
Task-Level Checkpointing for Nested
Fork-Join Programs using Work Stealing

AMTE – EuroPar

Lukas Reitz and Claudia Fohry
lukas.reitz@uni-kassel.de

University of Kassel, Germany
Research Group Programming Languages / Methodologies

28th August 2023

mailto:lukas.reitz@uni-kassel.de


Motivation Introduction Design Experiments Conclusions

Motivation

Problem: the increasing number of processing units in
supercomputers leads to more frequent hardware failures

Popular solutions include
Checkpoint/Restart
Application-level checkpointing
Algorithm-based fault tolerance, naturally fault tolerant algorithms, . . .

We consider Asynchronous Many-Task (AMT) programs
→ Task-level checkpointing (TC)

1 / 18



Motivation Introduction Design Experiments Conclusions

AMT Programs

Computation is divided into tasks which are processed by workers

AMT programs differ widely in their task models (e.g., dynamic
independent tasks, nested-fork join)

We consider AMTs which deploy work stealing to balance the tasks
between workers

2 / 18



Motivation Introduction Design Experiments Conclusions

Task-Level Checkpointing (TC)

Operates in the AMT runtime system (usually transparent to the
application programmer)

Exploits the clearly defined interfaces of tasks

Has only been studied for a few rather simple settings (e.g., dynamic
independent tasks)

3 / 18



Motivation Introduction Design Experiments Conclusions

Contributions

We propose a novel TC scheme for Nested Fork-Join (NFJ) programs
running on clusters with multi-worker processes using work stealing

We implement and evaluate the scheme in experiments with up to
1280 workers and find

a fault-tolerance overhead of up to 28.3% and

negligible costs for recovery

4 / 18



Motivation Introduction Design Experiments Conclusions

Our Setting

We refer to an existing TC scheme 1, called AllFT, which is designed
for cluster AMTs supporting dynamic independent tasks that use
single-worker processes

We build our new TC scheme on AllFT and a recent cluster AMT
for nested-fork join programs 2

1Posner et al.: A Comparison of Application-level Fault Tolerance Schemes for Task Pools. Future Generation Computing Systems 105 (2019)
2Reitz et al.: Lifeline-based Load Balancing Schemes for Asynchronous Many-Task Runtimes in Clusters. Parallel Computing 116 (2023)

5 / 18



Motivation Introduction Design Experiments Conclusions

Lifeline Scheme

The lifeline scheme 3 is a well-performing work stealing scheme

Each worker maintains local task queue

Workers are arranged in lifeline graph

It was first implemented in X10

Cooperative work stealing

3Saraswat et al., Lifeline-based Global Load Balancing, PPoPP, 2011

6 / 18



Motivation Introduction Design Experiments Conclusions

Cooperative Work Stealing

W0 W1 W2 W3
trySteal

lo
ot

Example of W1 successfully stealing tasks from W2
7 / 18



Motivation Introduction Design Experiments Conclusions

Dynamic Independent Tasks vs Nested Fork-Join

Dynamic Independent Tasks (DIT) Nested Fork-Join (NFJ)

Each task may spawn child tasks

Parameter passing from parent to child

No side effects

• Each task yields task result • Each task returns to parent task

• Final result calculated by reduction • Root task yields final result

• Child-Stealing, Steal-Half policy • Continuation-Stealing, Steal-1 policy

• Examples: GLB, Blaze-Tasks • Examples: Cilk, Satin

8 / 18



Motivation Introduction Design Experiments Conclusions

Example NFJ application

1 f(n) {
2 if (n < 2) {
3 return 1;
4 }
5 a = spawn f(n-1);
6 b = f(n-2);
7 sync;
8 return a + b;
9 }

f(4)

f(2)

f(0)f(1)

f(3)

f(1)f(2)

f(2)

f(2)f(0)f(1)

f(3)

f(4)

A

A'

A''D

E

C

C'

C'

A''

A''

B

B'

B'

9 / 18



Motivation Introduction Design Experiments Conclusions

Example NFJ application

1 f(n) {
2 if (n < 2) {
3 return 1;
4 }
5 a = spawn f(n-1);
6 b = f(n-2);
7 sync;
8 return a + b;
9 }

f(4)

f(2)

f(0)f(1)

f(3)

f(1)f(2)

f(2)

f(2)f(0)f(1)

f(3)

f(4)

A

A'

A''D

E

C

C'

C'

A''

A''

B

B'

B'

9 / 18



Motivation Introduction Design Experiments Conclusions

The AllFT scheme

AllFT encompasses:

a checkpointing procedure which saves a worker state to a resilient
store,

a steal protocol which ensures consistency between a victim, a thief,
and their respective checkpoints,

a restore protocol which ensures that the tasks from failed workers
are taken over by alive workers, and

a selection scheme for buddy workers which are responsible for the
restore of failed workers

10 / 18



Motivation Introduction Design Experiments Conclusions

Our TC scheme

Major changes from AllFT:

Checkpoints include the state of an NFJ worker:

current local pool contents

next task (which is not always contained in the local pool)

task results that are yet to be incorporated into their parent frame

frames that are awaiting result incorporation

some bookkeeping information

11 / 18



Motivation Introduction Design Experiments Conclusions

Our TC scheme (cont.)

Major changes from AllFT:

Checkpoints are written either at a spawn or at the end of a function

A new frame return protocol keeps checkpoints consistent during
result incorporation

The restore protocol additionally adopts task results (in contrast to
worker results in AllFT) and frames

Buddy worker selection operates on workers instead of processes

12 / 18



Motivation Introduction Design Experiments Conclusions

Implementation

Our implementation is based on the APGAS for Java library

We use Hazelcast’s IMap for the resilient store

The IMap saves the checkpoints as key-value pairs, groups them into
partitions, and evenly distributes the partitions over nodes

Checkpoints from all workers of the same process are mapped to the
same partition

Up to six simultaneous node failures can be tolerated and program
abort occurs with an error message for more failures

13 / 18



Motivation Introduction Design Experiments Conclusions

Experimental Setting

Benchmarks:

naive recursive Fibonacci (FIB)

Unbalanced Tree Search (UTS)

Synthetic Benchmark (SYN)

Goethe cluster of the University of Frankfurt

Up to 32 nodes, totaling in 1280 workers

14 / 18



Motivation Introduction Design Experiments Conclusions

Results: Protection Costs

Protection costs for FIB, UTS, and SYN in failure-free execution averaged over 10 runs
each

15 / 18



Motivation Introduction Design Experiments Conclusions

Results: Overhead of SYN

Load balancing and protection overhead of SYN with and without protection in
failure-free execution averaged over 10 runs each

16 / 18



Motivation Introduction Design Experiments Conclusions

Results: Estimation of Recovery Costs

Average running times of UTS with executions A, B, and C in seconds

Execution Workers Running Time

A 640 245.23 s

B 600 277.38 s

C 640− 80 at half the running time 291.28 s

Executions B and C use the same average number of processing
workers
Estimation of restore overhead as the difference between running
times of C and B
Restore overhead for a crash of 80 out of 640 workers is about 5%
of the running time

17 / 18



Motivation Introduction Design Experiments Conclusions

Conclusions

TC can protect NFJ programs against permanent hardware failures

Fault-tolerance overhead in failure-free execution is lower than
typical Checkpoint/Restart

Negligible costs for recovery of single worker failures

Future work includes the evaluation of TC in more complex
benchmarks and the generalization to further task models

18 / 18


	Motivation
	Introduction
	Design
	Experiments
	Conclusions

