Lafuente, A.: A Theory of Automated Market
Makers in DeFi. In: Damiani, F., Dardha, O. (eds.) Coordination Models and
Languages. pp. 168–187. Springer International Publishing, Cham (2021)

4. Bartoletti, M., Chiang, J.H.y., Lluch-Lafuente, A.: Maximizing Extractable Value
from Automated Market Makers. In: Financial Cryptography and Data Security.
Springer Berlin Heidelberg, Berlin, Heidelberg (2022)

5. Bichuch, M., Feinstein, Z.: Axioms for Automated Market Makers: A Mathematical
Framework in FinTech and Decentralized Finance. https://arxiv.org/abs/2210.
01227 (2022), accessed: 10/02/2023

6. Capponi, A., Jia, R.: The Adoption of Blockchain-based Decentralized Exchanges.
https://arxiv.org/abs/2103.08842 (2021), accessed: 10/02/2023

7. CoW Protocol: https://docs.cow.fi/, accessed: 11/10/2022
8. Evans, A., Angeris, G., Chitra, T.: Optimal Fees for Geometric Mean Market

Makers. In: Bernhard, M., Bracciali, A., Gudgeon, L., Haines, T., Klages-Mundt,
A., Matsuo, S., Perez, D., Sala, M., Werner, S. (eds.) Financial Cryptography
and Data Security. FC 2021 International Workshops. pp. 65–79. Springer Berlin
Heidelberg, Berlin, Heidelberg (2021)

9. Github: https://github.com/The-CTra1n/LVR (2022)
10. Josojo: MEV capturing AMMs. https://ethresear.ch/t/

mev-capturing-amm-mcamm/13336 (2022), accessed: 10/02/2023
11. Krishna, V.: Auction theory. Academic press (2009)
12. Krishnamachari, B., Feng, Q., Grippo, E.: Dynamic Automated Market Mak-

ers for Decentralized Cryptocurrency Exchange. In: 2021 IEEE Interna-
tional Conference on Blockchain and Cryptocurrency (ICBC). pp. 1–2 (2021).
https://doi.org/10.1109/ICBC51069.2021.9461100

13. McMenamin, C., Daza, V., Fitzi, M., O’Donoghue, P.: FairTraDEX: A De-
centralised Exchange Preventing Value Extraction. In: Proceedings of the
2022 ACM CCS Workshop on Decentralized Finance and Security. p. 39–46.
DeFi’22, Association for Computing Machinery, New York, NY, USA (2022).
https://doi.org/10.1145/3560832.3563439, https://doi.org/10.1145/3560832.

3563439
14. Milionis, J., Moallemi, C.C., Roughgarden, T., Zhang, A.L.: Quantifying Loss in

Automated Market Makers. In: Zhang, F., McCorry, P. (eds.) Proceedings of the
2022 ACM CCS Workshop on Decentralized Finance and Security. ACM (2022)

15. Park, A.: The Conceptual Flaws of Constant Product Automated Market Making.
ERN: Other Microeconomics: General Equilibrium & Disequilibrium Models of
Financial Markets (2021)

16. @thiccythot: https://dune.com/thiccythot/uniswap-markouts, accessed:
10/02/2023

17. Uniswap: https://app.uniswap.org/, accessed: 11/10/2022

A Proofs

Lemma 1. Let I be a set of players that can exchange at some market any
amount of tokens x or y at the external market price ε. If an amount z of

https://uniswap.org/whitepaper-v3.pdf
https://uniswap.org/whitepaper.pdf
https://uniswap.org/whitepaper.pdf
https://arxiv.org/abs/2210.01227
https://arxiv.org/abs/2210.01227
https://arxiv.org/abs/2103.08842
https://docs.cow.fi/
https://github.com/The-CTra1n/LVR
https://ethresear.ch/t/mev-capturing-amm-mcamm/13336
https://ethresear.ch/t/mev-capturing-amm-mcamm/13336
https://doi.org/10.1109/ICBC51069.2021.9461100
https://doi.org/10.1145/3560832.3563439
https://doi.org/10.1145/3560832.3563439
https://doi.org/10.1145/3560832.3563439
https://dune.com/thiccythot/uniswap-markouts
https://app.uniswap.org/

An Automated Market Maker Minimizing Loss-Versus-Rebalancing 19

token y is auctioned in a first-price auction, then the maximum bid of any Nash
equilibrium is at least zε.

Proof. By construction, we have that the support of Xi is lower bounded by zε.
Therefore, in a second-price auction, in equilibrium, each player will bid at least,
zε. Using the revenue equivalence theorem [11], we deduce that the revenue of
the seller is at least zε obtaining the result.

Lemma 2. Converting the vault every block vs. future contracts has expectancy
of at least 0 for a Diamond pool.

Proof. Consider a conversion of η tokens which takes place at time 0. Let the
conversion be done at some price pc, while the external market price is ε0. WLOG
let the protocol be selling η y tokens in the conversion, and as such, buying η
y token futures at price pc. The token sells have expectancy η(pc − ε0). For the
strategy to have at least 0 expectancy, we need the futures settlement to have
expectancy of at least η(ε0 − pc). In Section 4.3, two versions of this strategy
were outlined. We consider both here. In both sub-proofs, we use the assumption
that the risk-free rate is 0, which coupled with our martingale assumption for
ε means the external market price at time t is such that E(εt) = ε0. We now
consider the two options for settling futures outlined in Section 4.3

Option 1: Settle futures by auctioning tokens at the original con-
verted price. The arbitrageur who converted tokens for the pool at price pc
must auction off the tokens at price pc. Let the auction happen at time t, with
external market price at that time of εt. Notice that what is actually being sold
is the right, and obligation, to buy η tokens at price pc. This has value η(εt−pc),
which can be negative. As negative bids are paid to the auction winner by the
protocol, and positive bids are paid to the protocol, we are able to apply Lemma
1. As such, the winning bid is at least η(εt − pc), which has expectancy of at
least

E(η(εt − pc)) = η(E(εt)− pc) = η(ε0 − pc). (9)

Thus the expectancy of owning the future for the protocol is at least η(ε0 − pc),
as required.

Option 2: Settle futures using frequent batch auction settlement
price. For a swap with external market price εt at time t, a batch auction in
this swap settles at εt in expectancy (Theorem 5.1 in [13]). Thus the futures
owned by the protocol have expectancy

E(η(εt − pc)) = η(E(εt)− pc) = η(ε0 − pc). (10)

Lemma 3. A periodic conversion auction has expectancy of at least 0 for a
Diamond pool.

Proof. Consider a Diamond pool Φ with vault containing 2η tokens. WLOG let
these be of token y. Therefore the pool must sell η tokens at the external market
price to balance the vault. Let the conversion auction accept bids at time t, at
which point the external market price is εt. For the auction to have expectancy

20 McMenamin, Daza and Mazorra

of at least 0, we require the winning bid to be at least ηεt. The result follows
from Lemma 1.

Theorem 1. For a CFMM pool CFMM(Φ) with LVR of L > 0, the LVR of Φ,
the corresponding pool in Diamond, has expectancy of at most (1− β)L.

Proof. To see this, we first know that for CFMM(Φ) at time t with reserves
(Rx,t, Ry,t), LVR corresponds to the optimal solution (R∗

x,t+1, R
∗
y,t+1) with ex-

ternal market price εt+1 which maximizes:

(Rx,t+1 −Rx,t) + (Ry,t+1 −Ry,t)εt+1. (11)

Let this quantity be

L = (R∗
x,t+1 −Rx,t) + (R∗

y,t+1 −Ry,t)εt+1. (12)

In Diamond, a player trying to move the reserves of Φ to (R′
x,t+1, R

′
y,t+1) only

receives (1 − β)(R′
x,t+1 − Rx,t) while giving (1 − β)(R′

y,t+1 − Ry,t) to Φ. Thus,
an arbitrageur wants to find the values of (R′

x,t+1, R
′
y,t+1) that maximize:

(1− β)(R′
x,t+1 −Rx,t) + (1− β)(R′

y,t+1 −Ry,t)εt+1 + E(conversion). (13)

where E(conversion) is the per-block amortized expectancy of the conversion
operation for the arbitrageurs. From Lemma 1, we know E(conversion) ≥ 0 for
Φ. This implies the arbitrageur’s max gain is less than:

(1− β)(R′
x,t+1 −Rx,t) + (1− β)(R′

y,t+1 −Ry,t)εt+1, (14)

for the (R′
x,t+1, R

′
y,t+1) maximizing Equation 13. From Equation 12, we know

this has a maximum at (R′
x,t+1, R

′
y,t+1) = (R∗

x,t+1, R
∗
y,t+1). Therefore, the LVR

of Φ is at most:

(1− β)((R∗
x,t+1 −Rx,t) + (R∗

y,t+1 −Ry,t)εt+1) = (1− β)L. (15)

	An Automated Market Maker Minimizing Loss-Versus-Rebalancing

