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Abstract. Risk-limiting audits (RLAs) can provide routine, affirmative
evidence that reported election outcomes are correct by checking a ran-
dom sample of cast ballots. An efficient RLA requires checking relatively
few ballots. Here we construct highly efficient RLAs by optimizing super-
martingale tuning parameters—bets—for ballot-level comparison audits.
The exactly optimal bets depend on the true rate of errors in cast-vote
records (CVRs)—digital receipts detailing how machines tabulated each
ballot. We evaluate theoretical and simulated workloads for audits of
contests with a range of diluted margins and CVR error rates. Compared
to bets recommended in past work, using these optimal bets can dramat-
ically reduce expected workloads—by 93% on average over our simulated
audits. Because the exactly optimal bets are unknown in practice, we offer
some strategies for approximating them. As with the ballot-polling RLAs
described in ALPHA and RiLACs, adapting bets to previously sampled
data or diversifying them over a range of suspected error rates can lead
to substantially more efficient audits than fixing bets to a priori values,
especially when those values are far from correct. We sketch extensions
to other designs and social choice functions, and conclude with some
recommendations for real-world comparison audits.

Keywords: risk-limiting audit, election integrity, comparison audit, nonpara-
metric testing, betting martingale

1 Introduction

Machines count votes in most American elections, and (reported) election winners
are declared on the basis of these machine tallies. Voting machines are vulnerable
to bugs and deliberate malfeasance, which may undermine public trust in the
accuracy of reported election results. To counter this threat, risk-limiting audits
(RLAs) can provide routine, statistically rigorous evidence that reported election
outcomes are correct—that reported winners really won—by manually checking
a demonstrably secure trail of hand-marked paper ballots [4, 1, 12]. RLAs
have a user-specified maximum chance—the risk limit—of certifying a wrong
reported outcome, and will never overturn a correct reported outcome. They
can also be significantly more efficient than full hand counts, requiring fewer
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manually tabulations to verify a correct reported outcome and reducing costs to
jurisdictions.

There are various ways to design RLAs. Ballots can be sampled in batches
(i.e. precincts or machines) or as individual cards. Sampling individual ballots
is more statistically efficient than sampling batches. In a polling audit, sampled
ballots are checked directly without reference to machine interpretations. Ballot-
polling audits sample and check individual ballots. In a comparison audit, manual
interpretations of ballots are compared to their machine interpretations. Ballot-
level comparison audits check each sampled ballot against a corresponding cast
vote record (CVR)—a digital receipt detailing how the machine tallied the ballot.
Not all voting machines can produce CVRs, but ballot-level comparison audits
are the most efficient type of RLA.

The earliest RLAs were formulated for batch-level comparison audits, which
are analogous to historical, statutory audits [6]. Subsequently, the maximum
across contest relative overstatement (MACRO) was used for comparison RLAs
[7, 8, 9, 5], but its efficiency suffered from conservatively pooling observed errors
across candidates and contest. SHANGRLA [10] unified RLAs as hypotheses
about means of lists of bounded numbers and provided sharper methods for batch
and ballot-level comparisons. Each null hypothesis tested in a SHANGRLA-style
RLA posits that the mean of a bounded list of assorters is less than 1/2. If all
the nulls are declared false at risk limit α, the audit can stop. Any valid test for
the mean of a bounded finite population can be used to test these hypotheses,
allowing RLAs to use a wide range of risk-measuring functions.

Betting supermartingales (BSMs)—described in Waudby-Smith et al. [15]
and Stark [11]—provide a particularly useful class of risk-measuring functions.
BSMs are sequentially valid, allowing auditors to update and check the measured
risk after each sampled ballot while maintaining the risk limit. They can be seen
as generalizations of risk-measuring functions used in earlier RLAs, including
Kaplan-Markov, Kaplan-Kolmogorov, and related methods [7, 10]. They have
tuning parameters λi called bets, which play an important role in determining
the efficiency of the RLA. Previous papers using BSMs for RLAs have focused on
setting λi for efficient ballot-polling audits; betting for comparison audits has been
treated as essentially analogous [15, 11]. However, as we will show, comparison
audits are efficient with much larger bets than are optimal for ballot-polling.

This paper details how to set BSM bets λi for efficient ballot-level comparison
audits, focusing on audits of plurality contests. Section 2 reviews SHANGRLA
notation and the use of BSMs as risk-measuring functions. Section 3 derives
optimal “oracle” bets under the Kelly criterion [3], which assumes knowledge of
true error rates in the CVRs. In reality, these error rates are unknown, but the
oracle bets are useful in constructing practical betting strategies, which plug in
estimates of the true rates. Section 4 presents three such strategies: guessing the
error rates a priori, using past data to estimate the rates adaptively, or positing
a distribution of likely rates and diversifying bets over that distribution. Section
5 presents two simulation studies: one comparing the oracle strategy derived
in Waudby-Smith et al. [15] for ballot-polling against our comparison-optimal
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strategy, and one comparing practical strategies against one another. Section
6 sketches some extensions to betting while sampling without replacement and
to social choice functions beyond plurality. Section 7 concludes with a brief
discussion and recommendations for practice.

2 Notation

2.1 Population and parameters

Following SHANGRLA [10] notation, let {ci}Ni=1 denote the CVRs, {bi}Ni=1

denote the true ballots, and A() be an assorter mapping CVRs or ballots into
[0, u]. We will assume we are auditing a plurality contest, in which case u := 1,
A(bi) := 1 if the ballot shows a vote for the reported winner, A(bi) := 1/2 if
it shows an undervote or vote for a candidate not currently under audit, and
A(bi) := 0 if it shows a vote for the reported loser. The overstatement for ballot
i is ωi := A(ci) − A(bi). Āc := N−1

∑N
i=1A(ci) is the average of the assorters

computed on the CVRs. Finally, the comparison audit population is comprised
of overstatement assorters:

xi := (1− ωi)/(2− v),

where v := 2Āc − 1 is the diluted margin: the difference in votes for the reported
winner and reported loser, divided by the total number of ballots cast.

Let x̄ := N−1
∑N

i=1 xi be the average of the comparison audit population and
Āb := N−1

∑N
i=1A(bi) be the average of the assorters applied to ballots. Section

3.2 of Stark [10] establishes the relations

reported outcome is correct ⇐⇒ Āb > 1/2 ⇐⇒ x̄ > 1/2.

As a result, rejecting the complementary null H0 : x̄ ≤ 1/2 at risk limit α provides
strong evidence that the reported outcome is correct.

Throughout this paper, we ignore understatement errors—those in favor of
the reported winner with ωi < 0. Understatements help the audit end sooner, but
will generally have little effect on the optimal bets. We comment on this choice
further in Section 7. With this simplification, overstatement assorters comprise a
list of numbers {xi}Ni=1 ∈ {0, a/2, a}N where a := (2− v)−1 > 1/2 corresponds
to the value on correct CVRs, a/2 corresponds to 1-vote overstatements, and
0 corresponds to 2-vote overstatements. This population is parameterized by 3
fractions:

– p0 := #{xi = a}/N is the rate of correct CVRs.
– p1 := #{xi = a/2}/N is the rate of 1-vote overstatements.
– p2 := #{xi = 0}/N is the rate of 2-vote overstatements.

The population mean can be written x̄ = ap0 + (a/2)p1.
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2.2 Audit data

Ballots may be drawn by sequential simple random sampling with or without
replacement, but we first focus on the with replacement case for simplicity.
Implications for sampling without replacement are discussed in Section 6. We
have a sequence of samples X1, X2, . . .

iid∼ F , where F is a three-point distribution
with mass p0 at a, p1 at a/2, and p2 at 0.

2.3 Risk measurement via betting supermartingales

Let Ti := 1 + λi(Xi − 1/2) where λi ∈ [0, 2] is a freely-chosen tuning parameter
that may depend on past samples X1, . . . , Xi−1. Define M0 := 1 and

Mt :=

t∏
i=1

Ti =

t∏
i=1

[1 + λi(Xi − 1/2)].

Mt is a betting supermartingale (BSM) for any bets λi ∈ [0, 2] whenever the
complementary holds because

x̄ ≤ 1/2 =⇒ E[Xi | Xi−1, ..., X1] ≤ 1/2 =⇒ E[Mt | Xt−1, . . . , X1] ≤Mt−1

where the first implication comes from simple random sampling with replacement.
Ville’s inequality [13] then states that the truncated reciprocal Pt := min{1, 1/Mt}

is a sequentially-valid P -value for the complementary null in the sense that

P(∃ t ∈ N : Pt ≤ α) ≤ α

when x̄ ≤ 1/2 for any risk limit α ∈ (0, 1). More details on BSMs are given in
Waudby-Smith and Ramdas [14], Waudby-Smith et al. [15] and Stark [11]. To
obtain an efficient RLA, we would like to make Mt as large as possible (Pt as
small as possible) when x̄ > 1/2.

3 Oracle betting

We begin with deriving oracle bets by assuming we can access the true rates
p0, p1, and p2 and optimizing the expected growth of the logged martingale.
Naturally, oracle bets are not accessible in practice, but they are approximated
in the practical betting strategies discussed in the next section.

3.1 Error-free CVRs

In the simple case where there is no error at all in the CVRs, p0 = 1 and
xi = x̄ = a for all i. When computing the BSM, it doesn’t matter which ballot is
drawn:

Ti = 1 + λi(a− 1/2) and Mt = [1 + λi(a− 1/2)]t.
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Because (a − 1/2) > 0, the best strategy is to bet as aggressively as possible,
setting λi := 2. Under such a bet, Mt = (2a)t. Setting this equal to 1/α yields
the stopping time:

tstop =
log(1/α)

log(2a)
=

− log(α)

log(2)− log(2− v)
(1)

where v is the diluted margin. Ignoring understatement errors, (1) is a determin-
istic lower bound on the sample size of a comparison audit when risk is measured
by a BSM. Figure 1 plots this bound as a function of the diluted margin v for a
range of risk limits α.

Fig. 1. Deterministic sample sizes (y-axis; log10 scale) for a comparison audit of a
plurality contest with various diluted margins (x-axis) and risk limits (colors), with no
error in CVRs and a maximal bet of λ = 2 on every draw.

3.2 Betting with CVR Error

Usually CVRs will have at least some errors, and maximal bets are far from ideal
when they do. We now show why this is true before deriving an alternative oracle
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strategy. In general,

Ti =


1 + λi(a− 1/2) with probability p0
1 + λi(a/2− 1/2) with probability p1
1− λi/2 with probability p2.

Suppose we fix λi := λ and try to maximize Mn by maximizing the expected
value of each Ti:

EF [Ti] = p0[1 + λ(a− 1/2)] + p1[1− λ(1− a)/2] + p2[1− λ/2]

= 1 + (ap0 +
a

2
p1 − 1/2)λ.

This is linear with a positive coefficient on λ, since ap0 + a
2p1 = x̄ > 1/2 under

any alternative. Therefore, the best strategy seems to be to set λ := 2 as before.
However, unless p2 = 0, Mt will eventually “go broke" with probability 1: Ti = 0
if a 0 is drawn while the bet is maximal. Then Mt = 0 for all future times and
we cannot reject at any risk limit α. In this case, we say the audit stalls : it must
proceed to a full hand count to confirm the reported winner really won.

To avoid stalls we follow the approach of Kelly Jr. [3], instead maximizing the
expected value of log Ti. Taking the derivative of EF [log Ti] with respect to λ:

d

dλ
EF [log Ti] =

(a− 1/2)p0
1 + λ(a− 1/2)

+
(a− 1)p1

2− λ(1− a)
+

p2
2− λ

. (2)

The oracle bet λ∗ can be found by setting this equal to 0 and solving for λ using
a root-finding algorithm.

Alternatively, we can find a simple analytical solution by assuming no 1-vote
overstatements and setting p1 = 0. In this case, solving for λ yields:

λ∗ =
2− 4ap0
1− 2a

(3)

Note that λ∗ > 0 since ap0 > 1/2 under the alternative, and λ∗ < 2 since a > 1/2.

3.3 Relation to ALPHA

There is a one-to-one correspondence between oracle bets for the BSM Mt and
oracle bets for the ALPHA supermartingale, which reparameterizes Mt. Note
that the list of overstatement assorters {xi}Ni=1 is upper bounded by the value of
a 2-vote understatement, u := 2/(2 − v) = 2a. Section 2.3 of Stark [11] shows
that the equivalently optimal η for use with ALPHA is:

η∗ := 1/2(1 + λ∗(u− 1/2)) =
1− 2ap0
2− 4a

+ 2ap0 − 1/2.

Naturally, when p0 = 1, η∗ = 2a = u, which is the maximum value allowed for
η∗ while maintaining ALPHA as a non-negative supermartingale.
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4 Betting in Practice

In practice, we have to estimate the unknown overstatement rates to set bets.
We posit and evaluate three strategies: fixed, adaptive, and diversified betting.
Throughout this section, we use p̃k to denote a generic estimate of pk for k ∈ {1, 2}.
When the estimate adapts in time, we use the double subscript p̃ki. In all cases,
the estimated overstatement rates are ultimately plugged into (2) to estimate
the optimal bets.

4.1 Fixed betting

The simplest approach is to make a fixed, a priori guess at pk using historic
data, machine specifications, or other information. For example, p̃1 := 0.1% and
p̃2 := 0.01% will prevent stalls and may perform reasonably well when there
are few overstatement error. However, this strategy is analagous to apKelly for
ballot-polling, which Waudby-Smith et al. [15] and Stark [11] show can become
quite poor when the estimate is far from correct. This potential gap motivates
more sophisticated strategies.

4.2 Adaptive betting

In a BSM, the bets need not be fixed and λi can be a predictable function of the
data X1, . . . , Xi−1. This allows us to estimate the rates based on past samples as
well as a priori considerations. We adapt the “shrink-trunc” estimator of Stark
[11] to rate estimation1. For k ∈ {1, 2} we set a value dk ≥ 0, capturing the
degree of shrinkage to the a priori estimate p̃k, and a truncation factor εk ≥ 0,
enforcing a lower bound on the estimated rate. Let p̂ki be the sample rates at
time i, e.g., p̂2i = i−1

∑i
j=1 1{Xj = 0}. Then the shrink-trunc estimate is:

p̃ki :=
dkp̃k + ip̂k(i−1)

dk + i− 1
∨ εk (4)

The rates are allowed to learn from past data in the current audit through
p̂k(i−1), while being anchored to the a priori estimate p̃k. The tuning parameter
dk reflects the degree of confidence in the a priori rate, with large dk anchoring
more strongly to p̃k. Finally, εk should generally be set above 0. In particular,
ε2 > 0 will prevent stalls.

At each time i, the shrink-trunc estimated rate p̃ki can be plugged into (2)
and set equal to 0 to obtain the bet λi. Fixing p̃1i := 0 allows us to use (3), in
which case λi = (2− 4a(1− p̃2i))/(1− 2a).

1 Shrink-trunc stands for shrinkage-truncation, and was originally designed for adaptive
betting in the ballot-polling context, targeting the population mean.
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4.3 Diversified betting

A weighted average of BSMs:

B∑
b=1

θb

t∏
i=1

[1 + λb(Xi − 1/2)],

where θb ≥ 0 and
∑B

b=1 θb = 1, is itself a BSM. The intuition is that our initial
capital is split up into B pots, each with θb units of wealth. We then bet λb on
each pot at each time, and take the sum of the winnings across all pots as our
total wealth at time t. Waudby-Smith and Ramdas [14] construct the “grid Kelly"
martingale by defining λb along an equally spaced grid on [0, 2] and giving each
the weight θb = 1/B. Waudby-Smith et al. [15] refine this approach into “square
Kelly” for ballot-polling RLAs by placing more weight at close margins.

We adapt these ideas to the comparison audit context by parameterizing
a discrete grid of weights for p1 and p2. We first note that (p1, p2) are jointly
constrained by the hyperplane ap2+(a/2)p1 ≤ a−1/2 under the alternative, since
otherwise there is enough error to overturn the reported result. A joint grid for
(p1, p2) can be set up by separately constructing two equally-spaced grids from 0
to v/k, computing the Cartesian product of the grids, and removing points where
ap2+(a/2)p1 ≥ a−1/2. Once a suitable grid has been constructed, the weights at
each point can be flexibly defined to reflect the suspected rates of overstatements.
At each point (p1, p2), λb is computed by passing the rates (p1, p2) into (2) and
solving numerically; the weight for λb is θb. Thus a distribution of weights on the
grid of overstatement rates induces a distribution on the bets.

Figure 2 illustrates two possible weighted grids for a diluted margin of v = 10%,
and their induced distribution on bets {λb}Bb=1. In the top row, the weights are
uniform with θb = 1/B. In the bottom row, the weights follow a bivariate normal
density with mean vector and covariance matrix respectively specified to capture a
prior guess at (p1, p2) and the uncertainty in that guess. The density is truncated,
discretized, and rescaled so that the weights sum to unity.

5 Numerical evaluations

We conducted two simulation studies. The first evaluated stopping times for bets
using the oracle comparison bets in (3) against the oracle value of apKelly from
Waudby-Smith et al. [15]. The second compared stopping times for oracle bets
and the 3 practical strategies we proposed in Section 4. All simulations were run
in R (version 4.1.2).

5.1 Oracle simulations

We evaluated stopping times of oracle bets at multiple diluted margins and 2-vote
overstatement rates when sampling with replacement from a population of size
N = 10000. At each combination of diluted margin v ∈ {0.05, 0.10, 0.20} and
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Fig. 2. Plots showing two mixture distributions over overstatement rates (left column; y-
axis = 2-vote overstatment rate, x-axis = 1-vote overstatement rate; point size = mixture
weight) and their corresponding induced distributions over the bets (right column; x-axis
= bet, y-axis = density). The diluted margin of 10% constrains possible overstatement
rates. The upper row shows a uniform grid of weights over all overstatement rates
(left column) and its induced distribution on λ (right column). The bottom row plots
discretized, truncated, and rescaled bivariate normal weights with parameters (µ1, µ2) =
(.01, .001), (σ1, σ2) = (.02, .01), and ρ = 0.25 (left column) and its induced distribution
on λ (right column).

2-vote overstatement rates p2 ∈ {1.5%, 1%, 0.5%, 0.1%, 0%} we ran 400 simulated
comparison audits. We set p1 = 0: no 1-vote overstatements.

The bets corresponded to oracle bets λ∗ in Equation (3) or to λapK := 4x̄− 2,
the “oracle” value of the apKelly strategy in Section 3.1 of Waudby-Smith et al.
[15] and Section 2.5 of Stark [11]2, which were originally derived for ballot-polling.
λapK uses the true population mean instead of an estimate based on reported
tallies. In each scenario, we estimated the expected and 90th percentile workload
from the empirical mean and 0.9 quantile of the stopping times at risk limit
α = 5% over the 400 simulations. To compare the betting strategies, we computed
the ratios of the expected stopping time for λ∗ over λapK in each scenario. We then

2 λapK implies a bet of ηi := x̄ in the ALPHA parameterization.
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took the geometric mean across scenarios as the average reduction in expected
workload.

Table 5.1 presents the mean and 90th percentile (in parentheses) stopping
times over the 400 simulations. BSM comparison audits with λ∗ typically require
counting fewer than 1000 ballots, and fewer than 100 for wide margins without
CVR errors. On average, betting by λ∗ provides an enormous advantage over
λapK: the geometric mean workload ratio is 0.072, a 93% reduction.

Stopping times
DM 2-vote OR apKelly (λapK) Oracle (λ∗)
5% 1.5% 10000 (10000) 1283 (2398)

1.0% 10000 (10000) 482 (813)
0.5% 7154 (7516) 242 (389)
0.1% 4946 (5072) 146 (257)
0.0% 4559 (4559) 119 (119)

10% 1.5% 2233 (2464) 177 (323)
1.0% 1705 (1844) 131 (233)
0.5% 1346 (1429) 83 (116)
0.1% 1130 (1167) 65 (60)
0.0% 1083 (1083) 59 (59)

20% 1.5% 339 (371) 52 (78)
1.0% 304 (335) 42 (57)
0.5% 272 (289) 35 (61)
0.5% 249 (258) 30 (29)
0.0% 245 (245) 29 (29)

Table 1. Mean (90th percentile) stopping times of 400 simulated comparison audits
run with oracle bets (λ∗) or apKelly bets (λapK) under a range of diluted margins and
2-vote overstatement rates. DM = diluted margin; OR = overstatement rate.

5.2 Practical simulations

We evaluated oracle betting, fixed a priori betting, adaptive betting, and di-
versified betting in simulated comparison audits with N = 20000 ballots, a
diluted margin of 5%, 1-vote overstatement rates p1 ∈ {0.1%, 1%}, and 2-vote
overstatement rates p2 ∈ {0.01%, 0.1%, 1%}.

Oracle bets were set using the true values of p1 and p2 in each scenario.
The other methods used prior guesses p̃1 ∈ {0.1%, 1%} and p̃2 ∈ {0.01%, 0.1%}
as tuning parameters in different ways. The fixed method derived the optimal
bet by plugging in p̃k as a fixed value. The adaptive method anchored the
shrink-trunc estimate p̃ki displayed in equation (4) to p̃k, but updated using
past data in the sample. The tuning parameters were d1 := 100, d2 := 1000,
ε1 = ε2 := 0.001%. The larger value for d2 reflects the fact that very low rates
(expected for 2-vote overstatements) are harder to estimate empirically, so the
prior should play a larger role. The diversified method used p̃k to set the mode of
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a mixing distribution, as in the lower panels of Figure 2. Specifically, the mixing
distribution was a discretized, truncated, bivariate normal with mean vector
(p̃1, p̃2), standard deviation (σ1, σ2) := (0.5%, 0.25%), and correlation ρ := 0.25.
The fact that σ2 < σ1 reflects more prior confidence that 2-vote overstatement
rates will be concentrated near their prior mean, while ρ > 0 encodes a prior
suspicion that overstatement rates are correlated: they are more likely to be both
high or both low. After setting the weights at each grid point according to this
normal density, they were rescaled to sum to unity.

We simulated 400 audits under sampling with replacement for each scenario.
The stopping times were capped at 20000, the size of the population, even if the
audit hadn’t stopped by that point. We estimated the expected value and 90th
percentile of the stopping times for each method by the empirical mean and 0.9
quantile over the 400 simulations. We computed the geometric mean ratio of the
expected stopping times of each method over that of the oracle strategy as a
summary of their performance across scenarios.

Table 2 presents results. With few 2-vote overstatements, all strategies per-
formed relatively well and the audits concluded quickly. When the priors substan-
tially underestimated the true overstatement rates, the performance of the audits
degraded significantly compared to the oracle bets. This was especially true for
the fixed strategy. For example, when (p1, p2) = (0.1%, 1%) and p̃2 = 0.01%, the
expected number of ballots for the fixed strategy to stop was more than 20 that
of the oracle method. On the other hand, the adaptive and diversified strategies
were much more robust to a poor prior estimate. In particular, the expected
stopping time of the diversified method was never more than 3 worse than that of
the oracle strategy, and the adaptive method was never more than 4 times worse.
The geometric mean workload ratios of each strategy over the oracle strategy
were 2.4 for fixed, 1.3 for adaptive, and 1.2 for diversified. The diversified method
was the best practical method on average across scenarios.

6 Extensions

6.1 Betting while sampling without replacement

When sampling without replacement, the distribution of Xi depends on past
data X1, ..., Xi−1. Naively updating an a priori bet to reflect what we know has
been sampled may actually harm the efficiency of the audit.

Specifically, recall that, for k ∈ {1, 2}, p̂ki denotes the sample proportion of
the overstatement rate at time i. If we fix initial rate estimates to p̃k, then the
updated estimate at time i given that we have removed ip̂k(i−1) would be

p̃ki =
Np̃k − ip̂k(i−1)

N − i+ 1
for k ∈ {1, 2}.

This can be plugged into (2) to estimate the optimal λ∗i for each draw. Fixing
p̃1i = 0 and using equation (3) yields the closed form optimum:

λ∗i =
2− 4ap̃2i

1− 2a
∧ 2,
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True ORs Prior ORs Stopping Times
p2 p1 p̃2 p̃1 Oracle Fixed Adaptive Diversified

0.01% 0.1% 0.01% 0.1% 124 (147) 125 (119) 124 (147) 131 (152)
1% 124 (147) 125 (147) 125 (147) 131 (154)

0.1% 0.1% 125 (147) 129 (151) 131 (151) 133 (155)
1% 127 (147) 132 (153) 130 (152) 135 (157)

1% 0.01% 0.1% 174 (229) 167 (229) 166 (229) 177 (236)
1% 168 (229) 172 (229) 167 (229) 180 (235)

0.1% 0.1% 176 (229) 169 (232) 175 (262) 181 (262)
1% 159 (205) 174 (233) 180 (265) 184 (264)

0.1% 0.1% 0.01% 0.1% 146 (256) 153 (338) 159 (350) 149 (271)
1% 151 (256) 154 (174) 150 (147) 145 (154)

0.1% 0.1% 147 (256) 152 (256) 146 (182) 153 (259)
1% 149 (256) 151 (244) 147 (256) 152 (265)

1% 0.01% 0.1% 209 (351) 227 (420) 225 (460) 214 (400)
1% 200 (324) 240 (457) 232 (500) 211 (378)

0.1% 0.1% 204 (351) 208 (364) 210 (358) 208 (344)
1% 208 (324) 205 (324) 205 (341) 219 (371)

1% 0.1% 0.01% 0.1% 526 (996) 13654 (20000) 1581 (3517) 888 (2090)
1% 525 (984) 12685 (20000) 1585 (3731) 739 (1708)

0.1% 0.1% 528 (1032) 9589 (20000) 1112 (2710) 812 (1982)
1% 534 (985) 7247 (20000) 915 (2294) 686 (1586)

1% 0.01% 0.1% 999 (1908) 15205 (20000) 3855 (7811) 2637 (5873)
1% 1110 (2002) 15641 (20000) 3477 (7529) 1803 (4331)

0.1% 0.1% 1030 (1868) 13113 (20000) 2795 (5996) 2064 (4884)
1% 1127 (2256) 13094 (20000) 2437 (5452) 1604 (3758)

Table 2. Mean (90th percentile) stopping times over 400 simulated comparison audits
with diluted margin of v = 5% and varying overstatement rates at risk limit α = 5%.
The true overstatement rates are in the first two columns. The second two columns
contain the prior guesses of the true overstatement rates, used to set bets differently
in each strategy as described in Section 5.2. The oracle strategy uses the true rates to
set the bets, so all variation over p̃1, p̃2 in the results for that strategy is Monte Carlo
error. OR = overstatement rate.
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where we have truncated at 2 to guarantee that λ∗i is even a valid bet. This is
necessary because the number of 2-vote overstatements in the sample can exceed
the number Np̃2 hypothesized to be in the entire population. If this occurs,
the audit will stall if even one more 2-vote overstatement is discovered. More
generally, this strategy has the counterintuitive (and counterproductive) property
of betting more aggressively as more overstatements are discovered. To avoid
this pitfall we suggest using the betting strategies we derived earlier under IID
sampling, even when sampling without replacement.

6.2 Other social choice functions

SHANGRLA [10] encompasses a broad range of social choice functions beyond
plurality, all of which are amenable to comparison audits. Assorters for approval
voting and proportional representation are identical to plurality assorters, so no
modification to the optimal bets is required. Ranked-choice voting can also be
reduced to auditing a collection of plurality assertions, though this reduction
may not be the most efficient possible [2]. On the other hand, some social
choice functions, including weighted additive and supermajority, require different
assorters and will have different optimal bets.

In a supermajority contest, the diluted margin v is computed differently
depending on the fraction f ∈ (1/2, 1] required to win, as well as the proportion
of votes for the reported winner in the CVRs. In the population of overstatement
assorters error-free CVRs still appear as a = (2−v)−1, but 2-vote overstatements
are (1− 1/(2f))a > 0 and 1-vote overstatements are (3/2− 1/(2f))a. So that the
population attains a lower bound of 0, we can make the shift xi − (1− 1/(2f))a
and test against the shifted mean 1/2− (1− 1/(2f))a. Because there are only 3
points of support, the derivations in Section 3.2 can be repeated, yielding a new
solution for λ∗ in terms of the rates and the shifted mean.

Weighted additive schemes apply an affine transformation to ballot scores
to construct assorters. Because scores may be arbitrary non-negative numbers,
there can be more than 3 points of support for the overstatement assorters and
the derivations in Section 3.2 cannot be immediately adapted. If most CVRs
are correct then most values in the population will be above 1/2, suggesting
that an aggressive betting strategy with λ := 2 − ε will be relatively efficient.
Alternatively, a diversified strategy weighted towards large values of λ ∈ (0, 2]
can retain efficiency when there are in fact high rates of error. It should also
be possible to attain a more refined solution by generalizing the optimization
strategy in Section 3.2 to populations with more than 3 points of support.

6.3 Batch-level comparison audits

Batch-level comparison audits check for error in totals across batches of ballots,
and are applicable in different situations than ballot-level comparisons, since they
do not require CVRs. SHANGRLA-style overstatement assorters for batch-level
comparison audits are derived in Stark [11]. These assorters generally take a
wide range of values within [0, u]. Because they are not limited to a few points of
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support, there is not a simple optimal betting strategy. However, assuming there
is relatively little error in the reported batch-level counts, will again place the
majority of the assorter distribution above 1/2. This suggests using a relatively
aggressive betting strategy, placing more weight on bets near 2 (or near the
assorter upper bound in the ALPHA parameterization).

Stark [11] evaluated various BSMs in simulations approximating batch-level
comparison audits, though the majority of mass was either at 1 or spread uniformly
on [0, 1], not at a value a ∈ (1/2, 1]. Nevertheless, in situations where most of
the mass was at 1, aggressive betting (η ≥ 0.9) was most efficient. Investigating
efficient betting strategies for batch-level comparison audits remains an important
area for future work.

7 Conclusions

We derived optimal bets for ballot-level comparison audits of plurality contests
and sketched some extensions to broader classes of comparison RLAs. The high-
level upshot for practical audits is that comparison should use considerably
more aggressive betting strategies than polling, a point made abundantly clear
in our oracle simulations. Our practical strategies approached the efficiency of
these oracle bets, except in cases where p2 = 1%. Such a high rate of 2-vote
overstatements is unlikely in practice, and would generally imply something has
gone wrong: votes for the loser should very rarely be flipped to votes for the
winner.

Future work should continue to flesh out efficient strategies for batch-level
comparison, and explore the effects of understatement errors. We suspect that
understatements will have little effect on the optimal strategy. If anything,
they imply bets should be even more aggressive. However, we already suggest
placing most weight near the maximal value of λ = 2 in practice, diversifying or
thresholding to prevent stalls if 2-vote overstatements are discovered. We hope
our results will guide efficient real-world comparison RLAs, and demonstrate
the practicality of their routine implementation for trustworthy, evidence-based
elections.
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