2403.08430v1 [cs.SE] 13 Mar 2024

arxXiv

Search-based Optimisation of LLM Learning
Shots for Story Point Estimation

Vali Tawosi!, Salwa Alamir!, and Xiaomo Liu?

! J.P.Morgan AI Research, London, UK
2 J.P.Morgan AI Research, New York, USA
{vali.tawosi,salwa.alamir,xiaomo.liu}@jpmorgan.com

Abstract. One of the ways Large Language Models (LLMs) are used to
perform machine learning tasks is to provide them with a few examples
before asking them to produce a prediction. This is a meta-learning pro-
cess known as few-shot learning. In this paper, we use available Search-
Based methods to optimise the number and combination of examples
that can improve an LLM’s estimation performance, when it is used to
estimate story points for new agile tasks. Our preliminary results show
that our SBSE technique improves the estimation performance of the
LLM by 59.34% on average (in terms of mean absolute error of the esti-
mation) over three datasets against a zero-shot setting.

Keywords: Search-Based Software Effort Estimation - Large Language
Model - Few-shot Learning - Multi-objective Optimisation

1 Introduction

Several studies proposed Al-based approaches to estimate the effort required
to complete a user story in agile software development. The state-of-the-art
uses deep-learning methods, leveraging the semantic similarity of the current
user story to the previously estimated ones. However, the estimation perfor-
mance of these methods is still inferior to baselines [9], which incites further
research to find more effective models. Recent advances with Large Language
Models (LLMs) demonstrated several emergent abilities including Natural Lan-
guage Understanding (NLU) at a higher level than that attained by smaller
language models [5]. In light of these advances, we investigated the ability of
such LLMs to estimate story points for software tasksﬂ

Problem: During these investigations, we realised that few-shot learning,
in which the LLM is provided with a few sample tasks with their estimated
story points, can affect the estimation accuracy of the LLM to better or worse,
depending on the samples used. On the other hand, including many samples in
the prompt is not feasible (because of the prompt length limitation issues), nor
is efficient (because of the cost of a long prompt, amongst other reasons).

Therefore, we investigated the idea of using SBSE techniques to optimise the
shots (i.e., the set of tasks sampled from the training set) in order to improve the

3 User stories, software tasks, and issues are used interchangeably in this paper.

2 V. Tawosi et al.

LLM’s estimation accuracy. To this end, we employ an uncertainty-aware multi-
objective software effort estimation method called CoGEE (Confidence Guided
Effort Estimation) [I0]. We apply our proposed approach to three previously
used datasets of agile software tasks, to demonstrate how effective search-based
optimisation of LLM learning shots is for story point estimation. To the best
of our knowledge, this is the first study using an SBSE approach to optimise
learning shots for an LLM to estimate software effort.

2 Proposed Approach

We adopt CoGEE, a bi-objective software development effort estimation algo-
rithm [I0], which is originally proposed to optimise regression-based effort esti-
mation models by minimising (i) the Sum of Absolute Error (SAE) of predic-
tions, and (ii) the Confidence Interval (CI) of the error distribution. Instead of
a regression-based model, we use CoGEE to optimise the set of examples that
help an LLM achieve better estimations in a few-shot learning scenario. Thus,
we define and optimise for three objectives. Two are inherited from CoGEE (i.e.,
SAE and CI). The third, added in this study, minimises the number of examples
provided to the LLM. It helps reduce the number of tokens per prompt, hence,
reducing the cost of inference using an LLM [I], and avoiding prompt length
limitation issues [5]. Below is how we calculate each of the three fitness values.

1) Sum of Absolute Errors (SAE) is the sum of the distances between
the actual story point values from the estimated values: SAE = >"" | |a; — e/,
where n is the number of user stories in the test set, a; is the actual story point
value, and e; is the estimated value for the i*" issue.

2) Confidence Interval (CI) is defined in Equation (), where the fraction
is the sample standard deviation of the distribution of the absolute errors with
n being the size of the sample, and ¢(p, dof) is the quantile function (Equation
which returns a threshold value x below which random draws from the given
cumulative distribution function would fall p percent of the times [4].

OT = g(p. dof) x Std(AbSO:L\/gE”OT@ 0
b(p, dof) = inf{x € R: p < F(z,dof)} @)

For a probability 0 < p < 1, F(x,dof) is the probability density function of a
t-distribution function, which is a function of z and dof (i.e., degree of freedom)
[3]. Confidence intervals are calculated so that this percentage is 95%. The degree
of freedom, dof, depends on the number of parameters we are estimating. For
an n sized sample, dof = n — k, where k is the number of parameters to be
estimated (here k = 1).

3) Number of Shots (V) is the number of sample user stories from the
training set provided to the LLM in a few-shot setting: N = |E|, where F is the
set of shots. Note that E can be empty, leading to a zero-shot prompt.

Search-based Optimisation of LLM Learning Shots for SP Estimation 3

2.1 Computational Search

We use a multi-objective genetic evolutionary algorithm for optimisation and
implement it using pymoo library in Python. Below is the configuration we used.

Problem Representation. As we are looking for a (near)optimal subset of
the training set to use as learning shots, it is natural to define the chromosome as
the sequence of indexes from the training set, with each example index being a
single gene. We allow for dynamic-length chromosomes with a maximum number
of eight genes in the initial population.

Evolutionary Operators. A modified single-point crossover is used, which
can produce zero-length offspring, as well as offspring with a length longer than
eight. Specifically, we randomly select an independent breakpoint for each of the
parents a and b and append the first block from parent a to the second block from
parent b, and vice versa. Mutation uses three operations: (i) replace a gene with a
new one (randomly sampled from the training set) with a 50% chance, (ii) remove
a randomly selected gene with a 25% chance, and (iii) append a random new gene
to the chromosome with a 25% chance. Both cross-over and mutation operations
are controlled to avoid introducing duplicate genes into the chromosome. The
mutation and crossover rates are set to 0.8 and 0.2, respectively.

Evolutionary Algorithm. We use NSGA-II |2], a popular multi-objective
evolutionary algorithm for optimisation. We ran the optimisation with a pop-
ulation of 50 individuals for 20 generations. These numbers are lower than the
usual configuration used for evolutionary algorithms. We justify this experimen-
tal design choice by the fact that evaluation of each individual is too expensive
when it comes to multiple inferences with an LLM (note that for each individual
the LLM has to estimate all the user stories in the test set). Nevertheless, we use
small parameters to demonstrate the feasibility of the idea and call for extended
research on the topic from the SBSE community.

2.2 Estimation Model (Large Language Model)

We use GPT-4 API from OpenAl to do the story point estimation. Specifically,
we use the test-gpt4 engine, with temperature=0.0 to limit non-deterministic
responses. Note that according to Ouyang et al. [6] this does not eliminate the
risk of non-deterministic response, but minimises it. The rest of the parameters
are set to their default values.

Prompting the LLM. A common challenge with LLMs is that the output
is in the form of natural text. Therefore, to use its output in a pipeline (such
as ours, where the estimation needs to be extracted from the LLM output to
compute the fitness values), we need to design the prompt such that the required
post-processing is minimised. Hence, we used the prompt template provided in
Fig. [[] The output usually is in the form of a scalar value, or a scalar value
followed by ‘story points’ (or a similar text). We used regular expressions to
extract the estimated value from the LLM output. It is worth mentioning that
we only experimented with GPT-4 as initial experiments with other models with
smaller number of parameters yielded much less deterministic output.

4 V. Tawosi et al.

input < exzample issues| |, target_issue

prompt = “You are asked to estimate effort for the user story given in <>.
Use {list of SP values used in the project} as estimated value.”

if len(example_issues)>0:
prompt += “A few example user stories from the same project with their estimated
effort are given in the following:”
for each example in example issues:
prompt += example[text] + “. 7 + example[story points| + « Story Points.”

prompt += “Estimate the following user story and generate the output as a single scalar
number only, equal to the estimated story point value.”
<” + target_issue[text] + “>”

return prompt

Fig. 1: The prompt used with the LLM to estimate story points for a target issue,
in a zero/few-shot learning (depending on the length of the example issues list).

2.3 Dataset

We use three projects with Jira issues published in the TAWOS dataset [7]. The
three projects are Appcelerator Studio (APSTUD), Apache Mesos (MESOS),
and Spring XD (XD). A sample of issues from these projects is used in previous
story point estimation studies [8]. We use the same sample and train-test splits
in this study (refer to [8] for descriptive statistics), except that our test sets
include only 30 first issues from the original test sets. We use a limited number
of projects and issues in this paper to minimise the cost of running LLMs.

3 Preliminary Results

Fig. 2| shows the Pareto front formed after 20 generations of CoGEE running. It
is clear that non-dominated solutions are forming a Pareto optimal front, where
shots-length (N) and their combination (i.e., the specific observations selected
from the train set to achieve the best performance) have a significant effect on the
estimation error of the model and its level of uncertainty. In the case of MESOS,
zero-shot estimation produces a large error with a wide confidence interval. How-
ever, once this individual is discarded, the column-shaped Pareto front spreads
more similar to the other two projects. Overall, for all three projects, an increase
in the number of shots helps the LLM to estimate better (i.e., low SAE and/or
low CI). The set of non-dominated solutions provides the user with different
trade-offs. One can choose to use the set of examples that minimises the number
of shots to an affordable level while keeping the error and its uncertainty under
an acceptable level.

To further present the effectiveness of the proposed method, we show in Ta-
ble |1] the MAE (Mean Absolute Error, defined as #) achieved by the three
sample individuals from the Pareto front, each with minimum (i.e., (near)optimal)
value in one of the three objectives. We also provide MAE for three baseline

Search-based Optimisation of LLM Learning Shots for SP Estimation 5

(a) APSTUD (b) MESOS

Fig. 2: Pareto fronts achieved by our proposed approach for three projects.

methods including the Mean, Median, and Random Guessing baselines (see [8]
for definitions). We observe that the LLM model with zero-shot prompting (i.e.,
using no samples from the previously estimated user stories) performs worse
than Mean and Median baselines. In the case of MESOS, even Random Guess-
ing performs better than the LLM with zero-shots. However, the individual with
the lowest SAE outperforms all the other models.

Table 1: Mean absolute estimation error over the test set for sample individuals
from the Pareto front achieved by CoGEE, and the baseline methods. Other
objective values (i.e., N and CI) are in parenthesis. The best results are in bold.

Project Pareto Individuals with Baselines

) Zero-shot (N=0) best SAE best CI Mean Median Random
APSTUD 3.87 (CI=1.20) 1.90 (N=9, CI=1.21) 2.77 (N=3, CI=0.98) [2.44 2.27 5.04
MESOS 1.87 (CI=0.66) 0.47 (N=10, C1=0.29) 1.03 (N=7, CI=0.28) |1.16 110 177
XD 2.10 (C1=0.82) 1.00 (N=6, CI=0.45) 1.43 (N=7, CI=0.39) |1.60 1.60 2.52

4 Conclusion

In this paper, we demonstrated promising results using SBSE techniques to
improve the effectiveness of the GPT-4 model for story point estimation, via
optimising the set of examples the LLM should be provided with in a few-shot
learning setting. The same can be applied to tune LLMs for any downstream task
that leverages LLMs in a few-shot setting. In this paper, we used story point esti-
mation as an example of a common software engineering task for demonstration
purposes. The same idea can be applied to any downstream task that leverages
LLMs in a few-shot setting. Future work can also consider minimisation of the
number of tokens used per prompt, which will not only optimise to use fewer
user stories as examples but also will prefer shorter user stories. This will help
save even more tokens in the prompt.

6 V. Tawosi et al.

Although we experimented with a limited number of projects and issues in
this study, the preliminary result attests to the feasibility of the idea and invites
future work to extend the study using a larger dataset and more LLMs.

Disclaimer

This paper was prepared for informational purposes by the Artificial Intelligence
Research group of JPMorgan Chase & Co and its affiliates (“JP Morgan”), and
is not a product of the Research Department of JP Morgan. JP Morgan makes
no representation and warranty whatsoever and disclaims all liability, for the
completeness, accuracy or reliability of the information contained herein. This
document is not intended as investment research or investment advice, or a
recommendation, offer or solicitation for the purchase or sale of any security,
financial instrument, financial product or service, or to be used in any way for
evaluating the merits of participating in any transaction, and shall not constitute
a solicitation under any jurisdiction or to any person, if such solicitation under
such jurisdiction or to such person would be unlawful.

References

1. Chen, L., Zaharia, M., Zou, J.: FrugalGPT: How to use large language models
while reducing cost and improving performance. arXiv preprint arXiv:2305.05176
(2023)

2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6(2), 182-197 (2002)

3. Grigelionis, B.: Student’s t-distribution and related stochastic processes. Springer
(2013)

4. Hill, G.W.: Algorithm 396: Student’s t-quantiles. Communications of the ACM
13(10), 619-620 (1970)

5. OpenAl: GPT-4 technical report (2023)

6. Ouyang, S., Zhang, J.M., Harman, M., Wang, M.: LLM is like a box of choco-
lates: the non-determinism of ChatGPT in code generation. arXiv preprint
arXiv:2308.02828 (2023)

7. Tawosi, V., Al-Subaihin, A., Moussa, R., Sarro, F.: A versatile dataset of agile open
source software projects. In: Proceedings of the 19th International Conference on
Mining Software Repositories. pp. 707-711 (2022)

8. Tawosi, V., Al-Subaihin, A., Sarro, F.: Investigating the effectiveness of clustering
for story point estimation. In: 2022 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER). pp. 827-838. IEEE (2022)

9. Tawosi, V., Moussa, R., Sarro, F.: Agile effort estimation: Have we solved the
problem yet? insights from a replication study. IEEE Transactions on Software
Engineering 49(4), 2677-2697 (2022)

10. Tawosi, V., Sarro, F., Petrozziello, A., Harman, M.: Multi-objective software effort
estimation: A replication study. IEEE Transactions on Software Engineering 48(8),
3185-3205 (2021)

	Search-based Optimisation of LLM Learning Shots for Story Point Estimation

