
Run for Cover: Dominating Set via Mobile Agents

Prabhat Kumar Chand[0000−0001−6190−4909], Anisur Rahaman
Molla[0000−0002−1537−3462], and Sumathi Sivasubramaniam[0000−0003−3605−6498]

Indian Statistical Institute, Kolkata
{pchand744, anisurpm, sumathivel89}@gmail.com

Abstract. Research involving computing with mobile agents is a fast-growing
field, given the advancement of technology in automated systems, e.g., robots,
drones, self-driving cars, etc. Therefore, it is pressing to focus on solving clas-
sical network problems using mobile agents. In this paper, we study one such
problem– finding small dominating sets of a graph G using mobile agents. Dom-
inating set is interesting in the field of mobile agents as it opens up a way for solv-
ing various robotic problems, e.g., guarding, covering, facility location, transport
routing, etc. In this paper, we first present two algorithms for computing a mini-
mal dominating set: (i) an O(m) time algorithm if the robots start from a single
node (i.e., gathered initially), (ii) an O(ℓ∆ log(λ) + nℓ+m) time algorithm, if
the robots start from multiple nodes (i.e., positioned arbitrarily), where m is the
number of edges and ∆ is the maximum degree of G, ℓ is the number of clusters
of the robot initially and λ is the maximum ID-length of the robots. Then we
present a ln(∆) approximation algorithm for the minimum dominating set which
takes O(n∆ log(λ)) rounds.

Keywords: Dominating Set · Mobile Agents · Distributed Network Algorithms ·
Approximation Algorithms · Time Complexity · Memory Complexity · Maximal
Independent Set

1 Introduction

Research on autonomous mobile agents (we interchangeably use the terms agent and
robot throughout the paper) has become an area of significant interest in the field of
distributed computing. As autonomous agents become part of everyday life (in the form
of robots, drones, self-driving cars, etc.,) the area becomes more and more relevant.
On the other hand, the dominating set problem is a well-researched classical graph
problem. A dominating set D of a graph G = (V,E) is a subset of the nodes V such
that for any v /∈ D, v has a neighbour in D. Finding a dominating set has several
practical applications. For example, in wireless communications, the dominating set
of the underlying network is useful in finding efficient routes within ad-hoc mobile
networks. They are also useful in problems such as document summarising, and for
designing secure systems for electrical grids, to mention a few.

Covering problems, such as vertex covers, maximal independent sets (MIS), and
dominating sets, also have real-world applications in the field of mobile agents. For
example, a minimum dominating set can form the charge stations or parking places
for autonomous mobile robots. The maximal independent sets can be used to solve the

ar
X

iv
:2

30
9.

02
20

0v
1

 [
cs

.D
C

]
 5

 S
ep

 2
02

3

2 P. Chand et al.

same but also ensure that any two robots are not close in real life. Both MIS and domi-
nating sets can find a place in the guarding problem, i.e., placing mobile robots such that
robots guard (cover) an entire polygon. In the mobile robot setting, MIS has been ex-
plored in [3, 21, 7]. However, in these works, the robots have some amount of visibility
(they have some knowledge of the graph) while ours have zero knowledge. While both
MIS and dominating sets are of great interest, in this paper, we limit ourselves to solv-
ing the dominating set problem in the field of mobile robots. We note, however, that
for the minimal dominating set case, our produced dominating sets are also maximal
independent sets.

While the problem is a classic problem in graph theory, several attempts have been
made to solve it in distributed computing research as well [6, 15, 14, 4]. In the field
of mobile robots, we believe ours is the first attempt to solve the dominating set prob-
lem. Our algorithms rely on the ideas used for dispersion to achieve a solution for the
dominating set problem. Dispersion, first introduced by the authors in [1] has been
well studied for various configurations of robots (see [19, 10, 11, 12]). The problem is
briefly: on an n node graph G, in which there is a configuration of robots R, |R| ≤ n,
we want to ensure that there is at most one robot on each node. We take advantage of the
fact that most dispersion protocols involve the exploration of G, and develop algorithms
for calculating dominating sets. In the next subsection, we mention our major results.

1.1 Our Results:

In this paper, we show how to compute a minimal dominating set and an approximate
minimum dominating set on an anonymous graph using mobile robots. Let G be a
connected and anonymous graph of n nodes and m edges with maximum degree ∆.
Suppose n robots (with distinct IDs) are distributed arbitrarily over the nodes of G. We
develop algorithms for the robots to work collaboratively and identify small dominating
sets of G. In particular, our results are:
• an O(m) time algorithm for the robots to compute a minimal dominating set on G

when all robots are gathered at a single node initially. The set of dominating nodes
also forms a MIS.
• an O(ℓ∆ log(λ) + nℓ + m) time algorithm for the robots to compute a minimal

dominating set on G when the robots are placed arbitrarily at ℓ nodes initially.
• an O(n∆ log(λ)) time algorithm for a ln(∆) approximation solution to the mini-

mum dominating set on G, where λ is the maximum ID-length of the robots.
All our algorithms require that the robots have at most O(log(n)) bits of memory.
In a recent work in [9], the authors solved a related problem called the Distance-2-
Dispersion problem (See Section1.2 for details) which also produces a MIS in special
cases (when the number of robots is greater than the number of nodes in the graph) in
O(m∆) rounds with O(log(∆)) bits of memory in each robot.

1.2 Related Works

Finding small dominating sets for graphs is one of the most fundamental problems in
graph theory which along with its variants has been extensively studied for the last four
decades. The dominating set problem and the set cover problem are closely related and

Run for Cover: Dominating Set via Mobile Agents 3

the former one can be regarded as a special case of the latter. To find a minimum set
cover for arbitrary graphs has been shown to be NP-hard [5, 8].

There have been a few studies on the dominating set and related problems for
various distributed models. In [6], Jia et al. gave the first efficient distributed imple-
mentation of the dominating set problem in the CONGEST model. Their randomised
algorithm, which is the refinement of the greedy algorithm adapted from [16] takes
O(log(n) log(∆)) rounds and provides a ln(∆) - optimal dominating set in expectation
(∆ is the maximum degree among the n nodes of the graph). It has at most a constant
number of message exchanges between any two nodes. In [22], Evan Sultanik et al.
gave a distributed algorithm for solving a variant of the art gallery problem equivalent
to finding a minimal dominating set of the minimal visibility graphs. Their algorithm
runs in a number of rounds on the order of the diameter of the graph producing solu-
tions that are within a constant factor of optimal with high probability. In [15], Kuhn
and Wattenhofer gave approximation algorithms for minimum dominating sets using
LP relaxation techniques. Their algorithm computes an expected dominating set of size
(k∆

2
k log(∆)) times the optimal and takes O(k2) rounds for any arbitrary parame-

ter k. Each node sends O(k2∆) messages, each of size O(log(∆)). With k chosen as
some constant, this algorithm provides the first non-trivial approximation to the mini-
mal dominating set which runs in a constant number of rounds. Fabian Kuhn et al. in
[14] gave time lower bounds for finding minimum vertex cover and minimum dominat-
ing set in the context of the classical message passing distributed model. They showed
that the number of rounds required in order to achieve a constant or even only a poly-

logarithmic approximation ratio is at least Ω(
√

log(n)
log(log(n))) and Ω(

√
log(∆)

log(log(∆))). In [4]
the authors gave deterministic approximation algorithms for the minimum dominating
set problem in the CONGEST model with an almost optimal approximation guarantee.
They gave two algorithms with an approximation ratio of (1+ϵ)(1+log(∆+1)) running
respectively in O(2O(

√
log(n) log(log(n))) and O(∆ polylog(∆) + polylog(∆) log⋆(n))

for ϵ > 1
polylog(∆) . The paper also explores the problem of connected dominating sets

using these algorithms, giving a ln(∆) - optimal connected dominating set.
In our paper, we compute minimal dominating set and approximate minimum dom-

inating set on an arbitrary anonymous graph with the help of mobile robots with lim-
ited memory. Our algorithms use a key procedure called dispersion that re-positions
k ≤ n mobile robots (which initially were present arbitrarily on a n-node graph
G) to a distinct node of G such that one node has at most one robot. Dispersion of
mobile robots is a well-studied problem in distributed robotics in different settings.
It is introduced in [1] and saw its development over the years through several pa-
pers [19, 10, 11, 12, 17, 18, 20, 2]. To date, [13] provides the best-known result for
solving dispersion in O(m+ k∆) rounds and using log(k +∆) bits memory per robot
(k being the number of robots).

In a recent work by Kaur et al. [9], the authors formulated and solved the Distance-
2-Dispersion (D-2-D) problem in the context of mobile robots on an anonymous graph
G, which is a closely related problem to ours. In the Distance-2-Dispersion problem,
each of the k robot settles at some node satisfying these two conditions: (i) two robots
cannot settle at adjacent nodes (ii) a robot can only settle at the node already occupied by
another robot if and only if there’s no more unoccupied node that satisfies condition (i).

4 P. Chand et al.

They showed that, with O(log(∆)) bits of memory per robot, the (D-2-D) problem can
be solved in O(m∆) rounds, ∆ being the highest degree of the graph. Their algorithm
requires no pre-requisite knowledge of the parameters m,n and ∆. Additionally, they
show that if the number of robots k ≥ n (number of vertices in G), the nodes with
settled robots form a maximal independent set for G.

2 Model and Problem Definition

Graph: The underlying graph G(V,E) is connected, undirected, unweighted and
anonymous with |V | = n nodes and |E| = m edges. The nodes of G do not have
any distinguishing identifiers or labels. The nodes do not possess any memory and
hence cannot store any information. The degree of a node v ∈ V is denoted by δv and
the maximum degree of G is ∆. Edges incident on v are locally labelled using port
numbers in the range [1, δv]. A single edge connecting two nodes receives independent
port numbering at the two end. The edges of the graph serve as routes through which
the robots can commute. Any number of robots can travel through an edge at any given
time.

Robots: We have a collection of n robots R = {r1, r2, ..., rn} residing on the
nodes of the graph. Each robot has a unique ID in the range [0, nc], where c ≥ 1 is
arbitrary; and has O(log(n)) bits to store information. Two or more robots can be
present (co-located) at a node or pass through an edge in G. However, a robot is not
allowed to stay on an edge. A robot can recognise the port number through which it
has entered and exited a node.

Communication Model: We consider a synchronous system where the robot are syn-
chronised to a common clock. We consider the local communication model where only
co-located robots (i.e., robots at the same node) can communicate among themselves.

Time Cycle: Each robot ri, on activation, performs a Communicate − Compute −
Move (CCM) cycle as follows.

- Communicate: ri may communicate with other robots present at the same node as
itself.

- Compute: Based on the gathered information and subsequent computations, ri
may perform all manner of computations within the bounds of its memory.

- Move: ri may move to a neighbouring node using the computed exit port.
A robot can perform the CCM task in one time unit, called round. The time complexity
of an algorithm is the number of rounds required to achieve the goal. The memory
complexity is the number of bits required by each robot to execute the algorithm.

We now give our problem definition.

Definition 1 (Problem Definition). Consider an undirected, connected n-node simple
anonymous graph G with n mobile robots placed over the nodes of G arbitrarily. Let
∆ denote the highest degree of a node in G.

Run for Cover: Dominating Set via Mobile Agents 5

Minimal Dominating Set. The robots, irrespective of their initial placement, rearrange
and colour themselves in such a way that i) there is a robot at each node of G ii) there
is a self-identified subset of robots, coloured black, on D ⊆ G which forms a minimal
dominating set for G.

Approximate Minimum Dominating Set. The robots, irrespective of how they are
initially placed, rearrange and colour themselves in such a way that a dominating set
for G of size at most α|D∗| is identified, where D∗ is a minimum dominating set. Here
α is the approximation ratio to the minimum dominating set.

Our goal is to design algorithm for solving the above problems as fast as possible and
keeping α as small as ln(∆).

3 Preliminaries: DFS Traversal and PROCEDURE MYN

In this section, we present two subroutines that we use in our algorithms. The first one
is a simple depth-first search (DFS) traversal that allows the robots to explore the entire
graph and disperse at the same time. The second one is a procedure that allows two
robots on neighbouring nodes to meet each other if required.

3.1 DFS Traversal Protocol

We consider a collection of n robots, R = {r1, r2, . . . , rn} placed initially at a single
node called the root. For simplicity, we assume that r1 is the lowest ID robot and rn,
the highest. The objective of the DFS Traversal Protocol is to explore the graph in a
DFS manner until all the robots are dispersed. In addition, since |R| = n, it is ensured
that G has a distinct robot stationed at each of its nodes after the end of the protocol. We
recall that, for a node w, the ports are numbered from 1 to δw, where δw is the degree
of w.

To execute DFS, each robot r is provisioned with the following variables:
• parent− stores the port number through which r has entered an empty node and

has settled (for a settled robot).
• child− for an unsettled robot r it stores the port number last taken while enter-

ing/exiting a node. r, when settled stores the port number that the other robots used
for exiting a node except when they entered the node in a forward mode for a second
or subsequent time. child is set to 0 initially.
• state− to indicate if r is in a forward mode or backtrack mode. state is initially

set to forward
• treelabel− to differentiate between different DFSs arising from different clusters

(meaningful only in arbitrary initial robot configuration). treelabel is the ID of the
smallest robot in a specific cluster.
• settled− to indicate whether a robot is settled (1) or unsettled (0)

6 P. Chand et al.

Execution (Update Procedure)

In the first round, the robot r1 assigns r1.settled ← 1. The remaining robots
R \ {r1} decide on the minimum port number available at root (which is 1), set
r1.child and exit through port r1.child to a new empty node u. In the next round, the
robot r2 settles at u and the remaining robots similarly exit through r2.child leaving
r2 at u. Let, at any stage of the DFS, the robots {ri+1, ri+2, . . . , rn} arrive at a node w
through port pw with degree δw. Now, the robots decide on the next course of action
based on its state variable:
• state = forward: If w is empty, set ri+1.settled ← 1, ri+1.parent =
ri+1.child. The remaining robots {ri+2, ri+3, . . . , rn} set child ← (child + 1)
mod δw and then ri+1.child ← child. If child = ri.parent, it implies that all
ports at w have been used and hence the remaining unsettled robots set state ←
backtrack. Otherwise if w is non-empty, {ri+1, ri+2, . . . , rn} set their state to
backtrack. In both cases, the unsettled robots now move out through child.
• state = backtrack: Let rj be the settled robot at w. The robots
{ri+1, ri+2, . . . , rn} set child ← (child + 1) mod δw and rj .child ← child
(this updates the child port on the settled robot). If child ̸= rj .parent (imply-
ing an available port at w), the robots {ri+1, ri+2, . . . , rn} switch their state to
forward and exit through child port.

The protocol ends when there are no more unsettled robots remaining. Out of the m
edges, each m − (n − 1) non-tree edge is traversed a maximum of four times (twice
from either end) and the tree edges are traversed twice. Hence, the maximum number
of rounds required to execute the DFS Traversal Protocol is 4(m−n+1)+2(n−1) =
4m+ 2n− 2. So, we have the following lemma.

Lemma 1. Let G be a n-node arbitrary, connected and anonymous graph with a maxi-
mum degree ∆. Let n mobile robots with distinct IDs be placed initially at a single node.
Then, the DFS Traversal Protocol disperses each of the mobile robots into n distinct
nodes in O(m) rounds.

3.2 PROCEDURE MYN (MEET-YOUR-NEIGHBOR)

Since the port ordering of nodes is different, it can be tricky to ensure that two robots
on neighbouring nodes meet. Also, it is difficult to time the movement of robots and
guarantee that two neighbours meet without access to a global clock. Since, it can be
essential for two robots to pass information to each other, arranging ways to ensure such
a meeting can be beneficial. PROCEDURE MYN is helpful in ensuring that a robot
is able to communicate with all its neighbours at least once when required. We use
the pairing procedure PROCEDURE MYN to ensure that during a scan for neighbours,
a robot meets all its neighbours. For this, the algorithm essentially exploits the bits
representing the IDs of the robots. Let λ denote the largest ID among all the n robots.
Therefore, the robots use a log(λ) bit field to store the IDs. PROCEDURE MYN runs
in phases. Each phase consists of ∆ rounds and there are a total of log(λ) phases. Each
phase corresponds to a bit in the field (with robots having IDs less than log(λ) bits

Run for Cover: Dominating Set via Mobile Agents 7

padding the rest with 0s). The steps in a phase are simple, starting with the rightmost
bit, if the bit is 1, the robot uses ∆ rounds to visit all its neighbours. If the bit is 0, the
robot waits at its node for visitors. Clearly, since all robots have unique IDs, for any two
pairs of neighbouring robots, there exists at least one round in which the robots have
different bits and meet. A detailed procedure of the MYN procedure can be found in
Algorithm 3.2. Now, to find the neighbouring robots, a robot ri stationed at a node u
does the following.
1. Checks the rightmost bit in its ID field.
2. If the bit is 1, ri goes to each of its neighbours one by one from u following ascend-

ing order of the port numbers and back. Note that, from u, there are ports numbered
from 1 to δu each leading to a distinct neighbour of u.

3. If ri finds a robot rj (or other multiple robots) in its neighbour, it can exchange
required information.

4. Otherwise, if the bit id 0, the robots sits at u and waits for ∆ rounds.
5. In the next phase of ∆ rounds, ri now checks its second bit from the right and

repeats the same process as described in the previous steps.
6. The process continues for log λ phases, ensuring every bit in the ID field has been

scanned. If there are no more bits remaining in ri.ID and log λ rounds have not
been completed (implying that ri has a smaller ID length than log λ bits), ri as-
sumes the current bit as 0 and stays back at its own node for the rest part of the
algorithm.

Clearly, the procedure takes no more than O(log(λ)) rounds to ensure that two specific
neighbours meet, thus to ensure that a robot meets with all its neighbours it takes no
more than O(∆ log(λ)) rounds. Hence,

Lemma 2. PROCEDURE MYN ensures that a robot meets all its neighbours at least
once and takes no more than O(∆ log(λ)) rounds.

Algorithm 1 PROCEDURE MYN
Require: A mobile robot r with log λ bit ID field - b1b2...blog λ;
Ensure: r meets every other robot in its neighbourhood

1: for i = log λ to 1 do
2: if bi is 1 then
3: for j = 1 to ∆ do
4: r visits neighbour at the port δj . If the neighbour contains a robot, it can commu-

nicate with it.
5: end for
6: else
7: r remains at its node for ∆ rounds.
8: end if
9: end for

8 P. Chand et al.

4 Algorithm for Minimal Dominating Set

In this section, we show that we can achieve a minimal dominating set for both the
rooted and arbitrary initial configuration. In the rooted case, initially, all robots are
gathered at a single root, while in the arbitrary case, the robots are gathered in clusters
across the graph.

4.1 Single Source Initial Configuration

Let us first consider the case where all the mobile agents are initially housed at a single
node of the graph. We refer to such a configuration as a single source or rooted initial
configuration. We design an algorithm for the mobile agents to work collaboratively to
compute a minimal dominating set of G. In particular, agents identify a subset D of
the vertices V such that D is a minimal dominating set of G. Given n agents that start
from a single source, our algorithm takes O(m) rounds to find such a D, where m is the
number of edges in the graph. Agents are not required to know any graph parameters.

To solve the dominating set problem in the rooted initial configuration, we mod-
ify the standard DFS traversal (see Section 3.1) to allow the agents to simultaneously
traverse and compute the dominating set D.

To ensure that the robots know if they are part of the dominating set for G in the
end, each robot is coloured accordingly. The robots that occupy the nodes D ⊂ V are
coloured “black” to distinguish them from other mobile robots. Thus, the set of mobile
robots coloured black forms the dominating set for G. To ensure proper colouring, each
robot uses an additional variable ri.colour along with the ones used for executing the
DFS Traversal. ri.colour is used to classify the nature of the robot with respect to the
dominating set. Each robot, at a given time, has one out of the three colours - black,
grey and white. Initially, all robots are white in colour. Robots change their colour to
black once it becomes a member of the dominating set. Robots that are adjacent to a
black coloured robot are coloured grey.

We will now describe our algorithm in detail. As mentioned before, our algorithm
for creating a dominating set follows a modified version of the depth-first algorithm
described in Section 3.1. We do so by the addition of an extra step each time a robot
explores a new node, to decide a robot’s colour.

As in the DFS, the collection of robots R = {r1, r2, . . . , rn} start the algorithm
from the root ∈ V . The robots leave the smallest ID robot r1 at root, where r1 settles
and colours itself black. In general, the robots navigate the graph via the DFS protocol
with the extra step of deciding the colour of the robot that settles. This is decided as fol-
lows. Each time the robots decide to settle a robot a the node u, they visit all neighbours
of u. If they find a black settled robot among u’s neighbours, then the robot settling at
u colours itself grey, else it colours itself black. However, the robot that has just arrived
at a new empty node with its parent coloured black can immediately become grey. The
remaining robots move via the smallest port available at u to the next node according
to the DFS traversal protocol (see, Section 3.1) and the algorithm continues.

The unsettled robots scan their neighbour for black robots only in the forward phase.
The algorithm stops when the last unsettled robot that started from root settles and

Run for Cover: Dominating Set via Mobile Agents 9

colours itself. The nodes of G, which we notate by D, that have a black robot placed,
now form a dominating set for the graph G.

Algorithm 2 DOMINATING SET - SINGLE SOURCE (ALGORITHM FOR ROBOT ri)
Require: An n-node anonymous graph with n mobile agents docked at root.
Ensure: Agents settle over the nodes and identify a minimal dominating set.

1: Let the robots {r1, r2, . . . , ri, . . . , rn} be docked at a node root. Robot ri maintains the fol-
lowing list of variables: ⟨ri.id, ri.parent, ri.child, ri.state, ri.colour⟩, where ri.colour is
initially set to white, ri.parent, ri.child are set to null and ri.state is set to forward.

2: while ri is unsettled do
3: if ri is not the minimum ID robot among the unsettled robots then
4: move according to DFS Traversal Protocol 3.1
5: else
6: if the current node is empty then
7: set ri.settle← 1 and inform the other unsettled robots to stay stationary
8: move to and check the colour of its parent robot and return
9: if parent is black then

10: sets ri.colour ←grey
11: else
12: visits each neighbour of the current node and if there is at least one black in

its neighbour, set ri.colour ←grey or else set ri.colour ←black
13: inform the remaining unsettled node about the completion of colouring
14: end if
15: else
16: move according to DFS Traversal Protocol 3.1 to find an empty node
17: end if
18: end if
19: end while
20: remain stationary at the current node for the rest of the algorithm
21: The nodes where each black-coloured robot is stationed form the dominating set D of G.

Analysis

Lemma 3. Algorithm 4.1 ensures that each robot is associated with a distinct node in
G and that the subset, D, of robots coloured black forms a minimal dominating set of
G.

Proof. During the course of the algorithm, which begins with a group of unsettled
robots at a specially designated node called root , the robots get settled one by one
in increasing order of the IDs, at some distinct node of G. The DFS protocol ensures
that the entire graph is explored and each node in G contains a settled robot. Since each
settled robot gets immediately coloured as black or grey, Algorithm 4.1 leaves no robot
with the colour white. The black-coloured robots, D, form the dominating set, whereas

10 P. Chand et al.

Fig. 1. Illustration of Mobile Robots identifying a Minimal Dominating Set. The robots start at
the root node A. The minimum ID robot settles at A and colours itself as black. The rest of the
robots follow the DFS and ends up at node B, where the next minimum ID robot in the group
settles and colours itself as grey (since it comes from a black parent). The rest of the robots
now stops at the next node in the DFS, node C. The settled robot at C scans the neighbourhood
(teal coloured edges) and finds no black robot and hence colours itself as black. The algorithm
continues along the DFS route (blue-directed edges) shown from (iv) to (vii), settles and colours
robots accordingly till it reaches the final configuration (viii). The red edge denotes a backtrack.
After the configuration of (viii) is reached, no new node is discovered and the algorithm stops
after completing the DFS of the graph.

the grey robots are the ones that are adjacent to one or more robots included in the dom-
inating set. Note that a robot is coloured grey if and only if there exists a neighbour that
was coloured black. Since there are no white robots at the end of the protocol, D is a
dominating set of G.

We now prove that D represents a minimal dominating set for the graph G. For
contradiction, let us assume that after the end of the algorithm, we can remove a black
node (robot) rx from D without disrupting it’s dominating set property. Therefore, D is
still a dominating set for G without rx. Now, since the algorithm executes sequentially,
the parent and every neighbourhood of rx is grey after the end of the algorithm. It leaves
the node rx uncovered by any black node. Therefore D does not form a dominating set
for G with rx excluded.

Lemma 4. Algorithm 4.1 executes in O(m) rounds.

Proof. The algorithm essentially executes a depth-first search, in which it settles the n
robots, one by one. The depth-first search takes up O(m) rounds. In addition to that,
once a robot ri settles at a specific node u, it takes a maximum of O(δi) rounds, where δi

Run for Cover: Dominating Set via Mobile Agents 11

is the degree of the node u, to search for robots among its neighbours, to decide its own
colour. Therefore, the algorithm takes O(m+

∑
(δi)) = O(m) rounds to execute.

Memory per robot. Each robot stores its ID which takes O(log(n)) bit space. Along
with that, the parent and child pointers take O(log(∆)) bit memory each. Other
variables take up a constant number of bits. Therefore, the memory complexity is
O(log(n+∆)) = O(log(n)) bits.

Combining it with Lemma 3 and Lemma 4 and we have the following theorem.

Theorem 1. Let G be an n-node arbitrary, connected and anonymous graph with m
edges. Let n mobile robots with distinct IDs in the range [0, nc], where c is constant,
be placed at a single node, known as the rooted initial configuration. Then, a minimal
dominating set for G can be found in O(m) rounds using Algorithm 4.1 with O(log(n))
bits of memory at each robot.

As a by-product, the Algorithm 4.1 computes a maximal independent set (MIS). In
fact, the set D is also a MIS for G. Thus we get the following result on MIS.

Theorem 2 (Maximal Independent Set). Let n mobile robots be initially placed at a
single node of an n-node anonymous graph G with m edges. Then there is an algorithm
(cf. Algorithm 4.1) for the robots to compute a maximal independent set of G in O(m)
rounds and with O(log(n)) bits memory per robot.

Proof. A robot receives a black colour after ensuring that no neighbour is coloured
black. This ensures that no two adjacent nodes host black robots guaranteeing D to
be an independent set. Now, let’s assume that we can add a black node v to D while
maintaining its independent set property. Since, the robot at v was initially grey, it must
have had a black neighbour at some node u. Therefore, we happen to have two adjacent
nodes u and v that are resided by black robots, contradicting the fact that D is an
independent set. Therefore, no new black node can be added to the independent set D,
making it a maximal independent set (MIS).

4.2 Multi Source Initial Configuration

In the multi-source (or arbitrary) case, the n robots {r1, r2, . . . , rn} start as ℓ < n
clusters, placed arbitrarily at ℓ different nodes of G. Once again, our algorithm for con-
structing dominating sets is inspired by the DFS procedure for dispersion [13]. In this
section, we show how we can achieve a minimal dominating set for such a configura-
tion.

The robots first perform dispersion using the method described in
Kshemkalyani[13]. Briefly, their algorithm allows each of the ℓ clusters to begin
DFS independently. If a DFS meets no other DFS, then it executes to completion as in
the rooted case. If not, their algorithm ensures that if two (or more) DFSs meet while
dispersing, they are all merged into the DFS with the largest number of settled robots.
That is if DFS i meets DFS j and i has more settled robots at the time of meeting, then
j is collapsed and all of j’s robots join in executing i’s DFS. This act of gathering all
of j into i is called subsumption. Thus, when two DFSs meet, the shorter DFS gets

12 P. Chand et al.

subsumed by the larger one. Note that this means that once dispersion is achieved,
there may be several DFS trees.

Let us assume then, after the end of the algorithm, there are ℓ∗ ≤ ℓ indepen-
dent DFSs that never met (each with its own unique root). Each DFS is identified
by a unique label treelabel (which is the ID of the smallest robot in the tree).
Our procedure to create the minimal dominating set consists of two steps i) elect
a global leader robot r∗ ii) with r∗ as root, use an adaption of Algorithm 4.1 to
achieve a minimal dominating set. Note that the dispersion algorithm in [13] takes
O(m) rounds. To ensure coordination, each robot waits to begin the leader election
protocol after cn∆ rounds for a sufficiently large constant c from the start of dispersion.

Leader Election: We first use the PROCEDURE MYN (see Section 3) to ensure that all
robots first meet their neighbours. When a robot meets a robot from a different ID, they
share their treelabels with one another. When a robot receives a lower treelabel value,
it updates its own treelabel to the lower value. After PROCEDURE MYN has been exe-
cuted, each robot, starting from the leaf nodes in a DFS (say DFS i) now sends its newly
updated treelabel value to the root of DFS i (rooti) via its parent pointers. The root
of the DFS i, rooti, waits for O(n) rounds as it receives different values of treelabel
continuously from its leaf nodes (up-casting). The rooti now compares the minimum
treelabel values received from its children with its own treelabel and decides on the
minimum treelabel. It then sends it along through its children into each and every node
of its, in the DFS (down-casting). All the robots in DFS i are now updated with the
lowest treelabel value. This marks the end of a phase. After the end of ℓ (although ℓ∗ is
sufficient, its value is unknown) such phases, it is guaranteed that each of the n robots
in G now has a consistent treelabel value. The final treelabel value is the minimum
among the ℓ∗ DFSs, however, it may not represent the minimum ID robot, as it may be
consumed by a larger DFS during the dispersion process happening earlier. After the
end of the protocol, the robot that has the globally decided minimum treelabel contin-
ues the algorithm. We identify the leader robot with the minimum treelabel value as r⋆.

Creating Minimal Dominating Set: With r⋆ as a leader, it first creates a new DFS of
the graph G with the node containing r⋆ as the root node. Since the robots are dispersed
across each and every node of G, the nodes of G are now distinguishable owing to the
distinct IDs of the mobile robots in the nodes. r⋆ starts from the root and rewrites the
parent and child pointers of each robot as its traverses across the whole graph G in a
depth-first manner. Moving to an empty node implies that r⋆ has arrived at the root. In
such cases, r⋆ modifies its own variables accordingly. The other details regarding the
DFS can be found in Section 3.1. After the end of this process, which takes an additional
O(m) rounds, the newly assigned pointers of the robots now represent a DFS of G with
r⋆ (node) as the root.

Initially, all the robots are coloured white by default. The identification of the dom-
inating set takes place in similar lines as with the rooted case described in the previous
Section 4.1. The algorithm begins with r⋆ colouring itself black. r⋆ then moves the next
node (say, node u resided by a robot ru) following the newly created DFS. Upon the
arrival of r⋆ at u, ru scans each of its neighbours to check if there is a black robot. If

Run for Cover: Dominating Set via Mobile Agents 13

there are no black robots, ru colours itself as black otherwise if there is at least one black
robot in the neighbourhood of u, ru colours itself grey. After ru has changed its colour
from white, it informs r⋆ as r⋆ now moves to the next node following the DFS. The
process continues similarly with each new node of degree O(δi), taking O(δi) rounds
its scan its neighbour and colour itself accordingly. The algorithm terminates as soon as
r⋆ completes the DFS of G.

Therefore, combining the results from previous section (Section 4.1, DFS traversal
and PROCEDURE MYN, we get the following main result.

Theorem 3. Let G be an n-node anonymous graph with the maximum degree ∆. Let
n mobile robots with distinct IDs in the range [0, nc], where c is constant, be initially
placed arbitrarily among ℓ nodes of G in ℓ clusters. Then, a minimal dominating set for
G can be found in O(ℓ∆ log(λ)+nℓ+m) rounds using Algorithm 4.2 with O(log(n))
bits memory per robot. λ is the maximum ID-string length of the robots.

Proof. Algorithm 4.2 first disperses the n robots over the n nodes using the algo-
rithm in [13] , which takes O(m) rounds. We then elect a leader among the robots.
There are at most ℓ DFS trees (as it starts with ℓ clusters initially). Each DFS tree
uses PROCEDURE MYN to communicate with the neighbouring DFS (if any). Once
the leaf nodes receive a new communication from a different DFS, it sends the in-
formation to the root of its DFS; which may take O(n) rounds. In the worst case
PROCEDURE MYN may be executed ℓ times to elect the leader. From Lemma 2 we
know that PROCEDURE MYN takes O(∆ log(λ)) rounds. Thus, the leader election re-
quires O(ℓ(∆ log(λ) + n)) rounds. The leader robot then finds a minimal dominating
set while forming a single DFS tree using at most O(m) rounds. Finally, the domi-
nating set identification takes another O(m) rounds. Therefore, the time complexity of
Algorithm 4.2 is O(m+ ℓ(∆ log(λ)+n)+m) = O(m+ ℓ∆ log(λ)+nℓ) rounds.

5 Algorithm for ln(∆)-Approximation Minimum Dominating Set

In this section, we describe an approximation algorithm that gives us a dominating
set with a size that is optimal within a factor of ln(∆) in the mobile agent setting.
In the previous algorithms, our methodology was based on scanning only the 1-hop
neighbourhood of a robot to assign a robot one of the two colours - black or grey. The
set of black coloured robots formed the dominating set for G. Although these previous
algorithms (rooted) ran in O(m) rounds, the approximation ratio of the dominating set
size produced with these algorithms to the optimal (minimum) dominating set could be
huge. For example, if we consider a star graph with the robots starting at one of the
leaves, then all leaf nodes become included in the dominating set (Figure 2). Although
that dominating set is minimal, it is far from optimal. The optimal in the case of a star
graph is the single non-leaf node at the centre. Therefore, the approximation ratio in
such a case can be as large as O(n). In this section, we adapt the well-known greedy
distributed algorithm [16], to provide a better approximation solution for the dominating
set problem in the mobile agent setting.

In [16], the authors give a greedy distributed algorithm (referred to in the paper
as “distributed database coverage heuristic (DDCH)”) for calculating a dominating

14 P. Chand et al.

Fig. 2. When the robots start at a leaf node (node A), our previous algorithm (Algorithm 4.1)
produces a minimal dominating set identified by the black nodes as in (v) by executing through
(ii), (iii) and (iv). The figure right next to (v) on the other hand, shows an optimal dominating set.
Therefore, for an n node graph, the size of a minimal dominating set could be as bad as O(n)
compared to the optimal.

set with an approximation ratio of ln∆ to the optimal set size. The same is reintro-
duced for a synchronous communication model where the nodes can communicate with
each other without moving [6]. The authors also refined the algorithm to a randomized
version obtaining a better-expected running time. We essentially adopt the greedy dis-
tributed algorithm to our own model. The challenge is of course as follows: in the earlier
distributed setting, nodes are allowed to communicate with their neighbours within the
span of a round, whereas the robots in our model cannot communicate with each other
unless they are at the same node. While the robots can gather information by visiting
neighbouring robots, however, it is difficult to time the movement of robots and guaran-
tee that two neighbours meet without access to a global clock. However, with the help
of PROCEDURE MYN introduced in the previous section, a successful adaptation of
the greedy algorithm is possible. More details follow.

For this protocol, we assume that the n mobile robots of set, R = {r1, r2, . . . , rn}
start from a dispersed position on graph G. That is, they are initially dispersed among
the n nodes of the graph G with each robot at a distinct node of G. If the robots are
arbitrarily placed over G initially, the robots could be re-positioned using the disper-
sion algorithm described in [13]. As in our previous sections, each robot is assigned
a variable colour to keep track of its colour, which can take one of three values white,
grey or black. Let D ⊂ G be the set of black robots at the end of the protocol, and D
forms the dominating set of G. A white robot is one that is not (yet) covered by any
robot in the dominating set. The grey robots represent robots that are already covered
by some robot in D. Initially, all the robots are coloured white.

Let span of a robot ri, w(ri), be the number of white robots in the direct (1− hop)
neighbourhood of ri, including ri itself. Each robot ri uses an extra variable ri.span
for the span values. ri.span has both the ID and the span count. The basic idea of the
protocol is as follows. Each robot calculates the maximum span value within its 2−hop

Run for Cover: Dominating Set via Mobile Agents 15

neighbourhood. If r is the robot that has the maximum span within 2 − hops then r
colours itself black and informs its neighbours. To achieve this, each robot performs the
following four stages (of 2∆ log(λ) rounds each) until there are no white robots left in
the graph:
1. ri calculates its span ri.span: The PROCEDURE MYN, described in the previous

section guarantees that ri meets all its neighbouring robots within O(∆ log(λ))
rounds (“meeting” includes ri being stationary and a neighbouring robot arriving
at ri during these O(∆ log(λ)) rounds). Inside the first O(∆ log(λ)) rounds, the
robot ri communicates with its immediate neighbours and evaluates ri.span.

2. ri gets to know the highest span value within its immediate neighbours
Inside the next O(∆ log(λ)) rounds, ri communicates with its immediate neigh-
bours to know the highest span value within its neighbourhood. If rj .span is
the highest span value among immediate neighbours, ri.span gets replaced by
rj .span. For identical span values, a robot with a lower ID is selected.

3. ri gets to know the highest span value within its 2− hop neighbours
In the next O(∆ log(λ)) rounds of the algorithm, ri visits all its immediate neigh-
bours once again to check if there are any new updated span values (possibly from
a neighbour’s neighbour).

4. if ri coloured itself black, then it informs its neighbours.
After the completion of the first three stages, ri has the information of the highest
span and the robot that has the highest span in its 2−hop neighbourhood. If ri itself
is the robot with the highest span, it colours itself black. Any robot that receives
black colour then takes additional O(∆ log(λ)) rounds to go to its neighbours and
colour any white robot in their neighbour as grey

Note that once a robot colours itself black, its colour does not change. All robots then
reset their span values and the next phase of O(∆ log λ) begins. The algorithm runs till
each robot ri has no more white robots in their neighbourhood.

Lemma 5. Let ri and rk be two robots at a distance of 2 hops from each other. Then,
the value of rk.span can be communicated to ri within O(∆ log(λ)) rounds.

Proof. Since ri and rk are at a distance of 2 hops from each other, there exists a se-
quence of robots (nodes) (ri, ri1 , rk) from ri to rk. In the first O(∆ log(λ)) rounds,
ri can communicate with ri1 to get the value of ri1 .span. In the meanwhile, ri1 also
collects the value of rk.span in the same O(∆ log(λ)) round. Therefore, in the second
sub-phase of O(∆ log(λ)) rounds, when ri communicates with ri1 again, ri receives
the value of rk.span through ri1 or the vice-versa.

Lemma 6. Algorithm 5 computes a dominating set D which is a ln(∆) approximation
to the optimal size dominating set D∗ for the graph G.

Proof. Our protocol emulates the greedy distributed algorithm in [6] by ensuring that
the node with the highest span within a two-hop neighbourhood becomes a part of the
dominating set. Hence the ln(∆) approximation follows directly from the approxima-
tion results in [6, 23].

Lemma 7. Algorithm 5 takes O(n∆ log(λ)) rounds to execute.

16 P. Chand et al.

Algorithm 3 ln(∆) OPTIMAL DOMINATING SET (ALGORITHM FOR ROBOT ri)

1: while there are white robots in the neighbourhood do
2: for i = 1 to O(∆ log λ) do ▷ Stage 1
3: Each robot ri ∈ R computes its span ri.span using compute span

PROCEDURE MYN.
4: if ri.span is zero then
5: Then ri stops executing the protocol. But will provide information if requested.
6: end if
7: end for
8: for i = 1 to O(∆ log λ) do ▷ Stage 2
9: Each robot ri ∈ R communicates its span ri.span its neighbours.

10: end for
11: for i = 1 to O(∆ log λ) do ▷ Stage 3
12: Each robot ri ∈ R computes the maximum span within 2-hops.
13: end for
14: if ri.span is highest among all robots in the 2− hop neighbourhood then, ▷ Stage 4
15: ri colours itself as black
16: for i = 1 to O(∆ log λ) do
17: ri meets each neighbour and colours any white robot as grey (use

PROCEDURE MYN)
18: end for
19: end if
20: Reset ri.span for all ri ∈ R.
21: end while

Proof. There are four stages within a single while loop in Algorithm 5. The first stage
starts by calculating the span of each robot which takes O(∆ log(λ)) rounds. In the
next two stages of O(∆ log(λ)) rounds, the robots communicate their span to all the
robots with a distance of 2− hops. In the final stage, when a robot gets a colour black
(the robot with the highest span in its 2 − hop neighbourhood), it can take another
O(∆ log(λ)) rounds to instruct its neighbouring robots to colour themselves as grey.
So, a single while loop from span calculation till colouring robots as grey; takes no
more than O(∆ log(λ)) rounds. As the execution of a single while loop gives us at least
one black robot , in the worst case, the algorithm needs at most O(n) iterations of the
while loop. Thus, giving us a complexity of O(n∆ log(λ)) rounds.

Theorem 4. Let G be a n-node arbitrary, connected and anonymous graph with a
maximum degree ∆. Let n mobile robots with distinct IDs are placed in a dispersed
initial configuration. Then, a ln(∆)-approximation solution to the minimum dominat-
ing set for the graph G can be found in O(n∆ log(λ)) rounds using Algorithm 5 with
O(log(n)) bits of memory per robot, where λ is the maximum length of the ID-string of
the robots.

Proof. From Lemma 6, we know that Algorithm 5 provides a ln(∆) approximation
solution. And from Lemma 7 we know that it takes at most O(n∆ log(λ)) rounds to
execute. Thus, the theorem.

Run for Cover: Dominating Set via Mobile Agents 17

6 Conclusion and Future Work

In this paper, we solved the problem of finding the dominating set of a graph G using
mobile agents. When the agents start at a single source, we are able to find a minimal
dominating set in O(m) rounds. On the other hand, for the multi-source starting con-
figuration, the robots obtained a minimal dominating set in O(ℓ∆ log(λ) + nℓ + m)
rounds. Additionally, the dominating sets obtained by these two algorithms also serve
as a maximal independent set for the graph G. In the last section, we described an ap-
proximation algorithm that gave us a dominating set with a size that is optimal within
a factor of ln(∆). The approximation algorithm had a running time of O(n∆ log(λ))
rounds.

In future work, it would be interesting to investigate the lower bounds - in terms of
time, memory and number of robots being used, for the dominating set problem in the
same distributed model. In our paper, the dominating sets are also MIS, so, it would be
interesting to see if it’s possible to produce dominating sets that are also connected, i.e.,
connected dominating sets. It would also be exciting to explore other classical graph
problems, such as ruling sets, colouring etc., And of course, given practical real-world
concerns, adaption of the algorithms for faulty robots is an important aspect to be con-
sidered for the future as well.

References

[1] Augustine, J., Moses Jr., W.K.: Dispersion of mobile robots: A study of memory-
time trade-offs. In: ICDCN (2018)

[2] Chand, P.K., Kumar, M., Molla, A.R., Sivasubramaniam, S.: Fault-tolerant disper-
sion of mobile robots. In: CALDAM (2023)

[3] Das, R., Sharma, A., Sau, B.: Maximum independent set formation on a finite grid
by myopic robots. arXiv preprint arXiv:2207.13403 (2022)

[4] Deurer, J., Kuhn, F., Maus, Y.: Deterministic distributed dominating set approxi-
mation in the congest model. In: PODC. p. 94–103 (2019)

[5] Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman and Co., USA (1990)

[6] Jia, L., Rajaraman, R., Suel, T.: An efficient distributed algorithm for constructing
small dominating sets. Distrib. Comput. 15(4), 193–205 (2002)

[7] Kamei, S., Tixeuil, S.: An asynchronous maximum independent set algorithm by
myopic luminous robots on grids. arXiv preprint arXiv:2012.03399 (2020)

[8] Karp, R.M.: Reducibility among Combinatorial Problems, pp. 85–103. Springer
US, Boston, MA (1972)

[9] Kaur, T., Mondal, K.: Distance-2-dispersion: Dispersion with further constraints
(2023)

[10] Kshemkalyani, A.D., Ali, F.: Efficient dispersion of mobile robots on graphs. In:
ICDCN (2019)

[11] Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Fast dispersion of mobile robots
on arbitrary graphs. In: ALGOSENSORS (2019)

[12] Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Dispersion of mobile robots using
global communication. J. Parallel Distributed Comput. (2022)

18 P. Chand et al.

[13] Kshemkalyani, A.D., Sharma, G.: Near-optimal dispersion on arbitrary anony-
mous graphs. In: OPODIS (2021)

[14] Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In:
PODC. p. 300–309. Association for Computing Machinery, New York, NY, USA
(2004)

[15] Kuhn, F., Wattenhofer, R.: Constant-time distributed dominating set approxima-
tion. In: PODC. p. 25–32. Association for Computing Machinery (2003)

[16] Liang, B., Haas, Z.: Virtual backbone generation and maintenance in ad hoc net-
work mobility management. In: IEEE INFOCOM. pp. 1293–1302 Vol.3 (2000)

[17] Molla, A.R., Mondal, K., Moses Jr., W.K.: Efficient dispersion on an anonymous
ring in the presence of weak byzantine robots. In: ALGOSENSORS (2020)

[18] Molla, A.R., Mondal, K., Moses Jr., W.K.: Byzantine dispersion on graphs. In:
IPDPS (2021)

[19] Molla, A.R., Moses Jr., W.K.: Dispersion of mobile robots: The power of random-
ness. In: TAMC (2019)

[20] Pattanayak, D., Sharma, G., Mandal, P.S.: Dispersion of mobile robots tolerating
faults. In: ICDCN (2021)

[21] Pramanick, S., Samala, S.V., Pattanayak, D., Mandal, P.S.: Filling mis vertices of
a graph by myopic luminous robots. In: ICDCIT (2023)

[22] Sultanik, E., Shokoufandeh, A., Regli, W.: Dominating sets of agents in visibility
graphs: Distributed algorithms for art gallery problems. In: AAMAS. vol. 2, pp.
797–804 (2010)

[23] Wattenhofer, R.: Chapter 12, lecture notes: Principles of distributed computing
(2004), https://disco.ethz.ch/courses/ss04/distcomp/

https://disco.ethz.ch/courses/ss04/distcomp/

	Run for Cover: Dominating Set via Mobile Agents

