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Abstract. Participatory budgeting (PB) has been widely adopted and has attracted significant research
efforts; however, there is a lack of mechanisms for PB which elicit project interactions, such as substi-
tution and complementarity, from voters. Also, the outcomes of PB in practice are subject to various
minimum/maximum funding constraints on ‘types’ of projects. There is an insufficient understanding of
how these funding constraints affect PB’s strategic and computational complexities. We propose a novel
preference elicitation scheme for PB which allows voters to express how their utilities from projects
within ‘groups’ interact. We consider preference aggregation done under minimum and maximum fund-
ing constraints on ‘types’ of projects, where a project can have multiple type labels as long as this
classification can be defined by a 1-laminar structure (henceforth called 1-laminar funding constraints).
Overall, we extend the Knapsack voting model of Goel et al. [26] in two ways – enriching the preference
elicitation scheme to include project interactions and generalizing the preference aggregation scheme to
include 1-laminar funding constraints. We show that the strategyproofness results of Goel et al. [26]
for Knapsack voting continue to hold under 1-laminar funding constraints. Moreover, when the funding
constraints cannot be described by a 1-laminar structure, strategyproofness does not hold. Although
project interactions often break the strategyproofness, we study a special case of vote profiles where
truthful voting is a Nash equilibrium under substitution project interactions. We then turn to the study
of the computational complexity of preference aggregation. Social welfare maximization under project
interactions is NP-hard. As a workaround for practical instances, we give a fixed parameter tractable
(FPT) algorithm for social welfare maximization with respect to the maximum number of projects in
a group when the overall budget is specified in a fixed number of bits. We also give an FPT algorithm
with respect to the number of distinct votes.

1 Introduction

Participatory Budgeting (PB) is a process through which residents can vote on a city government’s
use of public funds [11,47,21]. Residents might, for example, vote on allocating funds between
projects like street repairs or enhancing public safety. PB has been shown to promote citizen
engagement, government transparency, and good governance [48,33,23]. Projects in PB have a
fixed cost, and there is an overall budget B of funds that the city can spend.

Several voting methods have been used in PB [6]. The most widely used methods in practice
are K-Approval [8], in which voters approve up to K projects on the ballot and Approval [7], in
which voters approve any number of projects that they like. These methods are preferred for their
simplicity for the voters. In Ranking [1], voters rank all the projects in order of value or value-
for-money. PB organizers often want voters to understand the budgetary constraints they face. For
this, a popular choice is Knapsack voting [26], in which voters select any number of projects, subject
to their costs satisfying the budget constraint B.

However, all these methods ignore utility interactions from different projects. In fact, most
existing work in PB (with the notable exceptions of [30,16,41]) assume that the utilities of voters
are additively separable over different projects. This assumption fails to capture many real-world
complexities of voter preferences [2,42]. For example, consider the following two projects proposed
to enhance public safety in area A.

⋆ In alphabetical order. Emails: mohakg@stanford.edu, sahasras@stanford.edu, and ashishg@stanford.edu. We thank
Lodewijk Gelauff and Sanath Kumar Krishnamurty for their insightful comments on this work.
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Example 1. Project 1: Install more streetlights in area A.
Project 2: Hire additional police officers for area A.

Some voters may believe that either of these projects is sufficient to solve the problem, but
doing both would be excessive. For these voters, the two projects are substitutes. However, some
other voters may think that both projects are necessary to make area A safe – and doing only one
project would be a waste of money since, in that case, they will continue to avoid the area. For
these voters, the two projects are complements. Another group of voters may think that additional
police officers are not required and only streetlights are required for the area. For these voters,
these two projects are independent (and they like only Project 1.)

Example 1, with only two projects, illustrates the complexity of eliciting different voters’ prefer-
ences in PB in real-world scenarios. All the methods we discussed earlier, i.e., K-Approval, Approval,
Ranking, and Knapsack voting, fail to capture the different preferences of the voters in Example 1.

There is another natural type of project interaction, which occurs when some projects contradict
each other. Consider the following example for road development.

Example 2. Project 1: Widen the car lane at street X.
Project 2: Build a bike lane on street X.

Often due to physical constraints, at most one of these projects can be done. In such cases,
these projects are contradictory. Ideally, the PB ballot must inform the voters of such a real-world
constraint and restrict the space of their possible votes accordingly.

Previous works [30,16] have modelled project interactions in PB via various utility functions.
However, their preference elicitation schemes do not enable voters to express their opinions on
various project interactions. For example, Jain et al. [30] use Approval voting and assume that
the PB organizer knows the project interactions. Fairstein et al. [16] allow voters to express their
own groups of projects with interacting utilities; however, they only consider substitution project
interactions. This paper aims to fill this gap and design an intuitive preference elicitation scheme
under which voters can express a broader range of project interactions than in the existing literature.

Another contribution of this paper is the study of the implications of funding constraints on PB’s
strategic and computational aspects. From a fairness and equity point of view in budgetary tasks,
imposing maximum and/or minimum funding constraints on types of projects is often desirable.
Moreover, a project can have multiple ‘types’. For this, we consider a 1-laminar structure of type
labels of projects. As we show in Observation 2, when the funding constraints are defined on this
1-laminar structure of project labelling, these can be represented as a rooted tree – which, in turn,
implies a hierarchical ordering of these project labellings.

Such hierarchically defined funding constraints are natural to study for PB 1. The highest or-
der constraint is the overall budget constraint B. The second-order constraint may, for example,
be on the funding to different districts in the city. Further down, for each district, we may have
constraints on department-level maximum and minimum funding, such as for public safety, infras-
tructure, and outreach. Within each department, there may be funding constraints on different
sub-departments. Each sub-department may be proposing several projects on the ballot. There-
fore, the 1-laminar structure of funding constraints closely captures the situations that may arise
in real-world PB. We study how these funding constraints affect the strategic considerations2 of
voters and the computational complexity of preference aggregation algorithms.

1 See, e.g., here and here that the US federal discretionary and mandatory fundings are described hierarchically.
2 Note that the funding constraints do not restrict the space of possible votes – these constraints are imposed only

on the PB outcome. It is conceivable that a PB organizer may impose these constraints on the votes too. However,
we believe that this is not a good idea. It makes voting complicated and restricts voters’ freedom to express their
opinions. For example, in a PB election in Austin, TX, USA, in 2020, certain groups expressed dissatisfaction with

https://www.cbo.gov/system/files/2023-03/58890-Discretionary.pdf
https://www.cbo.gov/system/files/2023-03/58889-Mandatory.pdf


1.1 Overview of Our Proposed Model

Same as Jain et al. [30], we adopt a framework wherein the projects on the ballot are partitioned into
groups3 by the PB organizer. These groups would typically correspond to a theme – for example,
public safety, road development, food support, etc.4 We assume that projects in different groups
have non-interacting utilities for all voters; however, for projects within a group, there can be one of
four possibilities regarding project interactions: the projects are 1) substitutes, 2) complementary,
3) contradictory, or 4) independent (no interaction). We formally describe the class of preferences
expressible in our proposed method in Observation 1 in §2.2. Crucially, in our model, voters need
not agree on these project interactions except when the projects are contradictory (in this case, the
ballot is designed to reflect the interaction).

Votes in our scheme have three parts. First, voters allocate funds to different groups of projects
subject to the constraint that the sum of these allocations is, at most, the total funds B. This part
of the vote is inspired by Knapsack voting. In the second part of the vote, they perform approval
voting within all groups to which they allocate nonzero funds. In the third part, they answer a
complementarity question for each group to which they allocate nonzero funds, where they give a
yes/no answer to whether the projects they approve in the group are complementary for them. We
explain in §2.2 how these three simple parts of the voting scheme come together and provide an
intuitive language for the voters to express project interactions.

We adopt a natural generalization of the overlap utility function, which was first given by Goel
et al. [26] for Knapsack voting5. The overlap utility function for Knapsack voting captures, in dollar
terms, the agreement between the voter’s ‘ideal outcome’ and the PB outcome. Without project
interactions, maximizing the overlap utility is equivalent to minimizing the ℓ1 distance between
the chosen outcome and the votes. Our generalization of the overlap utility (Definition 1) captures
project interactions; that is, for a bundle of complementary projects, a voter receives utility only if
the entire bundle is funded, and for a bundle of substitute projects, the voter’s utility saturates at
a point that they specify via their vote.

We take a utilitarian approach and consider preference aggregation for social welfare (SW)
maximization, where SW is the sum of the utilities of all voters. As is crucial for budgeting tasks,
we also incorporate 1-laminar funding constraints to the preference aggregation scheme. We call
our mechanism “Participatory budgeting with project interactions” (PBPI).

1.2 Our Results

We study the incentives of strategic voting in PBPI (§3). For singleton groups, PBPI is same
as Knapsack voting. We show that the strategyproofness6 result of Goel et al.7 [26] continues to

the limitations of the budget input tool as to how much funding they could deduct from the police department
[17]. The city then conducted a follow-up election removing those constraints from the ballot.

3 Disambiguation: see that the ‘group’ and the ‘type’ of a project are different concepts in our model. The groups
are designed on the ballot interface for the purpose of preference elicitation regarding projects with potentially
interacting utilities. A project is in a single group. Whereas a project ‘type’ is a label imposed onto it for the
purpose of specifying funding constraints. A project can have multiple types.

4 The process of designing the ballot and partitioning the projects into groups is very important – the fairness and
effectiveness of the PB election crucially depend on it. However, it is not the subject of study in this work. Jain et
al. [32] propose doing a preliminary election for aggregating the project partitions, and Baumeister et al. [3] study
the complexity of manipulating the ballot by its designers.

5 Recall that Knapsack voting entails a scheme where voters approve as many projects they like as long as the cost
of their approval set is at most B. Such an approval set is referred to as their ‘preferred’ or ‘ideal’ outcome.

6 A voting mechanism is strategyproof [20] if it is a weakly-dominant strategy for all voters to vote truthfully.
7 Goel et al. [26] showed that Knapsack voting is strategyproof for unit-cost projects under the overlap utility

function. Further, their model does not consider project interactions, equivalent to PBPI with singleton groups.



hold under 1-laminar funding constraints. This result has an important implication: the 1-laminar
funding constraints do not make the voting mechanism more complex for a voter. These constraints
may, for example, be shared in a separate document from the actual ballot, and the voter may or
may not review it to make an ‘informed’ decision. Moreover, this result is tight in the sense that if the
the funding constraints do no have a 1-laminar structure, then the mechanism is not strategyproof.

With project interactions, PBPI is often not strategyproof; we study an interesting special case
of vote profiles for which truthful voting is a Nash equilibrium [38] under substitution project
interactions. The arguments used in the proof are subtle and require the construction of a 2-layer
algorithm and a careful analysis of voter strategies and potential benefits from various possible
strategic deviations.

We then study the computational complexity of preference aggregation in PBPI. Due to the
complex project interactions captured in our model, identifying a social welfare maximizing set of
projects under budget constraints is NP-hard. We show that when the project groups have a fixed
maximum size, and the budget is specified in a fixed number of bits, the problem is fixed-parameter
tractable (FPT). For this, we provide a recursive algorithm (§4). Notably, this result holds also
with 1-laminar funding constraints. This result implies that for most real-world instances of PB
(where not too many projects are expected to have interacting utilities together), computational
complexity is not a worry for PB designers, even if the voter turnout is large. We also study the case
where the number of distinct votes is small, and give an FPT algorithm for it. While not applicable
to general PB elections where all voters submit independent votes, this result is important for cases
where a small number of elected representatives engage in a budgetary tasks. Each voter, in this
case, may also have a ‘weight’ denoting how many people they represent.

1.3 Related Work

On Project Interactions in PB. Jain et al. [30] was the first work to propose a model of PB
where projects are divided into groups, and only the projects within a group can have interacting
utilities. Our model PBPI differs from theirs in the following ways:

– They use approval voting. This choice of the preference elicitation method implies that the PB
organizers need to assume the knowledge of project interactions. This further implies that in the
eyes of the mechanism, all voters have the same project interactions. Our preference elicitation
scheme allows different voters to have different project interactions, which they can express in the
vote. Overall, in the trade-off between expressiveness and simplicity, we adopt a more expressive
method, whereas theirs is simpler.

– Their utility function does not consider project costs – it depends only on the number of projects
funded from a voter’s approval set. Our generalization of the overlap utility function accounts for
project costs. This is important when projects have vastly different scales, costs, and utilities.

– PBPI models contradictory projects explicitly, unlike their model.
– In addition to an overall budget constraint (as considered in Jain et al. [30]), we also consider

1-laminar funding constraints on the PB outcome.

Fairstein et al. [16] take an egalitarian approach and give a mechanism which gives a proportional
[40] outcome while accounting for substitute projects, where voters can express which projects are
substitutes.

Rey et al. [41] consider perfect complements and perfect substitute project interactions in PB
via the solution concept of judgement aggregation [35]. However, they also have approval votes,
and therefore the project interactions need to be assumed to be known to the PB organizers.



For multi-winner elections (MW) (MW is the same as PB if all projects have equal costs), Izsak
[28] studies a model with complementarity effects or “synergies” and propose a preference elicitation
scheme based on the submodular degree (a concept coined by Feige and Izsak [18] to capture the
extent to which a function exhibits supermodular behaviour). Izsak et al. [29] extend the model
to categorize candidates into classes and consider interclass and intraclass synergies; they do not
propose a preference elicitation scheme.

On Strategic Voting. Goel et al. [26] study the Knapsack voting model with overlap utilities
and show that their mechanism is strategyproof if one of the two assumptions holds: 1) partial
funding of projects is allowed, 2) projects have unit cost. We adopt a generalization of their overlap
utility function, adapted for capturing project interactions (Definition 1) and extend their model
for capturing project interactions and studying the computational and strategic implications of
funding constraints on the outcome.

Freeman et al. [19] study a class of “moving-phantom” strategyproof mechanisms for PB. They
show that the social welfare-maximizing mechanism is the unique Pareto-optimal one in this class
of mechanisms.

Yang and Wang [50] study strategyproofness in MW elections for various types of restrictions on
the outcome, represented by a graph of the alternatives. For example, they consider cases where the
outcome has to be a connected subgraph, an independent set, or a subgraph of bounded diameter.
Their results do not cover the class of constraints we study, 1-laminar funding constraints.

On Funding Constraints in PB. Patel et al. [39] study a more general model than PB
called group fair knapsack. They consider minimum and maximum constraints on the total weight
of items from a type in the outcome and provide approximation algorithms for several problem
variants.

Jain et al. [31] consider a model where each group of projects has a budget limit in addition
to the overall PB budget limit. While social welfare maximization is NP-hard in their setup, they
give efficient algorithms for several special cases. Chen et al. [13] consider funding constraints in a
setup where the overall budget depends on donations from citizens.

Constraints on the outcome similar in spirit to our funding constraints have also been studied
in MW elections [9,12,50,4]. Bredereck et al. [9] study the computational aspects of identifying an
outcome under various scoring rules and diversity constraints defined over a 1-laminar classification
of candidates. Bei et al. [4] study the fairness-motivated constraints on types of candidates in a
setting where the size of the outcome is not predetermined and can be set to satisfy all fairness-
motivated constraints.

Our model of funding constraints (on a 1-laminar classification) is most similar to that of
Brederek et al. [9]. Their focus is on the computational aspects of the model; in addition to that,
we also study the strategic aspects of voting. Also, our computational results hold for PB and not
just MW elections.

2 Model

In this section, we describe the design of the ballot, our novel preference elicitation scheme, the
utility function, the preference aggregation scheme, and conclude the section with a discussion of
the merits and limitations of the model. Figure 1 is an example of a simple ballot in our mechanism.

2.1 Ballot Design and Preference Elicitation Scheme

There are n voters {1, 2, . . . , n} denoted by [n] and m projects given by P = {p1, p2, . . . , pm}.
Project pj has a fixed positive rational cost cj . B denotes the total budget of funds. An outcome of



Fig. 1. A simple example of a PBPI ballot with a partial vote marked. There are four groups of projects. Groups 1, 2,
and 4 have non-contradictory projects. Group 3 is of contradictory projects; a voter can approve at most one project
from this group. The total budget is B = 300. The costs of projects are given in parentheses next to its name. The
fund allocation f i

g to each group is represented by a slider. The total funds allocated by the voter are represented by
‘Funds Allotted’ and are constrained to be at most B. Finally, there is a complementarity question, via which the
voter can indicate if their approved projects in the group are complementary for them.

an instance of PB is a bundle of projects Q that satisfies the budget constraint
∑

j∈Q cj ≤ B. The
PB organizer partitions the set of projects P into r groups – this partition is Z = {z1, z2, . . . , zr}
such that ∪j∈[r]zj = P and zj ∩ zk = ∅ for all j ̸= k. Groups of projects on the ballot can be of one
of two forms: contradictory and non-contradictory.

In a group of contradictory projects, there is a real-world constraint that at most one of the
projects can be implemented8 (recall Example 2 on road widening). PBPI imposes this constraint
on all voters.

Voter i′s vote vi has three components: (f i, si, ti).

– The fund allocation for group g, f i
g ≥ 0 is the amount of funds that voter i allocates to g. f i

must satisfy the budget constraint
∑

g∈[r] f
i
g ≤ B.

– The approval set in group g, si
g, is the subset of zg that voter i approve.

– Finally, tig is the binary answer to the complementarity question in group g, such that tig = 1 if
voter i considers si

g to be complementary, and tig = 0 if voter i considers si
g to be substitutes or

independent.

The complementarity question is not asked for groups of contradictory projects (see, for example,
Group 3 in Figure 1) where at most one project can be done – here tig is fixed to 0 for notational
convenience. We refer to the set of all votes {vi|i ∈ [n]} as the vote profile V. We further assume
that the project costs cj , total budget B, and fund allocations f i

g ∀i ∈ [n], g ∈ [r] are positive
integers. This is reasonable since the parameters C and B can be rescaled to be integers as long
as these are rational without changing the outcome of PB. Typically in real-world PB, costs and
budgets are not specified at high precision.

8 We can generalize this constraint such that at most k of these projects can be implemented for any k > 0. k can be
different for different groups of projects. All our results will continue to hold. We use k = 1 for clarity of exposition.



2.2 Utility Function and the Class of Expressible Preferences

We adopt a generalization of the overlap utility [26]. In this subsection, we describe how our
preference elicitation method enables voters to express their project interactions and also define
the class of expressible preferences in PBPI.

Definition 1 (Utility). The utility of voter i with vote vi = (f i, si, ti) from a bundle of projects
Q is:

ui(Q) =
r∑

g=1

tig · I(si
g ⊆ Q) · min(f i

g,
∑

j∈{Q∩si
g}
cj) + (1 − tig) · min(f i

g,
∑

j∈{Q∩si
g}
cj)


Here I(·) denotes the indicator function.

Definition 2 (Social Welfare). The sum of utilities of all n voters is the social welfare U(Q),
i.e., U(Q) =

∑
i∈[n] ui(Q). We use the terms social welfare and social utility interchangeably.

A voter’s utility from group g cannot exceed
∑

j∈si
g
cj . Therefore, we may restrict the amount of

funds they allocate to a group, f i
g, at be most

∑
j∈si

g
cj . However, such a condition is not required

for the technical analysis, and we omit it. All our results continue to hold if we impose such a
constraint on f i

g.

The first term in the utility function corresponds to the groups of complementary projects for
the voter (i.e., tig = 1). In this case, the voter receives utility equal to min(f i

g,
∑

j∈{Q∩si
g} cj) if

all the projects they approve in this group are funded. Otherwise, they get zero utility from the
group. Group 4 in Figure 1 is an example of this case for the marked vote. The voter believes that
repairing the potholes and installing the streetlights are both required to make road Y useable –
doing any less will be a waste of money.

The second term captures the utility structure of substitution with satiation. This function is
inspired by the Leontief-free utility function of Garg et al. [22]. In our model, interestingly, this term
can capture the other three cases of project interactions - contradictory, substitute, and independent
groups of projects.

In contradictory groups, voters are allowed to approve at most one project. If voter i approves
project j∗ ∈ zg, their utility from group g is min(f i

g, cj∗) if j∗ ∈ Q and 0 otherwise. See, e.g., Group
3 in Figure 1.

For non-contradictory groups, if a voter believes that the projects they approve are substitutes,
they allocate as many funds f i

g at which their utility is capped (i.e., their point of satiation). Their
utility from the projects in si

g adds up linearly up to the point where it saturates. Overall, it is
min(f i

g,
∑

j∈{Q∩si
g} cj). An example is Group 2 in Figure 1. The voter in the example thinks that

distributing food packets and giving out cash for food are both useful projects, and the utility they
derive from these projects is up to 70. Note that this is less than the sum of the costs of the projects
they approve in the group.

However, if the projects are independent for them, voters can express this by allocating funds
f i

g that cover the cost of all the projects they approve in the group. An example is Group 1 in
Figure 1 for the marked vote. Here, the voter thinks that new tennis courts and a new volleyball
court are both useful, and the utilities are independent. They allocate funds f i

g equal to the costs
of the two projects so that their utility function from this group is not saturated at f i

g.
See that PBPI is a generalization of the knapsack voting framework of Goel et al. [26]. If all

projects are independent, then a voter can allocate f i
g equal to the sum of costs of the projects they



approve in the group and set tig = 0. PBPI can, in fact, elicit a much richer class of preferences
from individual voters, as we describe in the following.

Class of Expressible Preferences
The most expressive PB scheme is one where voters report their utility for each possible subset

of projects. This requires 2m entries from each voter and is infeasible except for very small ballots.
On the other hand, Approval and K-Approval voting methods focus on simplicity and disregard the
projects’ costs and project interactions. Our mechanism PBPI takes the middle ground between
the two extremes in the trade-off between expressiveness and simplicity. We summarize the class of
preferences expressible in PBPI below.

Observation 1 For a group of contradictory projects, a voter can express their:

– A. Top choice, and the utility they get from it, which can be up to its cost.

For non-contradictory groups, a voter can express the following preferences:

– B1. Perfect complements: The voter views the set of projects si
g as one unit, and their utility

from this unit is f i
g (or the cost of the unit, whichever is lower) if this unit is implemented entirely

and 0 otherwise.
– B2. Perfect substitutes with satiation: The utility from each project is equal to its respective

cost, but their total utility from the group saturates at f i
g.

– B3. Independent: The voter views all projects in si
g as independent, and the utility from each

equals its cost (as per the standard Knapsack model [26]).

The cases B2 and B3 are differentiated in the vote by the satiation level expressed in f i
g. For

tig = 0, when f i
g is at least equal to the sum of the costs of all the projects approved by the voter,

the group is of independent projects for them, and substitute projects otherwise.

2.3 Preference Aggregation and Funding Constraints

A line of work on PB [31,39] has studied the problem of imposing minimum and/or maximum fund-
ing constraints on types of projects to ensure the diversity of the outcome. This is sometimes done
with the idea that a particular type of projects may be more beneficial to certain demographics in
society. Since fairness-motivated interventions based on demographics are often hard to implement
in PB [24] or are disallowed by law [45], imposing funding constraints on types of projects is a
reasonable proxy to obtain a diverse and equitable outcome.

Let L be a set of labels. Denote the set of projects with the label l ∈ L by Pl. We refer to
the set of projects Pl as ‘type’ l. Each project can have any number of labels from set L. These
labels could, for example, indicate the project’s geographic location or theme (e.g. infrastructure,
education, etc.). However, this general system of project labels is difficult to study formally for
computational complexity and strategic voting. Therefore we make the following assumptions.

Assumption 1 (1-laminar labelling) The labelling is 1-laminar9. That is, for any two distinct
labels x and y, the sets Px and Py satisfy either a) Px ∩ Py = ∅ or b) Px ⊂ Py or c) Py ⊂ Px.

Observation 2 Any 1-laminar labelling can be represented as a rooted tree, denoted by TL. There is
a node corresponding to each label. The root node corresponds to a default label (which we construct
for notational convenience) that applies to all projects. Nodes of all labels y such that Py ⊂ Px are
children of the node representing label x if there is no z satisfying Py ⊂ Pz ⊂ Px.

9 Bredereck et al. [9] considered the same labelling structure while studying computational complexity in MW.



Fig. 2. Each node corresponds to a label or ‘type’ of projects. The set of projects with label 1 is the union of the set
of projects with labels 4, 5, and 6. All projects have the default label 0. The 1-laminar structure of the labels enables
the representation of the label relations as a rooted tree as described in Observation 2.

Assumption 2 All projects in a group on the ballot have the same labels.

This assumption implies that we can introduce a new level at the bottom of the rooted tree of the
labels wherein the ‘group’ represents a new type label and forms the leaves of the tree.

Definition 3 (1-laminar funding constraints). A valid outcome Q of the PB election must
satisfy the following constraints:

Bmin
l ≤

∑
j∈Q∩Pl

cj ≤ Bmax
l for all l ∈ L. (1)

Note that the overall budget constraint can be seen as being associated with the default label,
which applies to all projects on the ballot and corresponds to the root of the tree representation
of the 1-laminar labelling. Later in the paper, we will study if including the 1-laminar funding
constraints imposes additional challenges for the computational complexity of preference aggre-
gation or have consequences regarding strategic voting. We have positive results on both fronts -
Theorems 3, 4, and 5.

We consider mechanisms for PB that produce non-fractional and deterministic outcomes. Fur-
ther, we take a utilitarian approach and consider PB outcomes that maximize the social welfare
(SW). In the special case where 1-laminar funding constraints are not imposed on the outcome, we
denote the problem of identifying an SW-maximizing bundle of projects under budget constraints
by SWM-PB; with 1-laminar funding constraints, we call this problem FC-SWM-PB.

2.4 Limitations of the Model

Same as the previous works in this line [30,16], PBPI does not capture the case where both sub-
stitutes and complementary projects are present in a group. For example, in a group of projects
{p1, p2, p3}, it is possible that a voter finds p1 and p2 to be complementary, but p3 to be a substitute
for the bundle {p1, p2}. PBPI does not enable voters to express such project interactions.

PBPI also does not model ranked preferences over substitute projects, which could have been
elicited via a ranking-based voting scheme within groups instead of approval in PBPI.

Further, our utility function does not model soft complements, i.e., per our utility function, a
voter cannot get partial utility if only a part of their approval set in a group of complementary
projects is funded.

For a group {p1, p2}, voters in PBPI cannot express preferences of the following type: “p1 and
p2 are independent for me, but my utility from each is only half as much as their respective costs.”
This is because our utility function cannot distinguish between this case and the case where p1 and



p2 are substitutes for the voter. A voter could express this type of preference if p1 and p2 were in
singleton groups on the ballot.

We can mathematically model the above-stated and even more complex project interactions
with cost-based utility functions. Our positives result on computational complexity in Theorems 4
and 5 (FPT with respect to the maximum group size) will hold for any utility function as long as all
project interactions are within their own groups. However, we do not adopt a more complex utility
function since it would require an equally expressive preference elicitation method which may not
be intuitive for the voters in the real world.

Having discussed the model of PBPI and its merits and limitations, we now move on to inves-
tigating the incentives for strategic voting in PBPI.

3 Incentives for Strategic Voting in PBPI

Goel et al. [26] showed that Knapsack voting is strategyproof under the overlap utility model if
one of the two assumptions holds: 1) partial funding of projects is allowed, 2) projects have unit
cost. Technically, these assumptions provide the same leverage, ensuring that a greedy algorithm
is optimal for preference aggregation. In this section10, we work with the assumption that projects
are unit-cost11.

Assumption 3 (Unit-Cost Projects) All projects have cost cj = 1 ∀j ∈ [m].

Therefore, our results in this section are for the MW election setting. In our first result, we
consider the special case of PBPI without project interaction, i.e., the same as the Knapsack voting
setup. In this case, we show that even with 1-laminar funding constraints on the outcome, Knapsack
voting is strategyproof, i.e., voters are incentivised to vote truthfully, disregarding the 1-laminar
funding constraints12.

Theorem 1. With singleton groups, unit-cost projects (Assumption 3), and the 1-laminar labelling
(Assumption 1) for the funding constraints (Definition 3), PBPI is strategyproof.

The proof uses Theorem 3 (given later) with some discussion which we give in Appendix A.5.
Note that the result also extends to the case of fractional knapsack considered by Goel et al. [26],
since each project can then be considered a collection of unit-cost projects.

The 1-laminar labelling (Assumption 1) is a fairly general setup for defining the funding con-
straints in practice. Also, as it turns out, technically, Assumption 1 is necessary for Theorem 1 to
hold. Towards this, we have the following result, proof of which is given in Appendix A.6.

Theorem 2. PBPI with singleton groups and unit-cost projects is not strategyproof if the labelling
for the funding constraints does not satisfy the 1-laminar structure (Assumption 1).

We now study the effect of considering project interactions on the incentives to vote truthfully.
Unfortunately, as is seen often in social choice theory [25,43], voters in PBPI may be incentivised to
deviate from their truthful votes to attain a better outcome for themselves when project interactions
are considered.
10 We do not need this assumption in the section on computational complexity.
11 It is easy to show that under overlap utility, the unit-cost assumption is crucial for strategyproofness to hold in

Knapsack voting and PBPI. We sketch an example here. Consider a case with four projects whose costs are c1 = 1,
c2 = 2, c3 = 2, and c4 = 3. Budget B is 4 units. There are no project interactions. A voter who only likes project
4 is incentivised to vote for project 1 too when all projects have equal approvals otherwise.

12 Recall that the votes need not satisfy the 1-laminar funding constraints, but only the overall budget constraint.



Observation 3 PBPI is not strategyproof even with Assumption 3.

Proof (Proof with complementarity project interaction.). Consider the following example.
There are n = 3 voters and m = 6 projects, each with cost cj = 1. The budget is B = 3.

There are no 1-laminar funding constraints. There are two groups of projects z1 = {p1, p2, p3}, and
z2 = {p4, p5, p6}. In the truthful votes, all projects are independent for all three voters. Voters 1
and 2 approve projects p1, p2, and p4 and set funds f1

1 = f2
1 = 2 and f1

2 = f2
2 = 1. Whereas voter 3

approves projects p3, p5, and p6, and sets f3
1 = 1 and f3

2 = 2. In this case, the outcome of SWM-PB
is {p1, p2, p4}.

Voter 3 has the incentive to modify their vote and set f3
1 = 3, approve all of z1, and report

that these projects are complements, i.e., t31 = 1. Now, {p1, p2, p3} is the outcome of SWM-PB – it
increases the utility of voter 3 by 1 unit. ⊓⊔

The example above shows how the complementarity project interaction can potentially lead to
profitable strategic deviations for voters. However, this type of project interaction is not required
to render PBPI not strategyproof.

Observation 4 PBPI is not strategyproof under Assumption 3 when there are only substitutes
allowed.

Despite the negative result of Observation 3, it is interesting to study special classes of vote
profiles where voters do not have incentives to deviate from truthful voting even with project
interactions. We now describe such a class of vote profiles.

3.1 Case with a Strict Total Order in Subgroups of Substitutes

Here we give a class of vote profiles for which truthful voting is a Nash equilibrium. Subgroups of a
group are defined by an arbitrary partition of the projects in the group. In this class of vote profiles,
there is no complementarity protect interaction, voters agree on the type of project interaction in
a group, and for substitutes, it entails some partition of groups into subgroups such that there is a
strict total order13 of projects within each subgroup. We further need that all voters who approve
project p also approve all projects of a higher order than p. Formally:

Definition 4 (Special Vote Profile). For each non-contradictory group g, one of the following
holds:

1. (Independents). All voters i ∈ [n] consider the group to be of independent projects and set
f i

g = |si
g|.

2. (Substitutes). There exists a partition of zg into “sub-groups” and there is a strict total order
in each sub-group such that every voter who approves a project p ∈ zg also approves all projects of
a higher order than p. No voter approves projects from multiple subgroups in a group.

Example 3 illustrates the vote profiles in Definition 4.
Observe that we do not make any assumption on fund allocations f i

g for substitute projects.
Also, this structure does not assume which groups any voter funds. However, it does assume that
voters who allocate funds to a group agree on the type of project interaction in any group. Also,
note that having a strict total order on some partition of a group into subgroups is a strictly weaker
condition than having a strict total order over entire groups of projects. As a clarification, while
13 A strict total order on a set S is a relation on S that is irreflexive, anti-symmetric, transitive, and every pair of

elements of S is comparable.



studying the vote profile of Definition 4, we do not make any assumption on the space of expressible
votes, other than that there are no complementarity project interactions considered.

The class of vote profiles in Definition 4 is important to study since voters who are residents
of an area may agree on the relative usefulness of projects in a group but may not agree on how
many projects must be done from any group.

Having explained the case of vote profiles of Definition 4, we now discuss our results on it.
First, when the vote profile V is per Definition 4, a greedy aggregation algorithm (Algortihm 1)
produces a social welfare-maximizing outcome under an overall budget constraint and 1-laminar
funding constraints. This is not particularly surprising since in contradictory and independent
groups, utilities of individual projects are additively separable, and in substitute groups, the strict
total order in subgroups provides an optimal ordering to fund projects. The 1-laminar funding
constraints dictate which projects are eligible for funding at any step of the algorithm.

The surprising result is that the same thing also holds when one voter’s vote doesn’t follow
Definition 4 (Lemma 1). This one vote could disagree with others on which groups are independents
and which are substitutes, could approve projects across subgroups, or violate the strict total order
assumption within subgroups. The fact that the greedy algorithm still produces a social welfare-
maximizing outcome when one vote does not follow Definition 4 has important implications for the
study of strategic voting in our model.

We can leverage Lemma 1 to show that when the truthful votes (underlying, not observed) are
per Definition 4, truthful voting is a Nash equilibrium14 (Theorem 3). This result has important
practical consequences, which we discuss later in the section after giving the results formally.

Greedy Algorithm We first describe the Greedy Algorithm 1, which we use in Lemma 1 and
Theorem 3. First, without the 1-laminar funding constraints, a greedy algorithm is simple; it will
construct the outcomeQ inB steps, adding a project in each step which brings the best improvement
in social welfare. With 1-laminar funding constraints, our Greedy Algorithm 1 is run in two passes.
In the first pass, the algorithm fulfils the minimum funding constraints15 given by Bmin. Recall
from Observation 2 that the 1-laminar labelling can be represented as a rooted tree denoted by
TL, and the levels of the tree form a hierarchy of the labellings. Within this pass, the algorithm
proceeds in the reverse hierarchy order for the type labelling.

In the second pass, the algorithm produces the outcome Q while respecting all the maximum
funding constraints while adding one project to the outcome at a time. The algorithm pseudocode
is given formally in Greedy Algorithm 1. We now state and prove the main results of this section.

In this subsection, we assume that there are no complementarity project interactions, and in
fact, the complementarity question is disabled and we have tig for all voters i ∈ [n] and all groups
g ∈ [r].

Lemma 1. Under Assumptions 1, 2, and 3, and when at most one vote deviates from Definition 4,
the outcome of the Greedy Algorithm 1 is a solution to FC-SWM-PB.

Proof. If all projects have additively separable social welfare, Greedy Algorithm 1 is trivially optimal
for maximizing social welfare.

As a warm-up, consider the case where all votes are per Definition 4. Three varieties of project
groups under Definition 4 exist – contradictory, independent, and substitutes. For contradictory
14 We do not obtain strategyproofness here; if multiple votes violate Definition 4, then there can arise opportunities

for profitable strategic deviations for voters.
15 We assume that the funding constraints Bmin and Bmax are such that at least one valid outcome of PB exists.
16 A traversal of a rooted tree in the reverse order is defined as the traversal which starts with the leaves in arbitrary

order, followed by the deletion of all the leaves, and repeating the process till the entire graph is traversed.



Greedy Algorithm 1: Input: (Z,B, V, L, Pl ∀ l ∈ L,Bmax, Bmin), Output: Q
Denote the set of outcomes which satisfy the 1-laminar ‘maximum’ funding constraints by Q
Initialize Q← ∅
1. First Pass ▷ Satisfy minimum funding constraints
for Traverse TL in reverse order16, index node by l do

while |Q ∩ Pl| < Bmin
l do

Q← Q ∪
{

arg max
ρ∈{j|j∈Pl\Q, j∪Q∈Q}

U(Q ∪ {ρ})
}

end
end
2. Second Pass ▷ Complete Q while respecting funding constraints
while |Q| < B do

Q← Q ∪
{

arg max
ρ∈{j|j /∈Q, j∪Q∈Q}

U(Q ∪ {ρ})
}

end

and independent groups, it is easy to observe that the social welfare of all projects is additively
separable.

For groups of substitutes, we define the following notation for the subgroups and the strict total
order therein. There is a partition Λg = {λg,k}k∈[qg ] of zg such that each partition is a subgroup
and there is a strict total order in each subgroup. Since each voter approves projects from at most
one subgroup λg,k per Definition 4, the social welfare of these subgroups is additively separable.
Finally, observe that in any subgroup λg,k, from any outcome, if we replace a lower-ranked project
pl ∈ λg,k with a higher-ranked project ph ∈ λg,k, then the social welfare of the outcome cannot
decrease since under Definition 4, all voters who get utility from pl also get equal utility from
ph. Therefore, greedily selecting projects in order of rank (given by the strict total order in the
subgroup) is optimal for maximizing social welfare from subgroup λg,k for any amount of funding
to the subgroup. This proves that greedily selecting the outcome of PB is optimal for SWM-PB in
this case, where everyone votes per Definition 4.

We now consider the case where one vote does not satisfy Definition 4. Let this be voter i and
let their vote be {f i

g, s
i
g}g∈[r].

17 Denote the vote profile of the other voters by V−i. Observe that for
contradictory groups, even under a deviation from Definition 4, the social welfare of all projects
are additively separable.

Consider non-contradictory groups. Let Q{g}(b) denote the size-b social welfare-maximizing sub-
set of zg. While the social welfare-maximizing subset is not always unique, we define Q{g}(b) to be
unique and decided as per the given deterministic tie-breaking rule.

Let P in
{g}(b) denote the set Q{g}(b)\Q{g}(b−1) and Pout

{g}(b) denote the set Q{g}(b−1)\Q{g}(b).
We first make the following claim.
Claim 1 If Pout

{g}(b) is an empty set for all groups g ∈ [r] and all levels of funding b ∈ [|zg|], then
the Greedy Algorithm 1 is optimal to solve FC-SWM-PB.
Proof of Claim 1:

Recall the rooted tree representation of the 1-laminar labelling given by TL. Recall that the
minimum and maximum funding constraints on project type l ∈ L are given by Bmin

l and Bmax
l .

However, since projects can have multiple type labels, the implied constraints can be more stringent
depending on the structure of tree TL. Let B̃min

l and B̃max
l denote the minimum and maximum

possible fund allocations to projects of type label l in any outcome which satisfies the entire set of
1-laminar funding constraints.
17 Recall that we assume that there are no complementarity project interactions in this case and there is no ti

g.



We can give a recursive computation for B̃min
l and B̃max

l . For any type label l which is a
leaf of TL, B̃min

l = Bmin
l and B̃max

l = Bmax
l . For any label l which is not a leaf of TL, we have

B̃min
l = max(

∑
l′∈cl

B̃min
l′ , Bmin

l ) and B̃max
l = min(

∑
l′∈cl

B̃max
l′ , Bmax

l ) where cl denotes the set of
child nodes of node l. This follows from the 1-laminar structure. We assume that Bmin and Bmax

are such that a feasible solution exists.
Observe in the Greedy Algorithm 1 that the total funds allotted to projects of type label l is

always between B̃min
l and B̃max

l by construction, and thus our algorithm returns a feasible allocation.
Let Pout

G (b) denote QG(b − 1) \ QG(b) for any set of groups G. Pout
{g}(b) being an empty set for

all groups g ∈ [r] and all b ∈ [|zg|] implies that Pout
G (b) is also an empty set for any set of groups G

and any b ∈ [
∑

g∈G |zg|] due to the additive separability of utilities across groups.
Consider the first pass of the Greedy Algorithm 1, and consider the stage when node l is

traversed. At this stage, the sub-tree rooted at node l (except node l) satisfies all the minimum
funding constraints. Further, at this stage, the amount of funds allocated to projects with label m,
where node m is a child of node l, are B̃min

m . Recall that per Assumption 2, all projects in a group
have the same labels. Let Gl denote the set of groups with label l. Also, let Qmin

Gl
(b) denote the size-b

social welfare maximizing project selection from Gl satisfying all the minimum funding constraints
of the sub-tree rooted at node l (except node l). Similarly, define Pout,min

Gl
(b) = Qmin

Gl
(b−1)\Qmin

Gl
(b).

Observe that Qmin
Gl

(b) is defined only for b ≥
∑

l′∈cl
B̃min

l′ and observe that Pout
{g}(b) being an

empty set for all g ∈ [r] and all b ∈ [|zg|] ensures that Pmin
Gl

(b) is also an empty set. The proof now
follows from induction over the levels of the rooted tree TL. After traversing a leaf node l, the set of
projects selected is Qmin

Gl
(Bmin

l ). Now, inducting over the levels of the tree, after node l is traversed,
the number of projects selected with type label l is B̃min

l and is Qmin
Gl

(B̃min
l ). Therefore, after the

first pass of the Greedy Algorithm 1, the outcome is social-welfare maximizing for size B̃min
0 (recall

that the label of the root node of tree TL is 0).
In the second pass, at every stage, observe that the amount of funds allocated to projects of

label l is always bounded by B̃max
l . Hence the 1-laminar funding constraints are always satisfied.

By a similar argument as for the first pass, we obtain that a greedy selection of projects in the
second pass is also optimal when Pout

Gl
(b) is empty for all b and all sets of groups of projects Gl.

This completes the proof of Claim 1. Now we go back to proving Lemma 1 using Claim 1.
Claim 1 implies that if the Greedy Algorithm 1 is not optimal to solve FC-SWM-PB, then there

exists some group g ∈ [r] and an amount of funding b ∈ [|zg|] for which Pout
{g}(b) is not empty. Let

g∗ be such a group and let b∗ ∈ [|zg|] be the smallest funding amount for which Pout
{g∗}(b∗) is not

empty.
Consider the following exhaustive set of cases:

Case 1. f i
g∗ = 0.

In this case, Q{g∗}(·) is constructed as if the entire vote profile follows Definition 4, and from
the arguments above, it is constructed greedily and therefore Pout

{g∗}(b∗) is empty.
Case 2. There exists a project pin ∈ P in

{g∗}(b∗) and a project pout ∈ Pout
{g∗}(b∗) such that voter i

approves both pin and pout. That is, pin, pout ∈ si
g∗ .

Here, voter i’s utility function is indifferent between pin and pout for all possible outcomes. If pout
was included in Q{g∗}(b∗ − 1), then it continues to be more favourable than pin, either in marginal
utility or in the tie-breaking order as per Definition 4 on V−i. Therefore Pout

{g∗}(b∗) must be empty.
Case 3. There exists a project pin ∈ P in

{g∗}(b∗) and a project pout ∈ Pout
{g∗}(b∗) such that voter i

approves neither pin nor pout. That is, pin, pout /∈ si
g∗ .

Same as the previous case, voter i’s utility function is indifferent between pin and pout for all
possible outcomes, and for the same reason as above, Pout

{g∗}(b∗) must be empty.



Case 4. There exists a project pin ∈ P in
{g∗}(b∗) and a project pout ∈ Pout

{g∗}(b∗) such that voter i
approves pin but not pout. That is, pin ∈ si

g∗ and pout /∈ si
g∗ .

Consider the construction of Q{g∗}(b∗ − 1). The marginal social welfare of pout is at least equal
to that of pin, and, in the case of equality, is higher in the tie-breaking order. For a group of
substitutes, this means that either pout has a higher rank than pin or has an identical number of
approvals but wins on tie-breaking. Since pout is not approved by voter i, its marginal social welfare
cannot become smaller than that of pin on adding more elements to the outcome. This is because
the votes V−i follow Definition 4. For any outcome, it is preferable to replace pin by pout. This
contradicts the definition of Q{g∗}(b∗).
Case 5. Voter i approves all of Pout

{g∗}(b∗) and none of P in
{g∗}(b∗).

Recall that b∗ is the smallest amount of funding for which Pout
{g∗}(b∗) is non-empty. Consider the

smallest amount of funding b′ for which a project from Pout
{g∗}(b∗) is included in Q{g∗}(b′). Call this

project p∗
out.

By definition of Q{g∗}(b′) as the social-welfare-maximizing bundle of size b′ from group {g∗},
the marginal social welfare (or tie-breaking order) of p∗

out is higher than any element of P in
{g∗}(b∗).

That is, U(Q{g∗}(b′)) ≥ U(Q{g∗}(b′) \ p∗
out ∪ ρ) for all ρ ∈ P in

{g∗}(b∗), and in the case of equality, p∗
out

is preferred in tie-breaking.
Let Pi-app denote the set of projects approved by voter i that are in Q{g∗}(b∗ − 1) \Q{g∗}(b′).
Further, let Pstay denote the subset of Pi-app that is in the outcome Q{g∗}(b∗).
If Pstay is empty, then the marginal utility that p∗

out gives to voter i in Q{g}(b) ∪ p∗
out is exactly

as much as it does in Q{g}(b′). That is, ui(Q{g∗}(b∗) ∪ p∗
out) − ui(Q{g∗}(b∗)) = ui(Q{g∗}(b′)) −

ui(Q{g∗}(b′) \ p∗
out).

Since p∗
out was selected in Q{g∗}(b′) over any element of P in

{g∗}(b∗), p∗
out must replace any pin ∈

P in
{g∗}(b∗) in the outcome Q{g∗}(b∗). This contradicts the optimality of Q{g∗}(b∗).

On the other hand, if Pstay is not empty, then it is possible that p∗
out does not give marginal

utility to voter i in Q{g∗}(b∗)∪p∗
out. That is, it is possible that ui(Q{g∗}(b∗)∪p∗

out)−ui(Q{g∗}(b∗)) = 0.
However, p∗

out must replace any element of Pstay since p∗
out was preferred over it in Q{g∗}(b′).

This replacement does not change voter i’s utility but makes the other voters either strictly better
off or is preferred in tie-breaking (as in Q{g∗}(b′)). This contradicts the optimality of Q{g∗}(b∗). ⊓⊔

We now use Lemma 1 to study incentives of strategic voting for the vote profile of Definition 4.

Theorem 3. Under Assumptions, 1, 2, and 3, and when the true vote profile is per Definition 4,
truthful voting is a Nash equilibrium in PBPI with FC-SWM-PB.

The proof is technical and is given in Appendix A.4. It crucially uses Lemma 1. For a voter i
deviating from their truthful vote, we break down their vote into that for each group g ∈ [r] and
then show that for any state of their vote in the other groups, truthful voting in a group g is a
weakly dominant strategy as long as the other voters’ votes are per Definition 4.

Implications of the results. Lemma 1 and Theorem 3 signify that for the class of vote profiles
given in Definition 4, PBPI satisfies two key desiderata of voting mechanisms – efficient computation
of outcome (via the Greedy Algorithm 1) and an incentive for voters to vote truthfully, thereby
making voting simpler.

Theorem 3 has important consequences for PB. First, under the setup of this subsection, the
funding constraints do not present additional complexities for voting. Therefore PB organizers
and policymakers need not worry about the cognitive complexity of the mechanism when deciding
whether they must impose 1-laminar funding constraints on the PB outcome. Second, since the



1-laminar funding constraints have no role in deciding the voting strategy, it can be justified to
release this information as a separate document and unclutter the actual ballot. It may be possible
to run the PB election even when the parameters of the funding constraints are yet to be decided
by a process which doesn’t depend on the PB election.

4 Computational Complexity of Preference Aggregation in PBPI

Since our mechanism for PB can model relatively complex preferences for all voters, the amount
of information to be processed by the preference aggregation algorithm can be substantial. As for
all voting schemes, it is important to study the computational complexity of aggregating the votes
for any objective function of the social planner. We first make a negative observation. Due to the
complex project interactions in our model, SWM-PB cannot be solved in polynomial time unless
P = NP .

Observation 5 SWM-PB is NP-hard.

A proof is in Appendix §A.1 and is via a reduction from the maximum set coverage problem.
This result is unsurprising since many models with project interactions in PB and MW elections
face this issue [30,31,41,28,29]. FC-SWM-PB is also NP-hard since it is at least as hard as SWM-PB.

For real-world voting problems, we often deal with scenarios where some problem parameters
are small. On a positive note, we show that FC-SWM-PB can be solved in polynomial time for
reasonable real-world parameters of the model.

We first consider the case where the number of projects that must be grouped together for
project interactions is small. This is expected to be the case for most real-world PB elections. We
also need the technical condition that the number of bits required to specify the budget B is a fixed
parameter. This can naturally be true for real-world ballots where the required precision of costs
and funds is not very high. For example, in a case where the total budget is 106 currency units, all
costs and votes can be reasonably specified in units of 103 currency units. In this example, we will
have B = 1000.

4.1 FPT with respect to the maximum size of a group of projects and log(B)

Let smax denote the maximum size of a group of projects. We will show that if smax is fixed, SWM-
PB and FC-SWM-PB are computationally tractable. This suggests that PB organizers must design
the ballot with reasonably small groups if computational complexity is a concern.

Theorem 4. Under Assumption 2, FC-SWM-PB is FPT with respect to (log(B), smax).

Proof. We first give the result for SWM-PB, that is, for the special case where there are no funding
constraints (except the overall budget constraint). We then extend it to FC-SWM-PB.

For intuition, observe that for any possible fund allocation to group g, we can compute the
social-welfare maximizing or best subset of zg in time O(n2|zg |) by doing a brute-force search over
all subsets of zg.

Let UG(b) denote the maximum social welfare obtained on allocating funds b to groups in set
G and the corresponding optimal set of projects by QG(b). The solution of SWM-PB is Q[r](B)
and its social welfare is U[r](B) in this notation. Since social welfare is additively separable across



project groups, SWM-PB can be solved by the following recursion denoted by R-FPT.

U[r](B) = max
b∈[B]

U[⌊r/2⌋](b) + U[r]\[⌊r/2⌋](B − b).

b′ = arg max
b∈[B]

U[⌊r/2⌋](b) + U[r]\[⌊r/2⌋](B − b).

Q[r](B) = Q[⌊r/2⌋](b′) ∪Q[r]\[⌊r/2⌋](B − b′).

We compute the base cases U{g}(b) and Q{g}(b) for all g ∈ [r] and b ∈ [B] and store it in a table.
Each table entry is computed in time O(n2|zg |) for group g. The overall computational complexity
of the recursion is therefore O(nrB · 2smax).

For extending the result to FC-SWM-PB observe that, under Assumption 2, all projects in a
group have identical labels. We can modify the recursion R-FPT to integrate the funding constraints
by imposing them on collections of groups zg that together make up a set Pl for any type label
l ∈ L. This can be done by setting the social utility of the terms of the recursion that violate any
funding constraint to −∞. ⊓⊔

Note that we do not need the assumption on the 1-laminar structure of the funding constraints
(Assumption 1) for this result to hold. It will hold for any arbitrary set of type labels on projects
and associated minimum and maximum funding constraints as long as Assumption 2 holds.

4.2 FPT with respect to the number of distinct votes

In this subsection we deviate from the general framework of PB and study the case where the
number of distinct votes is small. Often budgetary tasks are undertaken by a small number of
elected representatives and each representative may be voting on behalf of a different number of
voters. This framework may also be relevant in the realm of delegation voting [27]. Another use
case would be a PB format where (an unrestricted number of) voters are asked to choose one out of
a fixed set of ‘prototype outcomes’. Yet another use case would be when a small number of voters
are queried at random to get a ‘quick pulse’ of the people’s opinions.

For simplicity, we will overload the notation and use n for the number of distinct voters, and wi

for the frequency or weight of the vote of voter i for each i ∈ [n]. In this notation, the social utility
of an outcome Q is given by

∑
i∈[n]wiui(Q), which is the objective function of FC-SWM-PB here.

Theorem 5. Under Assumptions 2, and 3, FC-SWM-PB is FPT with respect to n.18

Proof. The outer recursion is same as R-FPT given for Theorem 4. We set the social utility of the
terms of the recursion that violate any funding constraint to −∞.

Now we describe how we solve the base cases, that is, find U{g}(b) and Q{g}(b) for all g ∈ [r],
b ∈ [B]. Without loss of generality, let voters i ∈ [nc] set tig = 1 for group g, i.e., express that the
group is of complementary projects (we call them category C voters), and the voters [n] \ [nc] set
tig = 0 (we call them category S voters). Denote ns = n− nc.

We break the problem into 2nc ‘cases’, each corresponding to a unique subset of category C
voters. For each case, we have 2 ‘phases’. For case k ∈ [2nc ], denote the corresponding subset of
category C voters by vk.

In phase 1, all voters in vk are satisfied by allocating funds to the union of the projects they
approve. If this is not possible with b units of funds, set the utility of case k to −∞. Let b′ funds
be spent at this point.
18 Here B is bounded by m since projects are unit cost and therefore we don’t need it as a fixed parameter.



In phase 2, with the remaining b− b′ funds, we fund the projects that maximize the unsatisfied
portion of the utility of the voters of category S. Denote the set of all subsets of voters of category
S by PS . We divide the set of yet unfunded projects in group g into 2ns parts, each corresponding
to the projects approved by all voters corresponding to an element of PS . Denote this partition
ϱ = {ρ1, ρ2, . . . , ρ2ns }. We then give a mixed integer program (MIP) with 2ns variables; variable
l ∈ [2ns ] corresponding to the number of projects in ρl funded in phase 2. See that the social utility
objective function for category S voters over the projects funded in phase 2 is a function of these
variables. By the result of Bredereck et al. [10], concave utility functions can also be incorporated
in MIP, and the runtime is exponential in the number of variables.

The case with the highest social welfare is chosen as the outcome of U{g}(b) and Q{g}(b).
The solution is an outcome of FC-SWM-PB by construction. The overall runtime complexity is
O(rm22O(n)). ⊓⊔

Discussion: The runtime is doubly exponential in n, resulting from having project interaction
in the objective. Due to this, the techniques of [34], who gave singly exponential time algorithms
for several combinatorial voting problems, do not directly apply to our setup. We can, however, use
the approximation scheme of [44] to get an arbitrarily close approximation in singly exponential
time (our model is ‘p-subseparable’ per their terminology). For the case of general costs, we can
get a 1 − 1/e approximation in phase 2 of our algorithm via the algorithm of [46] for submodular
function maximization under knapsack constraints – this results in an overall 1−1/e approximation
for FC-SWM-PB in singly exponential time.

5 Conclusions
While the use of categories or groups of projects in PB ballots is now standard in theory [30,16,32],
experimental studies (e.g. the study on Amazon Mechanical Turk by Fairstein et al. [15]), and prac-
tice (e.g. the 2020 Long Beach, USA PB election at https://budget.pbstanford.org/longBeach2020),
there is no existing work on leveraging this partition to design a preference elicitation method which
can enable voters to express a wide variety of project interactions with only a reasonable amount
of cognitive effort19. We fill this gap by providing a mechanism with this property, which can
also naturally integrate 1-laminar funding constraints without creating additional strategic or com-
putational complexities, is deterministic20, is computationally tractable in reasonable parameter
regimes (Theorem 4), and is also robust to unilateral strategic deviations for a class of vote profiles
(Theorem 3). Therefore, our proposed design PBPI is a strong candidate for PB in the real world.

Empirically studying the expressiveness and simplicity of our PB mechanism is important. This
may be done similar to how Fairstein et al. [15] study other common PB mechanisms. Including
more complex project interactions in an intuitive voting scheme for PB continues to be an important
avenue for future research. For our positive results on strategic voting, we need to make assumptions
on the cost of projects and drop the complementarity project interactions – designing strategyproof
mechanisms for PB without these assumptions would be a major contribution. Studying the prop-
erties of preference aggregation methods that maximize the Nash welfare [37] or characterizing the
core of PB [14,36] under project interactions are also interesting research directions.
19 A line of work in PB studies the amount of cognitive effort a voter must apply in a voting mechanism (see, for

example, [5,15]). While there is a lack of consensus in the literature on the relative effort that PB mechanisms require
from voters, and we have not evaluated PBPI empirically, we believe that our scheme needs only a comparable
amount of effort from voters as existing methods. This is because each part of a vote in PBPI (fund allocation to
groups, approval within groups, and complementarity questions) is simple and intuitive.

20 Being deterministic is often a desirable property for voting mechanisms. One of the reasons is the difficulty of
verifying implementation correctness in randomized schemes.

https://budget.pbstanford.org/longBeach2020
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A Appendix

A.1 Proof of Observation 5: SWM-PB is NP-hard.

Proof. The result is obtained via a reduction from the maximum set coverage (MSC) problem,
known to be NP-hard [49]. An instance of the MSC problem entails a universal set A with |A|
elements. There is a collection D of |D| subsets of A, denoted by d1, d2, . . . , d|D|. The problem is
to identify k sets from D whose union covers A maximally.

We now construct an instance of PB. Project costs are cj = 1 ∀j ∈ [m]. There is only one
group, i.e., r = 1. The group is non-contradictory and all voters i ∈ [n] set ti1 = 0 i.e., there are no
complementary projects. Given an instance of MSC, we have n = |A| voters, and m = |D| projects.
The budget is B units, where B = k. All voters i ∈ [n] set f i

1 = 1. Voters i ∈ [n] approve a subset
sj

1 of the projects, which we construct per the instance of MSC.
The universal set A corresponds to the set of all voters. Let yj be the set of voters who approve

project j, i.e., yj = {i|j ∈ si
1}. For a given instance of MSC, we construct a corresponding instance

of PB with m = |D| projects, and each set dj ∈ D maps to yj . This shows that finding an outcome
of SWM-PB is as hard as solving the MSC problem. ⊓⊔

A.2 Proof of Observation 4

Proof. The example below shows a profitable strategic deviation only under substitution project
interaction.

There are n = 7 voters, m = 10 projects, and the budget is B = 2. All projects are unit-cost.
There are no 1-laminar funding constraints. Projects {p1, p2, p3} form the group z1, and all other
projects are in singleton groups. In the truthful votes, in group z1, p1 is approved by voters 1, 2,
and 3; p2 is approved by voters 4, 5, and 6; and p3 is approved by voters 2, 3, 4, 5, and 7. All voters
i ∈ [7] set the fund allocation for group 1 to 1, i.e., f i

1 = 1. All voters i ∈ [7] also approve and
allocate funds to project pi+3. (That is, set f i

g = 1 for the singleton group containing the project
pi+3 and also add it to the corresponding approval set si

g). The tie-breaking order prefers projects
with a lower sum of indices.

Under truthful voting, the bundle {p1, p2} is funded in SWM-PB (preferred in tie-breaking
with a social utility of 6). On the other hand, if voter 7 approves p4 instead of p10, then the bundle
{p3, p4} is funded in SWM-PB with a reported social utility of 7. This outcome increases voter 7’s
utility by 1 unit. ⊓⊔

A.3 Example of Vote Profile In Definition 3

Example 3. There are m = 9 projects, n = 4 voters, and r = 2 groups with non-contradictory
projects. The groups are z1 = {p1, p2, p3} and z2 = {p4, p5, . . . , p9}.

In group 1, the approval sets are s1
1 = {p1, p2}, s2

1 = {p2, p3}, s3
1 = {p2}, and s4

1 = {p3}. The
fund allocations for this group are f1

1 = f2
1 = 2, and f3

1 = f4
1 = 1. See that the approval sets do

not satisfy any strict total order over subgroups of projects; however, since f i
1 = |si

1| for all voters
i ∈ [4], group 1 is of independent projects as per the votes. Therefore, the votes satisfy Definition 4
for this group.

In group 2, the approval sets are s1
2 = {p4, p5, p6}, s2

2 = {p4, p5}, s3
2 = {p7, p8, p9}, and s4

2 =
{p8, p9}. Their fund allocations are f1

2 = f2
2 = 1, and f3

2 = f4
2 = 2. Since f i

2 ̸= |si
2| for some voters

i ∈ [4], group 2 does not satisfy option 1 of Definition 4, i.e., it is not of independent projects.
However, it satisfies option 2 of Definition 4 since z2 can be partitioned into two sets with

λ2,1 = {p4, p5, p6} and λ2,2 = {p7, p8, p9}. Voters 1 and 2 only approve projects in λ2,1. Whereas



voters 3 and 4 only approve projects in λ2,2. A strict total order of projects followed by the voters
in λ2,1 and λ2,2 is (p4 ≻ p5 ≻ p6) and (p9 ≻ p8 ≻ p7) respectively.

A.4 Proof Of Theorem 3

Proof. Let V−i denote the vote profile of all voters other than voter i. Let voter i′s truthful (unob-
servable) vote be (f̂ i, ŝi). This unobserved vote is per Definition 4. Their actual or observed vote
is (f i, si). This may deviate from Definition 4 arbitrarily.

Say we drop the constraint of
∑

g∈[r] f
i
g ≤ B for voter i; we show that even without the constraint,

truthful voting is a weakly dominant strategy for voter i if V−i is per Definition 4. Note that voter
i’s truthful vote (f̂ i, ŝi) satisfies the budget constraint per model definition. When b units of funds
are allotted to group g, recall that U{g}(b) denotes the reported (i.e., observed, but not necessarily
“true”) social welfare of an optimal bundle of size b from group g, and Q{g}(b) denotes the said
bundle.

For any group of projects g ∈ [r], consider the scenario where voter i sets {(f i
ρ, s

i
ρ)}ρ ̸=g,ρ∈[r] for

the other groups and is deciding their vote for group g, with default initialization of (f̂ i
g = 0, ŝi

g = ∅).
In the proof, we study how voter i’s true utility changes relative to the outcome in this state of
their vote, on setting their vote in group g.

We show that for any report {(f i
ρ, s

i
ρ)}ρ ̸=g,ρ∈[r], voter i’s truthful vote (f̂ i

g, ŝ
i
g) on group g is a

weakly dominant strategy. This is sufficient to prove the theorem.
Consider the following exhaustive cases on the group and voter i’s true vote.
1. Voter i derives no utility from group g, i.e., f̂ i

g = 0:
Setting f i

g > 0 and si
g ̸= ∅ can only increase U{g}(b) for any b. This can only reduce the funding

from the other groups per Lemma 1. Per Lemma 1, this cannot cause the addition of any new
project in the outcome Q from outside of group g and hence cannot increase voter i’s true utility.
Therefore, in this case, truthful voting in group g is a weakly dominant strategy.

2a. Group g is of contradictory projects.
Recall that a voter can approve at most one project in this group. Let p be the project in ŝi

g.
Since the utilities of projects in contradictory groups are additively separable, each project from
group g can be considered a separate singleton group for the purpose of preference aggregation.

If voter i votes truthfully in group g, they maximize the observed social welfare of project p.
This may get project p included in Q if not already present. Per Lemma 1, exactly one project is
eliminated from Q if p gets included. Voter i’s true utility can not decrease.

There are two ways for voter i to lie in contradictory groups: by setting f i
g = 0 or (f i

g = 1, si
g =

{p′}) where p′ ̸= p. In the former, their true utility doesn’t change. In the latter, they can only lose
1 unit of true utility if p′ gets into Q by replacing a project from which i gets true utility. Overall, it
is impossible to increase true utility by deviating from the truthful vote in groups of contradictory
projects.

2b. Group g is a group of independent projects per Definition 4.
Case I: Voter i sets f i

g = |si
g|. (see that f i

g > |si
g| is identical to f i

g = |si
g| for the utility function,

and therefore we need not consider it separately). In this case, the observed social welfare of the
projects in group g are additively separable. Adding a project p to si

g can cause its inclusion to
Q while removing exactly one project from Q as per Lemma 1. If project p is in the true vote ŝi

g

then this can only increase i’s true utility, and if project p /∈ ŝi
g, then this can only decrease i’s true

utility by displacing a project beneficial for them. Therefore, setting si
g = ŝi

g is a weakly dominant
strategy.

Case II: f i
g < |si

g|. For the purpose of the Greedy Algorithm 1, this vote is equivalent to
truncating si

g to the top f i
g projects per their social utilities in V−i and the tie-breaking order. We



now have the same problem as in Case I. Adding all of ŝi
g, and no projects from outside of it, in

the “truncated” si
g is, therefore, a weakly dominant strategy. This corresponds precisely to truthful

voting.
2c. Group g is a group of substitute projects per Definition 4.
Recall that we assume a strict total order on subgroups in groups of substitute projects per

Definition 4. We use the following notation. There is a partition Λg = {λg,k}k∈[qg ] of zg such that
there is a strict total order within each subgroup λg,k. Every voter in V−i approves projects from at
most one of λg,k per Definition 4. Let λg,∗ be the subgroup from which voter i derives true utility.

For any f i
g > 0 and si

g ⊆ λg,∗, untruthfully expanding si
g by approving projects from zg \ λg,∗

can only include additional projects from zg \ λg,∗ to the outcome Q. This follows from Lemma 1.
This will remove an equal number of projects already in Q, and i’s true utility cannot increase.
Therefore, not approving any project from zg \ λg,∗ is a weakly dominant strategy.

It now remains to decide f i
g and si

g such that si
g ⊆ λg,∗.

Let, in the true vote, ŝi
g have projects from rank 1 to ψ in λg,∗ (the ‘rank’ is per the strict total

order). Setting f̂ i
g ≥ ψ is equivalent to f̂ i

g = ψ for voter i’s true utility, so we consider only f̂ i
g ≤ ψ.

Consider the case where voter i votes truthfully in group g. Let b∗ funding be allotted to λg,∗
– in this case, the top b∗ rank projects from λg,∗ (up to tie-breaking) get funded. This is because,
in any outcome, if we replace a lower-ranked project pl with a higher-ranked project ph, the social
welfare cannot decrease since, per Definition 4, all voters who get utility from pl also get the same
utility from ph. In this outcome, voter i’s utility from group g is min(f i

g, b
∗). We now show that

any deviation cannot improve the utility.
We consider two cases of b∗ (≥ or < f̂ i

g) and show no profitable deviation exists in either. For
a deviation (f i

g, s
i
g), let b funds be allocated to λg,∗.

Case I: b∗ ≥ f̂ i
g. The true utility of voter i from the group is capped at f̂ i

g. If b ≥ b∗, then the
true utility from other groups can only decrease on making a deviation (per Lemma 1), but that
from group g cannot increase. Whereas, if b < b∗, the true utility of voter i from group g must
decrease by at least b∗ − b. This is because only those projects can be removed from the outcome
Q whose approval is removed by voter i in the deviation. The projects which were in Q without
i’s contribution to their marginal social utility, remain in Q despite any deviation in voter i’s vote.
Voter i’s true utility from outside the group can increase by at most b∗ − b. Overall, therefore, i’s
true utility cannot increase.

Case II: b∗ < f̂ i
g. If b ≤ b∗, the true utility of voter i from group g decreases in this deviation

by at least b∗ − b. This is because b projects have at most b utility. The utility from outside the
group can increase by at most b∗ − b per Lemma 1. Also, even for b > b∗, voter i cannot increase
their true utility from the group because their utility-producing projects from the groups have the
maximum possible reported marginal social utility in the true vote, and per Lemma 1, they cannot
be included to Q at a lower marginal social utility. ⊓⊔

A.5 Proof of Theorem 1

Proof. Recall that in Theorem 3, we showed that truthful voting is a weak Nash equilibrium for
vote profiles per Definition 4. In Theorem 1, we consider only singleton groups, there are no project
interactions, and all vote profiles are per Definition 4. Per Theorem 3, truth-telling is a weakly
dominant strategy for a voter i when the other voters vote truthfully. Suppose some other voters
i′ ∈ I did not vote truthfully. Since all votes on singleton groups are per Definition 4, the untruthful
votes can be seen as the truthful votes of another set of voters. Now it is a weakly dominant strategy
for voter i to vote truthfully per Theorem 3. This completes the proof. ⊓⊔



A.6 Proof of Theorem 2

Proof. Consider a non-laminar labelling L. There must exist two labels l1 and l2 such that Pl1

is neither a subset nor a superset of Pl2 . Define P only
l1

= Pl1 \ Pl2 and P only
l2

= Pl2 \ Pl1 and
P any = Pl1 ∩Pl2 . The cardinality of each of these sets is at least 1. Set the minimum and maximum
funding constraints for labels l1 and l2 to 1 and set the minimum and maximum constraints for
every other label to 0 and ∞, respectively. Let B = 2. We assume that the projects in P any have
a higher preference in the tie-breaking order followed by projects in P only

l1
and projects in P only

l2
.

Observe that there can be only two possible types of outcomes satisfying the funding constraints.

– Only one project is funded from the set P any.
– One project each is funded from the sets P only

l1
and P only

l2
.

Consider projects p1 ∈ P only
l1

, p2 ∈ P only
l2

, and p3 ∈ P any. Consider the following vote profile.
Voter 1 approves projects p1 and p3, voter 2 approves only project p3, and voter 3 approves only
project p1. In this case, only project p3 is the outcome of FC-SWM-PB.

In this case, voter 3 has the incentive to approve both projects p1 and p2 in their vote. Now
{p1, p2} is the outcome of FC-SWM-PB, which increases the utility of voter 3 by 1 unit. ⊓⊔
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