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Abstract

Motivated by behavioral biases in human decision makers, recent work by Kleinberg et al.
[11] explores the effects of loss aversion and reference dependence on the prophet inequality
problem, where an online decision maker sees candidates one by one in sequence and must
decide immediately whether to select the current candidate or forego it and lose it forever.
In their model, the online decision-maker forms a reference point equal to the best candidate
previously rejected, and the decision-maker suffers from loss aversion based on the quality of
their reference point, and a parameter λ that quantifies their loss aversion. We consider the
same prophet inequality setup, but with candidates that have multiple features. The decision
maker still forms a reference point, and still suffers loss aversion in comparison to their reference
point as a function of λ, but now their reference point is a (hypothetical) combination of the
best candidate seen so far in each feature.

Despite having the same basic prophet inequality setup and model of loss aversion, con-
clusions in our multi-dimensional model differs considerably from the one-dimensional model
of Kleinberg et al. [11]. For example, Kleinberg et al. [11] gives a tight closed-form on the
competitive ratio that an online decision-maker can achieve as a function of λ, for any λ ≥ 0.
In our multi-dimensional model, there is a sharp phase transition: if k denotes the number of
dimensions, then when λ · (k− 1) ≥ 1, no non-trivial competitive ratio is possible. On the other
hand, when λ · (k − 1) < 1, we give a tight bound on the achievable competitive ratio (similar
to [11]). As another example, [11] uncovers an exponential improvement in their competitive
ratio for the random-order vs. worst-case prophet inequality problem. In our model with k ≥ 2
dimensions, the gap is at most a constant-factor. We uncover several additional key differences
in the multi- and single-dimensional models.
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1 Introduction

Reference dependence describes the tendency for human decision-makers to compare options against
a previously seen or anticipated reference point, such that an option inferior to the reference point
is perceived as being of a lower quality than it would be had the person simply not been aware of
the reference point [22]. Similarly, loss aversion describes the tendency of human decision-makers
to be more sensitive to losses than to gains of equivalent magnitude. Both phenomena have robust
empirical support [10], and have been observed in the context of online decision-making [19].

Recent work of Kleinberg et al. [11], has considered these behavioral biases in the context of op-
timal stopping, constructing biased agents who suffer from loss aversion in comparing their chosen
candidate against previously seen and foregone candidates. Prophet inequalities are a canonical
optimal stopping problem, where an agent sees n candidates, each with a scalar value drawn inde-
pendently from known distributions. The candidates are presented online, such that whenever the
agent sees a candidate they must either accept it, halting their search, or forego it and thus lose the
candidate forever. In the event they select a candidate, the utility they receive is exactly the value
of the candidate. Motivated by the role of reference points and loss aversion, [11] pose a modified
prophet inequality where the utility received by the agent is discounted based on their reference
point. Specifically, the biased agent also remembers the best candidate they have previously seen,
and perceives new candidates as having decreased utility if the best candidate previously seen had
a higher value.

The elegant model of Kleinberg et al. [11] captures scenarios in which candidates are well-
represented by a single scalar (such as monetary value). Indeed, their model is partially motivated
by the empirical findings of Schunk and Winter [19] concerning the unwillingness of investors to
sell stocks below the price at which they were purchased. Similarly, their model captures the
phenomenon of biased decision-makers stopping much sooner than optimal, once again mirroring
the empirical results of [19]. Intuitively, due to the anticipation of experiencing regret over foregone
candidates, biased decision-makers are likely to settle earlier than they should. In this respect, the
theoretical model of Kleinberg et al. [11] reflects human behavior relatively well, at least in the case
of decisions involving scalar-valued candidates.

However, their model does not capture decisions in which candidates have multiple features of
interest. Notably, many key decisions in life including career, romantic partner, or house typically
have many dimensions. Moreover, even simple consumer decisions such as selecting which movie to
watch or magazine subscription to purchase often have multiple dimensions. Experimental research
by Brenner et al. [2] suggests that human decision makers suffer from “comparative loss aversion” in
which they compare options along multiple dimensions, and perceive disadvantages as being more
significant than advantages due to loss aversion, thus decreasing received utility from the option
chosen. Consider the case of selecting a house: suppose that house A is the most aesthetically
pleasing, house B is in the best location, and house C has the most space. Regardless of which
house a person selects, due to comparative loss aversion, the mere awareness of the other options
decreases the satisfaction they experience. Empirical research [8, 3, 14] on the phenomenon of
“choice overload” (where people become less satisfied with their choice when they are presented
with a larger set of options) further supports the existence of comparative loss aversion.

One interpretation of this phenomenon that has been popularized in psychological literature
like The Paradox of Choice [20] is that people combine the best features of options they have
previously seen into an imagined alternative of superior quality. Later empirical work by Sagi
and Friedland [17] found that “regret is related to the comparison between the alternative chosen

2



and the union of the positive attributes of the alternatives rejected.” Intuitively, compared to an
imagined alternative combining the best attributes seen, the option chosen is much less satisfying.

In our work, we model this phenomenon by associating each candidate i with a k-dimensional

vector ~σ(i) =
(
σ
(i)
1 , · · · , σ

(i)
k

)
rather than a single scalar. The agent’s value for a single candidate is

just the sum over the agent’s value for the candidate on each dimension, namely, ‖~σ(i)‖1. So for an
unbiased decision-maker, this is still just an instance of the classic prophet inequality. As in [11],
our agent is biased, and maintains a reference point ~s(i) at time i based on options seen so far. The
agent suffers from loss aversion parameterized by λ, and experiences (and anticipates) a loss equal
to λ·

(
‖~σ(i)‖1 − ‖~s(i)‖1

)
upon selecting candidate i. The key distinction between our model and that

of [11] is in how the reference point is built. In Kleinberg et al. [11], the reference point is simply
the vector of a candidate j ≤ i maximizing the overall value ‖σ(j)‖1. In our model, the reference
point is instead a hypothetical super-candidate that combines the best candidate seen so far for

each feature. Formally, for each dimension ℓ, the value of the reference point is s
(i)
ℓ = maxj≤i{σ

j
ℓ}.

As previously discussed, this enables our model to better capture the multi-dimensional problem of
purchasing a house, versus the single-dimensional problem of buying/selling stocks that are well-
captured by the model of [11]. To reiterate: our model is identical to that of [11], except for the
choice of reference point. Surprisingly, this single change from a single-dimensional reference point
to a multi-dimensional reference point drastically changes conclusions in the model.

1.1 Summary of Results

Our main findings are that an agent who suffers from comparative loss aversion (i.e. our model, the
multi-dimensional case) suffers in a fundamentally different manner than an agent who only suffers
from reference-dependent loss aversion (i.e. [11], the single-dimensional case). We now overview
several results supporting this. In describing our results, “gambler” refers to the online decision-
maker in the prophet inequality setting, and “prophet” refers to the offline decision-maker (who
knows all options and simply picks the best).

Unbounded Loss. Perhaps our most surprising finding is a phase transition in λ as a function of k
when comparing the utility of a biased gambler to that of an unbiased gambler or unbiased prophet.
Specifically, Kleinberg et al. [11] show that a biased gambler can always guarantee at least a 1

2+λ -

approximation to the expected utility achieved by an unbiased prophet, and a 1
1+λ -approximation

to that of an unbiased gambler (and both of these bounds are tight). When λ · (k − 1) < 1, we

find a natural generalization: the biased gambler can guarantee a 1−λ(k−1)
2+λ -approximation to the

unbiased prophet, and a 1−λ(k−1)
1+λ -approximation to the unbiased gambler, and these are tight for all

k (including k = 1, where it matches [11]). However, there is a phase transition at λ·(k−1) = 1: for
any λ·(k−1) ≥ 1, and any C, there exist instances where the biased gambler achieves expected utility
1, but the unbiased gambler (and unbiased prophet) achieve expected utility at least C. That is, there
is no non-trivial guarantee on the competitive ratio as a function only of λ and k. Interestingly,
this phase transition occurs for all k > 1, but not for k = 1. This marks a fundamental difference
between online decision-making with comparative loss aversion versus only reference-dependent loss
aversion.

Given the importance of the phase transition, we will call λ · (k − 1) the feature-amplified bias.
Intuitively, feature-amplified bias measures how fast the gap between the utilities of unbiased and
biased agents grows with the number of candidates. As we will see in an illustrative example in
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section 3, when the feature-amplified bias is greater than one, the ratio between utility of an unbi-
ased prophet and that of a biased gambler grows exponentially with the number of candidates. The
formal statements of our main results when feature-amplified bias is less than one can be found in
theorems 4.4, 4.5 and 4.6. For the setting where feature-amplified bias is at least one, the main
results can be found in theorem 4.3.

No Improvement for Random Order, Optimal Order, and I.I.D. Distributions. One
key finding of Kleinberg et al. [11] is that the competitive ratio of a biased gambler compared to
an unbiased gambler/prophet drastically improves (the loss is logarithmic in λ instead of linear in
λ) when the candidates are revealed in random order. This of course holds in our model when
k = 1 (because it is identical to [11]). When k > 1, however, this phenomenon no longer occurs.
Specifically, for all k ≥ 2, even if the instance is i.i.d.: (a) if feature-amplified bias λ · (k − 1) ≥ 1,
then the expected reward of the biased gambler and unbiased prophet/gambler can be unbounded,
and (b) when feature-amplified bias λ · (k − 1) < 1, the worst-case ratio between the biased
gambler and unbiased prophet/gambler is within a constant-factor of the worst-case ratio without
the i.i.d. assumption.1 The formal statements of our results for the i.i.d setting can be found in
theorems 4.17 and 4.19.

1.2 Related Work.

Since its introduction, optimal stopping has been pertinent to the study of economic behaviors with
immediate applications in a wide range of economic domains such as search theory, financial trading,
auction design, etc. Various models have been proposed based on the optimal stopping paradigm
including prophet inequalities (value distribution known), secretary problems (value distribution
unknown) and Pandora’s box problem (where a cost is associated with inspection of options).

The model that is most relevant to our present work is that of the prophet inequality, where the
agents are given the distribution of their value for the candidates a priori. In the seminal work of
Krengel and Sucheston [13], it was shown that for prophet inequalities where the agent is limited
to picking a single candidate, the ratio between the expected largest value (namely, the prophet’s
pick) and the expected value of the candidate an agent playing optimally selects online is at most
2. Furthermore, this ratio is tight. Samuel-Cahn [18] further show that by using a threshold based
algorithm, the online agent can also guarantee that the expected value of the candidate they select
is a 1/2-approximation of the expected optimal value over all candidates. Prophet inequalities have
since been further studied under a variety of feasibility constraints on the set of selected candidates
(Kleinberg and Weinberg [12], Rubinstein [15], Rubinstein and Singla [16], Duetting et al. [5]), and
a variety of arrival order constraints (Esfandiari et al. [7], Ehsani et al. [6], Yan [23], Beyhaghi et al.
[1], Hill and Kertz [9], Correa et al. [4]).

Although optimal stopping may have direct applications in human decision making, very little
research has devoted to behavioral models of optimal stopping. Recently, Kleinberg et al. [11] con-
structed a model which factors in reference dependence and loss aversion, however to our knowledge
there is no other prior work exploring behavioral phenomena in the context of optimal stopping.

1Of course, we do not nail down the tight competitive ratio for the gambler in the i.i.d. setting, because even
the tight ratio between the gambler and prophet without loss aversion is quite involved. The tight competitive ratio
between the unbiased gambler and unbiased prophet for the random order (but not i.i.d.) setting is still unknown.
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1.3 Organization.

The rest of the paper will be organized as follows. In section 2, we discuss our model that incorpo-
rates comparative loss aversion and introduce notations that will be used throughout the paper. In
section 3, we present an illustrative example that highlights the difference between our model and
the single dimensional model presented in [11]. In section 4, we analyze our model under various
ordering constraints, with a focus on the gap between the utility of the biased gambler and that
of rational agents. In Section 5 we discuss the limitations of our model and possible directions for
future work. In Appendix A and Appendix B, we provide proofs that are omitted from Section 4.
Lastly, in Appendix C we present monotonicity results which were all analogous to those of the one
dimensional case presented in Kleinberg et al. [11].

2 Model and Preliminary

2.1 Modeling Comparative Loss Aversion

Multidimensional Optimal Stopping. We now construct a multi-dimensional model of the
optimal stopping problem such that candidates have multiple dimensions of value. First, we must
formally define the multi-dimensional optimal stopping problem, using slight modifications of the
classic definition of the problem in one dimension. Specifically, let there be n candidates each of
which has k dimensions of value that are of interest to a decision making agent, i.e. there are n
vector valued candidates, such that their value vectors are k-dimensional. Note that the use of
vector values differs from traditional constructions of the problem in which scalar values are used,
i.e. in the traditional problem k is 1.

We will use Ft with support on R
k
+ to denote the prior distribution of the gambler’s value vector

for the tth candidate. Let σ be an ordered sequence of n candidates, where the tth candidate has a
k-dimensional vector value σ(t) ∈ R

k drawn from Ft. Formally, we will use F = ×t∈[n]Ft to denote
the joint distribution of the value for all candidates, such that σ is drawn from F . Moreover, let
it be the case that the agent sees the realized value of σ(t) only when they reach step t in the
sequence. Upon reaching the tth candidate, σ(t), the agent must either accept them - thus halting
their search - or decline them, continuing their search and losing the candidate forever. The agent
attempts to select σ(t) to maximize their utility. We now need to reason about what an agent’s
utility function should look like.

The utility of agents with comparative loss aversion. In keeping with the notation of
Kleinberg et al. [11], let the parameter λ ≥ 0 serve as a multiplier representing our agent’s loss
aversion. In particular, let λ be used to amplify the difference between the chosen candidate and
the “reference candidate” along any dimensions for which the reference candidate is of higher value.
Observe that in the case of our model, reasoning about the reference candidate is somewhat com-
plex since an agent with comparative loss aversion compares each option against all previously seen
along different dimensions independently. Regardless, it is without loss of generality to collapse the
highest values previously seen along each dimension into single vector and consider this to be the
reference candidate.

Accordingly, our agent remembers the best value previously seen along each dimension and
combines these to form their reference candidate, which we refer to as the “super candidate”, since
is an upperbound on the quality of all previously seen candidates and combines all of their best
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features. Observe that this super candidate changes over time as we see new candidates that are
better than all previously seen along some dimension. Due to the agent’s reference dependence,
when the super candidate is better than the agent’s chosen candidate on any dimension, this
detracts from the utility they receive. Let us denote the super candidate at step t in the sequence

as ~s(t) and the jth entry of the super candidate at step t as ~s
(t)
j . We define the super candidate in

step t element-wise as follows:

~s
(t)
j = max

w:w∈[t]
(σ

(w)
j )

We define the utility received by a biased gambler, who suffers from loss aversion λ and who selects
the tth candidate in sequence σ, as follows:

Ugb(σ, t) =
∑

j

(
σ
(t)
j − λ(~s

(t)
j − σ

(t)
j )

)
= ‖σ(t)‖1 − λ

(
‖~s(t)‖1 − ‖σ(t)‖1

)
,

and we define the difference between the value selected by the biased gambler and their utility as
the biased gambler’s regret.

Recall that, by construction, we have already restricted all values to be non-negative, allowing
us to make use of L1 norms. Moreover, let’s compare this to the utility received by biased prophet
who selects option t:

Upb(σ, t) =
∑

j

(
σ
(t)
j − λ(~s

(n)
j − σ

(t)
j )

)
= ‖σ(t)‖1 − λ

(
‖~s(n)‖1 − ‖σ(t)‖1

)

Note that the only difference between the utility of the biased gambler and biased prophet is that
the super option of the biased prophet is constructed from all n candidates, whereas that of the
biased gambler is constructed only from the t candidates it has seen so far.

Next let us reason about the utilities received by a rational gambler and rational prophet,
respectively. In particular, observe that since they do not suffer from any reference dependence or
loss aversion, their payoff is just equal to the value of the option they select:

Upr(σ, t) = Ugr(σ, t) =
∑

j

σ
(t)
j = ‖σ(t)‖1

Furthermore, assuming that our agents seek to maximize their utilities, the payoff of a rational
prophet does not need parameter t since it selects t deterministically to maximize realized utility.
Namely, it suffices to denote the utility of a rational prophet as follows:

Upr(σ) = max
t:t∈[n]

(Upr(σ, t))

Similarly, since the biased prophet sees all options and selects t deterministically to maximize
realized utility, we can remove the parameter t here as well:

Upb(σ) = max
t:t∈[n]

(Upb(σ, t))

Now that the model has been developed, we can proceed to begin analyzing it. Next we will
develop notations to describe the expected utility of biased and rational agents, and their relative
differences. These notations will be used throughout the paper.
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2.2 Preliminaries

In keeping with standard conventions, we use EF to denote the expectation with respect to the
distribution F . To abbreviate notation, we will use EF

[
U∗
gb

]
and EF

[
U∗
gr

]
to denote the expected

utility of the biased gambler and a rational gambler, respectively, when they use a utility optimal
online algorithm. Similarly, we will use EF [Upb ] and EF [Upr ] to denote the expected utility of
the biased prophet and rational prophet, respectively. In addition, we will use V ∗ to denote the
maximum value of all candidates, namely, V ∗ = max

t∈[n]
‖σ(t)‖1. We will use S∗

j to the denote the

maximum value on the jth dimension, namely, S∗
j = max

t∈[n]
σ
(t)
j .

Next, we will create several definitions to describe the relationship between utility of the biased
gambler and the utility of rational agents, which will be frequently referenced in subsequent sections.
Informally, the prophet/online utility ratio describes how well the biased gambler can do compared
to the rational prophet/gambler given a specific prior distribution F . On the other hand, the
prophet/online competitive ratio describes how well the biased gambler can do compared to the
rational prophet/gambler given the most adversarial prior distribution F .

Definition 2.1 (Prophet Utility Ratio). We will use the term prophet utility ratio to denote
the ratio between the expected utility of a rational prophet and the expected optimal utility from a
biased gambler under the prior distribution F . More formally, we define the prophet utility ratio

as
EF [Upr ]

EF
[
U∗
gb

] .

Note that the Prophet Utility Ratio captures the loss that the biased gambler experiences both
due to bias and due to making decisions online.

Definition 2.2 (Online Utility Ratio). We will use the term online utility ratio to denote the
ratio between the expected optimal utility of a rational gambler and the expected optimal utility from
a biased gambler under the prior distribution is F . Formally, we define the online utility ratio as
EF [Ug∗r ]
EF

[
U∗
gb

] .

Note that the Online Utility Ratio captures the loss that the biased gambler experiences just
due to bias.

Definition 2.3 (Prophet/Online Competitive Ratio). Given a setting (such as adversarial
arrival order or i.i.d prior distribution), we define the terms prophet competitive ratio and online
competitive ratio as the maximum prophet and online utility ratio possible in the setting. Specifically,
in the adversarial arrival order setting, the prophet and online competitive ratio are formally defined

as max
F

EF [Upr ]

EF
[
U∗
gb

] and max
F

EF [Ug∗r ]
EF

[
U∗
gb

] , respectively. In the i.i.d prior distribution setting, we will denote

U as the set of all i.i.d distributions. The prophet and online competitive ratio in the i.i.d prior

distribution setting are then formally defined as max
F∈U

EF [Upr ]

EF
[
U∗
gb

] and max
F∈U

EF [Ug∗r ]
EF

[
U∗
gb

] .

As stated in the introduction, we define λ · (k − 1) to be the feature-amplified bias. We will
soon see that whether the feature-amplified bias λ · (k − 1) is greater or less than one is critical in
determining whether the biased gambler has a non trivial prophet/online competitive ratio.

Finally, the following claim that directly follows from classical prophet inequality results will
be referenced and used throughout proofs in the rest of the paper.
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Claim 2.4. For any prior distribution F and any assumption about candidate arrival order,
EF
[
U∗
gr

]
≥ 1

2 · EF [Upr ].

Proof. In our model, rational agents’ utilities are simply their value for the option they select.
Therefore our claim follows directly from the classical prophet inequality result [13, 12] that the
expected value from a value-optimal online algorithm is a 1

2 approximation of the expected value
from an offline prophet.

3 Unbounded Loss: A Motivating Example

Prior to proving more general claims, we will first show an adversarial example that illustrates a
fundamental difference between our multi-dimensional optimal stopping problem with biased agents
and the single dimensional model. Specifically, in the single dimensional model, the biased gambler
attain worse utility than rational agents only when there is uncertainty. (Imagine if the biased
agent already knows all values of the candidates, they can simply pick the one with the largest
value and suffers no regret.) However, in our multi-dimensional model, we will show an example
where the biased gambler attains arbitrarily worse utility than rational agents, even when the prior
distribution is deterministic.

Example 1. Consider n candidates arriving in adversarial order, where the biased gambler con-
siders k = 2 features of candidates and has loss aversion parameter λ = 2. Furthermore, let σ be
the following sequence of candidate values:

(1, 0), (0, 1), (2, 0), (0, 2), (22 , 0), (0, 22), · · · , (2n/2−1, 0), (0, 2n/2−1),

and let the prior distribution F be deterministic – where the realized sequence from F is exactly σ
with probability one.

In our example, the overall value of the candidates increases exponentially over time. Con-
sequently, the rational prophet will receive high utility by simply selecting one of the last two
candidates. However, the fact that the candidates are excellent on alternating dimensions causes
the biased gambler to suffer from increasing regret as they see more candidates. In fact, should the
biased gambler choose a later candidate rather than an earlier candidate, the increment in their
regret roughly cancels out the increment in their value for the candidate.

With this intuition in mind, let’s formally reason about the behaviors of our agents. Recall that
the gambler is aware of the prior distribution F and thus is aware of σ a priori for this example.
The rational gambler is essentially the same as the rational prophet in this case since they know σ
a priori and experience no regret. Thus, the expected utility of both the rational prophet and the
rational gambler is simply 2n/2−1.

Under our stylized model, the biased gambler only experiences regret for realized options, com-
pletely disregarding any future options they may be aware of a priori. Consequently, the biased
gambler has utility 1 if they just take the first candidate and are not presented other candidates,
and they have utility ≤ 0 if they take any other candidate. (e.g. If the gambler decides to select
let’s say the candidate (4, 0), then the super candidate has value (4, 2), which means that the biased
gambler’s utility is ‖(4, 0)‖1 − 2 · (‖(4, 2)‖1 − ‖(4, 0)‖1) = 4 − 2 · (6 − 4) = 0.) Therefore we know

EF
[
U∗
gb

]
≤ 1. As a result, the biased gambler’s prophet utility ratio,

EF [Upr ]

EF
[
U∗
gb

] =
Upr (σ)
Ugb

(σ) , and online
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utility ratio,
EF [U∗

gr ]
EF

[
U∗
gb

] =
Ugr (σ)
Ugb

(σ) , are both equal to 2n/2−1, and thus tend toward ∞ as n increases.

Recall that prophet and online utility ratios lower bound the prophet and online competitive ratio,
respectively, implying that both competitive ratios must also be ∞.

As we will soon show in Proposition 4.1 and Proposition 4.2, our present adversarial example
with candidates that are excellent on alternating dimensions can be generalized to any k and λ such
that the feature-amplified bias λ · (k− 1) is at least one in the adversarial setting. Furthermore, as
we will show in Proposition 4.15 and Proposition 4.16, we can extend our example to i.i.d setting
(and thus to random and optimal candidate ordering setting) by carefully constructing the prior
distribution so that with high probability, the sequence of realized candidate values presented to
the agent is adversarial and (after deleting subsequent duplicates) similar to the sequence σ in this
example. Our capability to generalize the adversarial example under any arrival order constraint
drives our model’s departure from the single dimensional model. Further, our adversarial example
for the i.i.d setting is highly randomized, which shows that the adversarial examples are not an
artifact of deterministic distributions.

Lastly, this example illustrates an additional property unique to our model: the biased gambler
may outperform the biased prophet. Notice that in our example, the biased prophet is forced to see
both (2n/2−1, 0) and (0, 2n/2−1) as realized values, resulting in a reference point (2n/2−1, 2n/2−1) –
much larger than any value they could have chosen. Consequently, the biased prophet has negative
utility and is worse off compared to the biased gambler. In contrast, in [11]’s model (where k = 1),
the biased prophet is guaranteed to attain at least as much utility as that of online agents.

4 Effects of Comparative Loss Aversion

In this section we formally analyze the effect of comparative loss aversion on the biased gambler’s
utility. Specifically, we compare the biased gambler’s utility with those of both the rational prophet
and rational gambler. We will focus on the two extremes of arrival order constraints: adversarial
order and optimal order (even more specifically, we consider sequences drawn from an i.i.d. prior
distribution, where any arrival order is optimal). Under both ordering constraints, we show a phase
transition when the feature-amplified bias λ · (k − 1) is equal to one. When the feature-amplified
bias λ(k − 1) ≥ 1, the biased gambler’s prophet and online competitive ratio are both equal to
infinity. On the other hand, when the feature-amplified bias λ(k − 1) < 1, the biased gambler can
achieve a competitive ratio that is only dependent on λ and k, and of similar magnitude under
both ordering constraints.

It is surprising that our model exhibits similar behavior in terms of competitive ratios regardless
of constraints on arrival order. In contrast, [11] shows that for the single dimensional model, assum-
ing the arrival order to be random rather than adversarial results in an exponential improvement
in utility guarantees in terms of λ.

Missing proofs and the complete version of the proof sketches in Section 4.1 and Section 4.2
can be found in Appendix A and Appendix B respectively.

4.1 Utility Loss under Adversarial Arrival Order

Firstly, we generalize Example 1 to show that when the feature-amplified bias λ · (k − 1) ≥ 1, as
n grows arbitrarily large, the prophet and online utility ratios (namely, the ratio between expected
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utility from the biased gambler and the expected utility from the rational prophet or gambler) can
be arbitrarily large. In particular, we construct a prior distribution F0(n), parameterized by the
number of candidates n such that, when the feature-amplified bias λ · (k−1) > 1, both the prophet
and online utility ratio are exponential in terms of n. When the feature-amplified bias λ(k−1) = 1,
we obtain a more conservative result that prophet and online utility ratio can be linear in terms of
n.

Proposition 4.1. When the feature-amplified bias λ · (k − 1) > 1, for any n ∈ N+, there exists a
sequence σ with n candidates such that when the distribution F0(n) takes the values of σ determin-
istically, i.e. with probability 1, and when our prior distribution F equals F0(n), the prophet utility

ratio
EF [Upr ]

EF
[
U∗
gb

] and the online utility ratio
EF [U∗

gr ]
EF

[
U∗
gb

] are both equal to Ω
(
(λ(k − 1))

n
k
−1
)
.

Proof Sketch. The proposition can be proven by considering the following deterministic distribution,
where β = λ · (k − 1):

(1, 0, · · · , 0), (0, 1, 0, · · · , 0), · · · , · · · , (0, · · · , 0, 1),
(β, 0, · · · , 0), (0, β, 0, · · · , 0), · · · , · · · , (0, · · · , 0, β),
(β2, 0, · · · , 0), (0, β2, 0, · · · , 0), · · · , · · · , (0, · · · , 0, β2),

· · ·

(β⌈n/k⌉−1, 0, · · · , 0), (0, β⌈n/k⌉−1, 0, · · · , 0), · · · , (0, · · · , 0, β⌈n/k⌉−1, 0, · · · , 0).

While the rational prophet and gambler are able to get utility β⌈n/k⌉−1 by selecting an option in the
last row, the biased gambler could only get utility 1, in particular by selecting the first option.

Proposition 4.2. When the feature-amplified bias λ · (k − 1) = 1, for any n ∈ N
+, there exists a

sequence σ with n candidates such that when the distribution F0(n) takes the values of σ determin-
istically, i.e. with probability 1, and when our prior distribution F equals F0(n), the prophet utility

ratio
EF [Upr ]

EF
[
U∗
gb

] and the online utility ratio
EF [U∗

gr ]
EF

[
U∗
gb

] are both equal to Ω
(
n
k

)
.

Proof Sketch. The proposition can be proven by considering the following deterministic distribution:

(1, 0, · · · , 0), (0, 1, 0, · · · , 0), · · · , · · · , (0, · · · , 0, 1),
(2, 0, · · · , 0), (0, 2, 0, · · · , 0), · · · , · · · , (0, · · · , 0, 2),
(3, 0, · · · , 0), (0, 3, 0, · · · , 0), · · · , · · · , (0, · · · , 0, 3),

· · ·
(⌈nk ⌉, 0, · · · , 0), (0, ⌈nk ⌉, 0, · · · , 0), · · · , (0, · · · , 0, ⌈nk ⌉, 0, · · · , 0).

Here, the rational prophet and gambler are able to get utility ⌈n/k⌉, while the biased gambler could
get utility no better than 1.

Theorem 4.3. When the feature-amplified bias λ · (k− 1) ≥ 1, the prophet and online competitive
ratio are both equal to ∞.

Proof. By Proposition 4.1 and Proposition 4.2 we know that when λ · (k− 1) ≥ 1, for any n ∈ N
+,

there exists a distribution F0(n) such that the prophet and online utility ratio are Ω(nk ) (note that

Ω
(
(λ(k − 1))

n
k
−1
)

= ω(nk )). Thus for any T ∈ N, there exists a n ∈ N
+ such that the prophet
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and online utility of F0(n) both exceed T . Since the prophet competitive ratio max
F

EF [Upr ]

EF
[
U∗
gb

] is at

least max
n∈N+

EF0(n)[Upr ]

EF0(n)

[
U∗
gb

] , any T ∈ N serves as a lower bound to the prophet utilty gap, and thus the

prophet competitive ratio is equal to ∞. Similarly, the online competitive ratio is equal to ∞.

On the other hand, when the feature-amplified bias λ(k − 1) < 1, we prove that the biased

gambler, by using a simple threshold based algorithm, can get at least a 1−λ(k−1)
2+λ fraction of the

prophet’s utility and a 1−λ(k−1)
1+λ fraction of the optimal rational gambler’s utility regardless of the

value of n. We also show that both of these ratios are tight. More formally, we prove the following
theorems.

Theorem 4.4. When the feature-amplified bias λ · (k − 1) < 1, for any prior distribution F ,

the inverse of the prophet utility ratio
EF

[
U∗
gb

]

EF [Upr ]
≥ (1 − λ(k − 1)) · max

{
γ

1+λ+k ,
1

2+λ

}
, where γ =

EF [
∑k

j=1 S
∗
j ]

EF [V ∗] . Consequently, the prophet competitive ratio is at most 2+λ
1−λ(k−1) .

Theorem 4.5. When the feature-amplified bias λ · (k − 1) < 1, for any prior distribution F , the

online utility ratio
EF [U∗

gr ]
EF

[
U∗
gb

] ≤ 1+λ
(1−λ(k−1)) . Consequently, the online competitive ratio is at most

1+λ
1−λ(k−1) .

Theorem 4.6. When the feature-amplified bias λ · (k − 1) < 1, for any δ ∈ (0, 1), there exists a

prior distribution F such that the prophet utility ratio
EF [U∗

pr ]
EF [Ugb ]

≥ 2+λ
1−λ(k−1) · (1 − δ) and that the

online utility ratio
EF [U∗

gr ]
EF

[
U∗
gb

] ≥ 1+λ
1−λ(k−1) · (1 − δ). Consequently, the prophet competitive ratio is at

least 2+λ
1−λ(k−1) and the online competitive ratio is at least 1+λ

1−λ(k−1) .

Our proof for Theorem 4.4 and Theorem 4.5 follows a similar outline to the single dimensional
case presented in Kleinberg et al. [11]. However, our analysis deals with the additional complexity
from having multiple dimensions, and often requires a tighter analysis for intermediate terms in
order to find the exact competitive ratios. For instance, in Theorem 4.4, we require an additional
term when bounding prophet utility ratio (which will later be used in Theorem 4.5) compared to
a similar claim in [11].

We will start by defining threshold based algorithms.

Definition 4.7 (Thresholding algorithms.). We define a thresholding algorithm parameterized by
α ∈ (0, 1) and denoted Aα as follows. First, Aα sets threshold T such that α = Pr[V ∗ ≥ T ] (recall
that V ∗ is defined as the maximum value of all candidates). Next, during the selection process,
the algorithm will select the first candidate whose value ‖σ(t)‖1 is at least the threshold T . We will
denote the expected utility from Aα as EF [Uα

gb
].

We will now reason about the biased gambler’s utility from using a thresholding algorithm Aα.
In the following two claims, we first bound the utility (and regret) of a biased gambler that uses the
thresholding algorithm when they encounter a particular sequence of values σ. This utility bound
can then be used to bound the expected utility of the biased gambler given the prior distribution
of values.

11



Claim 4.8. When the feature-amplified bias λ · (k − 1) < 1, for any sequence σ, for any threshold
T , and for timestep t such that t is the smallest timestep where ‖σ(t)‖1 ≥ T , it must be the case
that Ugb(σ, t) ≥ ‖σ(t)‖1 − λ(k − 1) · T .

Claim 4.9. When the feature-amplified bias λ · (k − 1) < 1, for any prior distribution F and any
α ∈ (0, 1), EF

[
Uα
gb

]
≥ ((1 + λ)α− kλ) · T + (1− α) ·

∑
t∈[n] Eσ(t)∼Ft

[
(‖σ(t)‖1 − T )+

]
.

Proof Sketch. Let T be the threshold where α = Pr[V ∗ ≥ T ], then T is the threshold used by
the algorithm Aα. Observe that when the gambler uses the algorithm Aα, with probability α the
algorithm will select some item, and with probability 1− α the algorithm will select nothing.

Conditioned on Aα selecting no item, we know that all items have value < T . Thus even
at the end of the algorithm, the gambler’s value for the super candidate must not exceed k · T .
This means that the gambler’s utility is at least −λ · k · T . On the other hand, we can prove by
using Claim 4.8 that conditioned on Aα selecting an item at step t, the gambler’s utility is at least

(1−λ(k−1)) ·T +
E
σ(t)∼Ft

[(‖σ(t)‖1−T )+]
Pr[‖σ(t)‖1≥T ]

. The proof of the claim then follows a standard argument for

prophet inequality where we take the expectation of agent utility over all events (for all t: selecting
an item at step t; selecting no item).

We can now bound the utility ratio between a biased gambler using algorithm Aα and the
rational prophet, which can then be used to prove Theorem 4.4 and Theorem 4.5. It turns out that
Theorem 4.4 and Theorem 4.5 requires two different ways of bounding the the utility ratio.

Lemma 4.10. When the feature-amplified bias λ · (k − 1) < 1, for any prior distribution F , there

exists an α such that
EF

[
Uα
gb

]

EF [Upr ]
≥ (1 − λ(k − 1)) · max

{
γ

1+λ+k ,
1

2+λ

}
, where γ =

EF [
∑k

j=1 S
∗
j ]

EF [V ∗] (recall

that S∗
j denotes the maximum value in the sequence along dimension j and V ∗ = max

t
‖σ(t)‖1).

Proof Sketch. The key step in this lemma is to bound the term
∑

t∈[n]
Eσ(t)∼Ft

[
(‖σ(t)‖1 − T )+

]
from

Claim 4.9.
Let us call (‖σ(t)‖1−T )+ the surplus from the tth candidate. Note that

∑

t∈[n]
E‖σ(t)‖1∼Ft

[
(‖σ(t)‖1 − T )+

]

is the sum over the expected surplus from each candidate. Thus, it must be at least the expected
surplus from the candidate with the largest overall value. Moreover, it must be at least the sum
over the expected surplus from candidates that have the largest value on each individual dimension.
Formally, the following two inequalities always hold:

∑

t∈[n]
Eσ(t)∼Ft

[
(‖σ(t)‖1 − T )+

]
≥ EF

[
(V ∗ − T )+

]
≥ EF [V

∗ − T ], (1)

and

∑

t∈[n]
Eσ(t)∼Ft

[
(‖σ(t)‖1 − T )+

]
≥

k∑

j=1

EF
[
(S∗

j − T )+
]
≥ EF




k∑

j=1

S∗
j


− k · T ≥ γ · EF [V

∗]− k · T.

(2)

Equation (1) and Equation (2) can then be used to bound the utility of the biased gambler, and in
particular its relation to the utility of the rational prophet.
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We are now ready to prove Theorem 4.4 and Theorem 4.5.

Proof. (of Theorem 4.4) The first line of the theorem follows directly by Lemma 4.10 and the fact
that EF

[
U∗
gb

]
≥ EF

[
Uα
gb

]
. (Because EF

[
U∗
gb

]
is defined as the expected utility from a biased gambler

that uses the utility optimal online algorithm, EF
[
U∗
gb

]
is at least the expected utility from a biased

gambler using some specific online algorithm).
Now we will derive the second line of the theorem. From the first line of the theorem we know

that for any prior distribution F ,

EF
[
U∗
gb

]

EF [Upr ]
≥ (1− λ(k − 1)) ·max

{
γ

1 + λ+ k
,

1

2 + λ

}
≥

1− λ(k − 1))

2 + λ
.

Hence, for any prior distribution F , the prophet utilit ratio
EF [Upr ]

EF
[
U∗
gb

] is at most 2+λ
1−λ(k−1)) . We

conclude that the prophet competitive ratio max
F

EF [Upr ]

EF
[
U∗
gb

] is at most 2+λ
1−λ(k−1)) .

Proof. (of Theorem 4.5) Let β =
EF [Upr ]

EF
[
U∗
gb

] and let ∆ =
EF [Upr ]

EF [U∗
gr ]

. Since
EF [U∗

gr ]
EF

[
U∗
gb

] = β
∆ , proving our

theorem is equivalent to proving that ∆
β ≥ (1−λ(k−1))

1+λ , and we will do exactly this for the rest of
the proof.

Firstly, let γ =
EF [

∑k
j=1 S

∗
j ]

EF [V ∗] , then by Theorem 4.4 we know that 1
β =

EF
[
U∗
gb

]

EF [Upr ]
≥ (1− λ(k − 1)) ·

γ
1+λ+k .

Next, because EF
[
U∗
gb

]
represents the highest expected utility a biased gambler can gain from

using an online algorithm, EF
[
U∗
gb

]
must be at least the expected utility a biased gambler can

gain from using the value-optimal online algorithm, which is equal to the optimal utility of a
rational gambler minus the loss aversion the biased gambler experience from using the value-optimal
online algorithm. Recall that S∗

j is defined as the maximum value on the jth dimension among all
candidates, thus the value of super candidate the biased gambler experiences loss aversion against
must be at most

∑k
j=1 S

∗
j . Thus

EF
[
U∗
gb

]
≥ EF


U∗

gr − λ ·




k∑

j=1

S∗
j − U∗

gr




 = (1 + λ) · EF

[
U∗
gr

]
− λ · EF




k∑

j=1

S∗
j


.

By the definition of ∆, we know that EF
[
U∗
gr

]
= 1

∆ · EF [Upr ]. Similarly, by the definition of γ,

EF
[∑k

j=1 S
∗
j

]
= γ · EF [V ∗] = γ · EF [Upr ]. Therefore combining these two statements with the

previous inequality we know the following:

EF
[
U∗
gb

]
≥

(
1 + λ

∆
− λ · γ

)
· EF [Upr ].

Re-expressing algebraically, we have 1
β =

EF
[
U∗
gb

]

EF [Upr ]
≥
(
1+λ
∆ − λ · γ

)
= 1+λ−λ·γ·∆

∆ .

Now we have two bounds on 1
β : we know that 1

β ≥ (1−λ(k−1)) · γ
1+λ+k and that 1

β ≥ 1+λ−λ·γ·∆
∆ .

By these two bounds, we conclude that

∆

β
= ∆ ·

1

β
≥ max

{
(1− λ(k − 1)) ·

∆ · γ

1 + λ+ k
, 1 + λ− λ · γ ·∆

}
.

13



Notice that inside the max bracket, the first term monotonically increases with ∆, while the second
term monotonically decreases with ∆, therefore the minimum of the max of two terms occurs when
the two terms are equal, namely, when (1− λ(k − 1)) · ∆·γ

1+λ+k = 1 + λ− λ · γ ·∆. This is achieved

when ∆ = 1+λ+k
γ·(1+λ) , at which point

(1− λ(k − 1)) ·
∆ · γ

1 + λ+ k
= 1 + λ− λ · γ ·∆ =

1− λ(k − 1)

1 + λ
.

We thus conclude that it is always the case that
EF

[
U∗
gb

]

EF [U∗
gr ]

= ∆
β ≥ 1−λ(k−1)

1+λ regardless of the value of

∆.

We remain to discuss Theorem 4.6, which we prove by constructing a worst case prior distri-
bution. Our construction combines a generalization of Example 1 with the canonical two item
example showing a 1/2-competitive ratio for classical prophet inequality. In our construction, all
but the last candidate has deterministic values constructed similarly to those in Example 1 (but
the value of the candidates grow much slower due to the fact that the feature-amplified bias is less
than one). The last candidate has a high value with a very small probability, which is similar to
constructions for classical prophet inequality.

Proof Sketch. (of Theorem 4.6) Let the first n−1 candidates have the following deterministic value:

(1, 0, · · · , 0), (0, 1, 0, · · · , 0), · · · , (0, · · · , 0, 1),
(1 + β, 0, · · · , 0), (0, 1 + β, 0, · · · , 0), · · · , (0, · · · , 0, 1 + β),
(1 + β + β2, 0, · · · , 0), (0, 1 + β + β2, 0, · · · , 0), · · · , (0, · · · , 0, 1 + β + β2),

· · ·

(
∑⌈n/k⌉−1

j=0 βj, 0, · · · , 0), (0,
∑⌈n/k⌉−1

j=0 βj , 0, · · · , 0), · · · , (0, · · · , 0,
∑⌈n/k⌉−1

j=0 βj).

Then, the last randomized candidate is equal to
(
(1− ǫ)(1 + λ) ·

∑⌈n/k⌉−1
j=0 βj/ǫ, 0, · · · , 0

)
with

probability ǫ and is equal to (0, 0, · · · , 0) with probability 1 − ǫ. One can then verify that the
biased gambler can only get utility at most 1, since by the time the biased gambler reach the
last randomized candidate, their imaginary super candidate is too strong for the biased gambler
to gain positive expected utility from the randomized candidate. However, the rational prophet
can simply select the maximum between the best deterministic option and the randomized option,
getting utility that approaches 2+λ

1−λ(k−1) as ǫ approaches 0 and n approaches ∞. Similarly, the
rational gambler can simply always select the randomized option and get utility that approaches
and 1+λ

1−λ(k−1) .

4.2 No Improvement Under Relaxed Arrival Order

We now show that most of our results for adversarial arrival order can be used to derive analogous
results for the case where the prior distribution is i.i.d.

Specifically, in the next claim (Claim 4.13), we will show that removing repeated candidate
values from a sequence does not affect the biased gambler’s optimal utility. We will then use the
claim to establish in a subsequent lemma (Lemma 4.14) that for each deterministic distribution (i.e.
each distribution such that values drawn from it are equal to some sequence σ with probability 1), we
can find an i.i.d prior distribution F with a similar realized sequence (after deleting duplicates), and
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hence similar prophet and online utility ratio. As we have discussed in Section 3 and Section 4.1,
the construction of the worst case instances for the adversarial arrival order setting is either a
fully deterministic sequence, or with few randomized options. Consequently, Lemma 4.14 can be
leveraged to translate all lower bounds on the utility ratios in adversarial setting into lower bounds
in the i.i.d setting.

Definition 4.11. A sequence σ is called succinct if there are no two identical candidates in the
sequence and no candidate’s value is a zero vector.

Definition 4.12. The representation r(σ) of a sequence σ is the sequence of unique elements in σ
ordered in the ascending order of their first occurance in σ. (e.g. r(1, 2, 1, 2, 3) = 1, 2, 3.)

Claim 4.13. Upr(σ) = Upr(r(σ)) and Ugb(σ) = Ugb(r(σ)).

Proof. It is clear that Upr(σ) = Upr(r(σ)) since r(σ) contains all the unique elements in σ. Let a
be an arbitrary candidate in σ, let Ia be the set of all indices t where σ(t) = a and let ta be the
minimum index in Ia. Let σ

′ be the same sequence as σ except for ‖σ(t)‖1 = 0 for all t ∈ Ia \ {ta}.
We will show that Ugb(σ

′) = Ugb(σ).
Firstly, for any index t, the super candidate s(t) is only affected by the set of unique candidates

at indices < t. Therefore s(t) takes the same value in σ and σ′ for any t 6∈ Ia \ {ta}. As a result,
Ugb(σ, t) = Ugb(σ

′, t) for any t 6∈ Ia \ {ta}.
Also, when seeing the same candidate value, having seen more candidates in the past can only

decrease the biased gambler’s utility. Thus for any t ∈ Ia, Ugb(σ, ta) ≥ Ugb(σ, t). We conclude that
Ugb(σ) = maxt∈[n]Ugb(σ, t) = maxt∈[n](σ

′, t) = Ugb(σ
′).

By applying the above construction repeatedly, we can arrive at a sequence σ∗ where the only
non zero entries are the first occurrence of each candidate in σ. r(σ) is simply the result of removing
candidates that have value 0 from σ∗. Clearly, this operation does not affect the biased gambler’s
maximum utility. Thus Ugb(r(σ)) = Ugb(σ

∗) = Ugb(σ).

Lemma 4.14. For any ǫ ∈ (0, 1), any succinct sequence σ such that its length m = |σ| is
greater than 1, there exists a distribution F where all candidates are i.i.d with support on the

set {σ(1), · · · , σ(m)} such that the prophet utility ratio
EF [Upr ]

EF
[
U∗
gb

] ≥ (1− ǫ) ·
Upr (σ)
Ugb

(σ) .

Proof. Given an x ∈ (0, 1) that we will set later, consider a distribution D that takes value σi (i
th

candidate in the sequence σ) with probability xi−1(1−x)
1−xm for all i ∈ [m]. First we will verify that D

is a valid distribution (namely, the probability sums up to be 1):

m∑

i=1

xi−1(1− x)

1− xm
=

1− x

1− xm

m∑

i=1

xi−1 =
1− xm

1− x
·
1− x

1− xm
= 1.

Now, let F = ×i∈[n]D, where n = mα(m−1) ·logα(m) for some α > 1 that we will set later. Let σ̃ be a
sequence drawn from F , from Claim 4.13 we know that as long as r(σ̃) = σ, then Upr(σ̃) = Upr(σ)
and Ugb(σ̃) = Ugb(σ). Furthermore, by construction the maximum value in a sequence σ̃ that
is drawn from F is at most the maximum value in σ, consequently, Ugb(σ̃) ≤ Upr(σ̃) ≤ Upr(σ).
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Therefore

EF
[
U∗
gb

]

EF [Upr ]
≤

Prσ̃∼F [r(σ̃) = σ] · Ugb(σ) + Prσ̃∼F [r(σ̃) 6= σ] · Upr(σ)

Prσ̃∼F [r(σ̃) = σ] · Upr(σ)

≤
Ugb(σ)

Upr(σ)
+

Prσ̃∼F [r(σ̃) 6= σ]

Prσ̃∼F [r(σ̃) = σ]
.

Now we want to bound the probability that r(σ̃) 6= σ. There are two ways for this to happen,
either σ̃ does not contain all candidates in σ, or r(σ̃) is ordered differently than σ. Formally, by
union bound,

Pr
σ̃∼F

[r(σ̃) 6= σ] ≤
∑

i∈[m]

Pr
σ̃∼F

[σi 6∈ r(σ̃)] +
∑

i∈[m−1]

Pr
σ̃∼F

[σi+1 occur before σi in r(σ̃) |σi, σi+1 ∈ r(σ̃)].

Firstly, we bound the probability that σ̃ does not contain σi as follows

Pr
σ̃∼F

[σi 6∈ r(σ̃)] =

(
1−

xi−1(1− x)

1− xm

)n

≤

(
1−

xm−1(1− x)

1− xm

)n

≤
(
1− xm−1

)n
.

Next, let ri,i+1(σ̃) denote the smallest index j such that σ̃j = σi or σi+1.

Pr
σ̃∼F

[σi+1 occur before σi in r(σ̃) |σi, σi+1 ∈ r(σ̃)] = Pr
σ̃∼F

[σ̃ri,i+1(σ̃) = σi+1 |σi, σi+1 ∈ r(σ̃)]

= Pr
v∼D

[v = σi+1 | v ∈ {σi+1, σi}]

=

xi−1(1−x)
1−xm

xi−1(1−x)
1−xm + xi(1−x)

1−xm

=
x

x+ 1
.

Now we set x = m−α, and conclude that

Pr
σ̃∼F

[r(σ̃) 6= σ] ≤ m ·
(
1− xm−1

)n
+ (m− 1) ·

x

x+ 1

≤ m ·
(
1−m−α·(m−1)

)mα(m−1) ·logα(m)
+ (m− 1) ·m−α

≤ m ·m−α + (m− 1) ·m−α

≤ m−(α−1) +m−(α−1).

By choosing α = logm

(
Upr (σ)
ǫ·Ugb

(σ)

)
+ 2, the above entity is < ǫ ·

Ugb
(σ)

Upr (σ)
, thus

EF
[
U∗
gb

]

EF [Upr ]
≤

Ugb(σ)

Upr(σ)
+

Prσ̃∼F [r(σ̃) 6= σ]

Prσ̃∼F [r(σ̃) = σ]
≤

Ugb(σ)

Upr(σ)
+

ǫ ·
Ugb

(σ)

Upr (σ)

1− ǫ ·
Ugb

(σ)

Upr (σ)

.

Since
Ugb

(σ)

Upr (σ)
is at most 1, we conclude that

EF
[
U∗
gb

]

EF [Upr ]
≤
(
1 + ǫ

1−ǫ

)
·
Ugb

(σ)

Upr (σ)
. Consequently,

EF [Upr ]

EF
[
U∗
gb

] ≥ (1− ǫ) ·
Upr(σ)

Ugb(σ)
.
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We can now use Lemma 4.14 to prove that when the candidate values are i.i.d, it is also the
case that when the feature-amplified bias λ(k − 1) ≥ 1, prophet and online utility ratios can get
progressively worse as the number of candidates n increases, and as a result, both the prophet and
online competitive ratio are equal to ∞.

Proposition 4.15. When the feature-amplified bias λ · (k − 1) > 1, for all n ∈ N
+, there exists

a prior distribution F0(n) where all candidates are i.i.d such that when F = F0(n), the prophet

utility ratio
EF [Upr ]

EF
[
U∗
gb

] and the online utility ratio
EF [U∗

gr ]
EF

[
U∗
gb

] are both equal to Ω

(
(λ(k − 1))f(λ,k)·log

1
2 n

)
,

where f(λ, k) is a function that only depends on λ and k.

Proof Sketch. Let σ(m) be the adversarial sequence considered in Proposition 4.1 of length m.

Then
Upr (σ(m))
Ugb

(σ(m)) = Ω
(
(λ(k − 1))

m
k
−1
)
. By construction σ(m) contains distinct entries, and thus

is succinct. Thus by Lemma 4.14, we can construct a randomized and i.i.d distribution F with

n = mα(m−1) · logα(m) candidates where α = logm

(
(λ(k−1))

m
k

−1

ǫ

)
+ 2 that has a similar prophet

and online utility ratio (within ǫ multiplicative difference). A careful relation between n and m
then proves the claim.

Proposition 4.16. When the feature-amplified bias λ · (k − 1) = 1, for all n ∈ N
+, there exists

a prior distribution F0(n) where all candidates are i.i.d such that when F = F0(n), the prophet

utility ratio
EF [Upr ]

EF
[
U∗
gb

] and the online utility ratio
EF [U∗

gr ]
EF

[
U∗
gb

] are both equal to Ω
(

logn
k·log logn

)
.

Proof Sketch. The proof follows similarly to Proposition 4.16, except that we consider the adversar-
ial sequence σ(m) from Proposition 4.2, which has a prophet and online utility ratio of Ω(mk ).

Theorem 4.17. In the i.i.d prior distribution setting, when the feature-amplified bias λ·(k−1) ≥ 1,
the prophet and online competitive ratio are both equal to ∞.

On the other hand, when the feature-amplified bias λ(k − 1) < 1, we can utilize Lemma 4.14
to show a lower bound for the prophet and online competitive ratios that matches those in the
adversarial setting within constant factors.

Claim 4.18. When the feature-amplified bias λ(k − 1) < 1, for any δ ∈ (0, 1), there exists an i.i.d

prior distribution F where the prophet utility ratio
EF [Upr ]

EF
[
U∗
gb

] ≥ (1− δ) · 1
(1−λ(k−1)) .

Proof Sketch. We will consider a sequence of length m that is similar to the mostly deterministic
distribution considered in theorem 4.6, except that the last candidate, which has randomized value,
is excluded. Specifically, let σ be the following sequence:

(1, 0, · · · , 0), (0, 1, 0, · · · , 0), · · · , (0, · · · , 0, 1),
(1 + β, 0, · · · , 0), (0, 1 + β, 0, ·(1 − λ(k − 1))(1 + δ)s, 0), · · · , (0, · · · , 0, 1 + β),
(1 + β + β2, 0, · · · , 0), (0, 1 + β + β2, 0, · · · , 0), · · · , (0, · · · , 0, 1 + β + β2),

· · ·

(
∑⌈m

k
⌉−1

i=0 βi, 0, · · · , 0), (0,
∑⌈m

k
⌉−1

i=0 βi, 0, · · · , 0), · · · , (0, · · · , 0,
∑⌈m

k
⌉−1

i=0 βi).
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For a deterministic distribution equal to σ, the prophet utility ratio is 1
1−λ(k−1) . We will then apply

Lemma 4.14 to obtain an i.i.d distribution with a larger number of candidates that has a similar
prophet utility ratio.

Theorem 4.19. When the feature-amplified bias λ(k − 1) < 1 and k > 1, for any δ ∈ (0, 1), there

exists an i.i.d prior distribution F where the prophet utility ratio
EF [Upr ]

EF
[
U∗
gb

] ≥ (1−δ)
3 · 2+λ

1−λ(k−1) and

the online utility ratio
EF [U∗

gr ]
EF

[
U∗
gb

] ≥ (1−δ)
4 · 1+λ

1−λ(k−1) . Consequently, the prophet competitive ratio is at

least 1
3 ·

2+λ
(1−λ(k−1)) and the online competitive ratio is at least 1

4 · 1+λ
(1−λ(k−1)) .

Proof. By Claim 4.18, there exists an i.i.d prior distribution F such that
EF [Upr ]

EF
[
U∗
gb

] ≥ (1 − δ) ·

1
(1−λ(k−1)) . Combining this with Claim 2.4, we have

EF [U∗
gr ]

EF
[
U∗
gb

] ≥ (1−δ)
2 · (1− λ(k − 1)).

Since λ(k − 1) < 1 and k > 1, it must be the case that 2 + λ < 3 and that 1 + λ < 2. Hence
EF [Upr ]

EF
[
U∗
gb

] ≥ (1−δ)
3 · 2+λ

1−λ(k−1) and
EF [U∗

gr ]
EF

[
U∗
gb

] ≥ (1−δ)
4 · 1+λ

1−λ(k−1) . This implies that the upper bound

matches the lower bounds proved for adversarial setting within constant factors.

5 Conclusion and Directions for Future Work

We consider an online decision-maker who suffers from comparative loss aversion. Our model is
identical to that of [11], except for how the reference point is formed. This change alone accounts
for fundamental differences in conclusions. For example, even the prophet suffers loss in our model,
and this enables novel phenomena to occur. Additionally, the loss due to bias in our model can
be unboundedly bad, and is not significantly mitigated by assumptions on the prophet inequality
arrival order.

Empirically observed biases have only recently been incorporated into research on optimal stop-
ping. Our work takes a step beyond [11] and uncovers new phenomena by changing just one aspect of
their model. An important direction for future work is to continue developing models that uncover
additional phenomena of behavioral game theory (one such possibility is those studied in [21], where
adding inferior options can influence decision-making).
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A Omitted Proofs of Section 4.1

Proposition 4.1. When the feature-amplified bias λ · (k − 1) > 1, for any n ∈ N+, there exists a
sequence σ with n candidates such that when the distribution F0(n) takes the values of σ determin-
istically, i.e. with probability 1, and when our prior distribution F equals F0(n), the prophet utility

ratio
EF [Upr ]

EF
[
U∗
gb

] and the online utility ratio
EF [U∗

gr ]
EF

[
U∗
gb

] are both equal to Ω
(
(λ(k − 1))

n
k
−1
)
.

Proof. Let β = λ · (k − 1), consider a sequence σ with n candidates where the tth candidate takes

value σ(t) such that for dimension j = (t mod k), σ
(t)
j = β⌈ t

k
⌉−1 and for any dimension j 6= (t

mod k), σ
(t)
j = 0. Below is a more intuitive representation of the sequence σ:
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(1, 0, · · · , 0), (0, 1, 0, · · · , 0), · · · , · · · , (0, · · · , 0, 1),
(β, 0, · · · , 0), (0, β, 0, · · · , 0), · · · , · · · , (0, · · · , 0, β),
(β2, 0, · · · , 0), (0, β2, 0, · · · , 0), · · · , · · · , (0, · · · , 0, β2),

· · ·

(β⌈n/k⌉−1, 0, · · · , 0), (0, β⌈n/k⌉−1, 0, · · · , 0), · · · , (0, · · · , 0, β⌈n/k⌉−1, 0, · · · , 0).

Clearly, if the biased gambler selects the first candidate, they will get utility 1. Further, we will
show that the biased gambler gets utility at most 0 whenever it accepts a candidate that is not the
first candidate.

Firstly, observe that for any fixed i, among all the candidates in ith row, the biased gambler’s
utility for the first candidate in ith row is the highest. This is because the gambler has the same
value for all candidates in ith row, however, the super candidate’s value increases as the gambler
sees more items, and thus the utility of the gambler decreases as they see more items in the same
row.

Thus it suffices for us to consider the biased gambler’s utility when they accept the first candidate
in the ith row of the above matrix for some i > 0. In this case, the super candidate s((i−1)·k+1) =
(βi−1, βi−2, · · · , βi−2). We conclude that

Ugb(σ, (i − 1) · k + 1) = ‖σ((i−1)·k+1)‖1 − λ ·
(
‖s((i−1)·k+1)‖1 − ‖σ((i−1)·k+1)‖1

)

= βi−1 − λ · (k − 1) · βi−2 = βi−1 − β · βi−2 = 0.

Thus, under σ, the optimal strategy for the biased gambler is to accept the very first candidate,
yielding EF

[
U∗
gb

]
= 1. Meanwhile, the rational prophet’s expected utility EF [Upr ] is equal to the

expected largest value, which is β⌈n
k
⌉−1 ≥ (λ(k − 1))

n
k
−1. Thus

EF [Upr ]

EF
[
U∗
gb

] = Ω
(
(λ(k − 1))

n
k
−1
)
.

By claim 2.4 this immediately implies that
EF [U∗

gr ]
EF

[
U∗
gb

] = Ω
(
(λ(k − 1))

n
k
−1
)
as well.

Proposition 4.2. When the feature-amplified bias λ · (k − 1) = 1, for any n ∈ N
+, there exists a

sequence σ with n candidates such that when the distribution F0(n) takes the values of σ determin-
istically, i.e. with probability 1, and when our prior distribution F equals F0(n), the prophet utility

ratio
EF [Upr ]

EF
[
U∗
gb

] and the online utility ratio
EF [U∗

gr ]
EF

[
U∗
gb

] are both equal to Ω
(
n
k

)
.

Proof. We will consider a sequence σ with n candidates where the tth candidate takes value σ(t)

such that for dimension j = (t mod k), σ
(t)
j = ⌈ t

k ⌉ and for any dimension j 6= (t mod k), σ
(t)
j = 0.

Below is a more intuitive representation of the sequence σ:
We will consider an example similar to the one in claim 4.1, where σ is equal to the following

sequence:

(1, 0, · · · , 0), (0, 1, 0, · · · , 0), · · · , · · · , (0, · · · , 0, 1),
(2, 0, · · · , 0), (0, 2, 0, · · · , 0), · · · , · · · , (0, · · · , 0, 2),
(3, 0, · · · , 0), (0, 3, 0, · · · , 0), · · · , · · · , (0, · · · , 0, 3),

· · ·
(⌈nk ⌉, 0, · · · , 0), (0, ⌈nk ⌉, 0, · · · , 0), · · · , (0, · · · , 0, ⌈nk ⌉, 0, · · · , 0).
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We will show that the biased gambler gets utility at most 1 no matter what candidate they accept.
For the same reason as in claim 4.1 it suffice for us to consider the biased gambler’s utility when

they accept the first candidate in the ith row of the above matrix. In this case, the super candidate
s((i−1)·k+1) = (i, i − 1, · · · , i− 1). Thus

Ugb(σ, (i − 1) · k + 1) = ‖σ((i−1)·k+1)‖1 − λ ·
(
‖s((i−1)·k+1)‖1 − ‖σ((i−1)·k+1)‖1

)

= i− λ · (k − 1) · (i− 1) = i− (i− 1) = 1.

Thus, under σ, one of the optimal strategies for the biased gambler is to accept the very first
candidate, yielding EF

[
U∗
gb

]
= Ugb(σ, 1) = 1. On the other hand, the rational prophet’s expected

utility EF [Upr ] is equal to the expected largest value, which is at least n
k . Thus

EF [Upr ]

EF
[
U∗
gb

] = Ω(nk ).

By claim 2.4, this immediately implies that
EF [U∗

gr ]
EF

[
U∗
gb

] = Ω(nk ) as well.

Claim 4.8. When the feature-amplified bias λ · (k − 1) < 1, for any sequence σ, for any threshold
T , and for timestep t such that t is the smallest timestep where ‖σ(t)‖1 ≥ T , it must be the case
that Ugb(σ, t) ≥ ‖σ(t)‖1 − λ(k − 1) · T .

Proof. We know by definition that

Ugb(σ, t) = ‖σ(t)‖1 − λ · (‖~s(t)‖1 − ‖σ(t)‖1)

= ‖σ(t)‖1 − λ · (‖~s(t)‖1 − ‖σ(t)‖1) = (1 + λ) · ‖σ(t)‖1 − λ · ‖~s(t)‖1.

Since t is the smallest timestep where ‖σ(t)‖1 ≥ T , we know that ‖σ(t′)‖1 < T for any t′ < t.
Thus, the value at any particular index of the super candidate at step t − 1 is at most T . As a

result, for any j, ‖~s
(t)
j ‖1 ≤ max(‖σ

(t)
j ‖1, ‖~s

(t−1)
j ‖1) ≤ max(‖σ

(t)
j ‖1, T ). This implies that

‖~s(t)‖1 =
∑

j

~s
(t)
j ≤

∑

j

max(σ
(t)
j , T ) =

∑

j

T +
∑

j

(
σ
(t)
j − T

)+
.

Observe that since ‖σ(t)‖1−T ≥ 0, in the case where for all j, ‖σ(t)‖1−T < 0,
∑

j

(
σ
(t)
j − T

)+
= 0 ≤

‖σ(t)‖1 ≥ T . On the other hand, when for at least one dimension j∗, ‖σ(t)‖1 − T ≥ 0, we can write
∑

j

(
σ
(t)
j − T

)+
= σ

(t)
j∗ −T+

∑
j 6=j∗

(
σ
(t)
j − T

)+
, which is at most σ

(t)
j∗ −T+

∑
j 6=j∗ σ

(t)
j = ‖σ(t)‖1−T .

We thus conclude that

‖~s(t)‖1 ≤ k · T + (‖σ(t)‖1 − T ) = ‖σ(t)‖1 + (k − 1) · T.

Combining everything together, we get that

Ugb(σ, t) = (1 + λ) · ‖σ(t)‖1 − λ · ‖~s(t)‖1 ≥ (1 + λ) · ‖σ(t)‖1 − λ · (‖σ(t)‖1 + (k − 1) · T )

≥ ‖σ(t)‖1 − λ(k − 1) · T.

Claim 4.9. When the feature-amplified bias λ · (k − 1) < 1, for any prior distribution F and any
α ∈ (0, 1), EF

[
Uα
gb

]
≥ ((1 + λ)α− kλ) · T + (1− α) ·

∑
t∈[n] Eσ(t)∼Ft

[
(‖σ(t)‖1 − T )+

]
.
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Proof. Let T be the threshold where α = Pr[V ∗ ≥ T ], then T is the threshold used by the algorithm
Aα. Observe that when the gambler uses the algorithm Aα, with probability α the algorithm will
select some item, and with probability 1− α the algorithm will select nothing.

Conditioned on Aα selecting no item, we know that all items have value < T . Thus even at
the end of the algorithm, the gambler’s value for the super candidate must not exceed k · T . This
means that the gambler’s utility is at least −λ · k · T .

On the other hand, we will prove by using claim 4.8 that conditioned on Aα selecting an item
at step t, the gambler’s utility is at least ‖σ(t)‖1 − λ(k − 1) · T . We will begin by showing a block
of formal deduction, which we subsequently unpack in the following paragraphs.

EF
[
Uα
gb

∣∣Aα selects item t
]
= Eσ∼F

[
Ugb(σ, t)

∣∣∣∣∣ t = argmin
i∈[n]

{‖σ(i)‖1 ≥ T}

]

≥ Eσ∼F

[
‖σ(t)‖1 − λ(k − 1) · T

∣∣∣∣∣ t = argmin
i∈[n]

{‖σ(i)‖1 ≥ T}

]

≥ (1− λ(k − 1)) · T + Eσ∼F
[
(‖σ(t)‖1 − T )+

∣∣∣ ‖σ(t)‖1 ≥ T
]

≥ (1− λ(k − 1)) · T + Eσ(t)∼Ft

[
(‖σ(t)‖1 − T )+

∣∣∣ ‖σ(t)‖1 ≥ T
]

≥ (1− λ(k − 1)) · T +
Eσ(t)∼Ft

[
(‖σ(t)‖1 − T )+

]

Pr
[
‖σ(t)‖1 ≥ T

] .

In the above argument, the first line is due to Aα selecting the first candidate with value at least
T . Furthermore, the second line follows from the first line due to claim 4.8. The second line to
the third line is because the value of the candidates are independent, and thus “σ(t) is the first
candidate that has value at least T” and “σ(t) has value at least T” have equivalent implications
for the value of σ(t). The fourth line follows from the third because our formula only involves σ(t)

and thus the expectation over σ drawn from F is equivalent to the expectation over σ(t) drawn
from Ft. The forth line to the fifth line is because when ‖σ(t)‖1 < T , (‖σ(t)‖1−T )+ takes the value
0, thus

Eσ(t)∼Ft

[
(‖σ(t)‖1 − T )+

]
= Eσ(t)∼Ft

[
(‖σ(t)‖1 − T )+

∣∣∣ ‖σ(t)‖1 ≥ T
]
· Pr
[
‖σ(t)‖1 ≥ T

]
.

We will now bound the expected utility of the biased gambler when they use the algorithm Aα.
The argument is presented in the inequalities immediately below, which will be unpacked in the
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following paragraphs.

EF
[
Uα
gb

]
= Pr

[
Uα
gb

selects no item
]
· (−kλ · T ) +

∑

t∈[n]
Pr
[
Uα
gb

selects item j
]
· E
[
Uα
gb

∣∣Aα selects item j
]

≥ (1− α) · (−kλ · T ) +
∑

t∈[n]
Pr
[
Uα
gb

selects item t
]
·

(
(1− λ(k − 1)) · T +

Eσ(t)∼Ft

[
(‖σ(t)‖1 − T )+

]

Pr
[
‖σ(t)‖1 ≥ T

]
)

≥ (1− α) · (−kλ · T ) + α · (1− λ(k − 1)) · T

+ (1− α) ·
∑

t∈[n]
Pr
[
‖σ(t)‖1 ≥ T

]
·
E
σ
(t)
1 ∼Ft

[
(‖σ(t)‖ − T )+

]

Pr
[
‖σ(t)‖1 ≥ T

]

≥ ((1 + λ)α− kλ) · T + (1− α) ·
∑

t∈[n]
Eσ(t)∼Ft

[
(‖σ(t)‖1 − T )+

]
.

For the above equation, the first and second line is just summing over all possible conditions
and using inequalities that we established previous. The second line to the third line is because∑

t∈[n] Pr
[
Uα
gb

selects item j
]
= α and the following inequalities,

Pr
[
Uα
gb

selects item t
]
= Pr

[
∀i < t, ‖σ(i)‖1 < T

]
· Pr
[
‖σ(t)‖1 ≥ T

]

≥ Pr
[
∀i ∈ [n], ‖σ(i)‖1 < T

]
· Pr
[
‖σ(t)‖1 ≥ T

]
= (1− α) · Pr

[
‖σ(t)‖1 ≥ T

]
.

The third line to the fourth line is simply due to a cancellation of terms.

Lemma 4.10. When the feature-amplified bias λ · (k − 1) < 1, for any prior distribution F , there

exists an α such that
EF

[
Uα
gb

]

EF [Upr ]
≥ (1 − λ(k − 1)) · max

{
γ

1+λ+k ,
1

2+λ

}
, where γ =

EF [
∑k

j=1 S
∗
j ]

EF [V ∗] (recall

that S∗
j denotes the maximum value in the sequence along dimension j and V ∗ = max

t
‖σ(t)‖1).

Proof. Let α ∈ (0, 1) be a fixed value that we will set later. By claim 4.9, we know that

EF
[
Uα
gb

]
≥ ((1 + λ)α− kλ) · T + (1− α) ·

∑

t∈[n]
Eσ(t)∼Ft

[
(‖σ(t)‖1 − T )+

]
.

In order to further reason about the above quantity, we need to bound
∑

t∈[n]
Eσ(t)∼Ft

[
(‖σ(t)‖1 − T )+

]
,

which is what we will do next.
Let us call (‖σ(t)‖1−T )+ the surplus from the tth candidate. Note that

∑

t∈[n]
E‖σ(t)‖1∼Ft

[
(‖σ(t)‖1 − T )+

]

is the sum over the expected surplus from each candidate. Thus, it must be at least the expected
surplus from the candidate with the largest overall value. Moreover, it must be at least the sum
over the expected surplus from candidates that have the largest value on each individual dimension.
Formally, the following two inequalities always hold:

∑

t∈[n]
Eσ(t)∼Ft

[
(‖σ(t)‖1 − T )+

]
≥ EF

[
(V ∗ − T )+

]
≥ EF [V

∗ − T ], (3)
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and

∑

t∈[n]
Eσ(t)∼Ft

[
(‖σ(t)‖1 − T )+

]
≥

k∑

j=1

EF
[
(S∗

j − T )+
]
≥ EF




k∑

j=1

S∗
j


− k · T ≥ γ · EF [V

∗]− k · T.

(4)

Now, we will use these bounds to derive the final bound on the biased gambler’s utility from using
algorithm Aα. By combining inequality 3 and claim 4.9, we know that

EF
[
Uα
gb

]
≥ ((1 + λ)α− kλ) · T + (1− α) · EF [V

∗ − T ].

When we set α = λk+1
2+λ , ((1 + λ)α− kλ) = 1− α = 1−λ(k−1)

2+λ . This means that for this choice of α,
the preceding inequality becomes:

EF
[
Uα
gb

]
≥

1− λ(k − 1)

2 + λ
· (T + E[V ∗ − T ]) ≥

1− λ(k − 1)

2 + λ
· EF [V

∗] =
1− λ(k − 1)

2 + λ
· EF [Upr ].

On the other hand, by combining inequality 4 and claim 4.9, we know that

EF
[
Uα
gb

]
≥ ((1 + λ)α− kλ) · T + (1− α) · (γ · EF [V

∗]− k · T )

≥ ((1 + λ)α− k · λ− (1− α) · k) · T + (1− α) · (γ · EF [V
∗]).

When we set α = k·(1+λ)
1+λ+k , ((1 + λ)α− k · λ− (1− α) · k) = 0, therefore for this choice of α,

E
[
Uα
gb

]
≥ (1− α) · γ · EF [V

∗] =

(
1−

k · (1 + λ)

1 + λ+ k

)
· γ · EF [V

∗] = (1− λ(k − 1)) ·
γ

1 + λ+ k
· EF [Upr ].

Combining the above two cases we conclude that

E
[
Uα
gb

]
≥ max

{
1

2 + λ
,

γ

1 + λ+ k

}
· (1− λ(k − 1)) · EF [Upr ],

which implies our lemma statement.

Theorem 4.6. When the feature-amplified bias λ · (k − 1) < 1, for any δ ∈ (0, 1), there exists a

prior distribution F such that the prophet utility ratio
EF [U∗

pr ]
EF [Ugb ]

≥ 2+λ
1−λ(k−1) · (1 − δ) and that the

online utility ratio
EF [U∗

gr ]
EF

[
U∗
gb

] ≥ 1+λ
1−λ(k−1) · (1 − δ). Consequently, the prophet competitive ratio is at

least 2+λ
1−λ(k−1) and the online competitive ratio is at least 1+λ

1−λ(k−1) .

Proof. Let β = λ · (k − 1), and fix some positive integer w ∈ N
+ and some small constant ǫ

that we will set later. In our example there will be n = w · k + 1 candidates, and all candidates
will be deterministic except for the last candidate, i.e. σ(1)....σ(n−1) are drawn from deterministic
F1....Fn−1 but σn is drawn from stochastic Fn. We define the sequence of deterministic values as
follows:
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(1, 0, · · · , 0), (0, 1, 0, · · · , 0), · · · , (0, · · · , 0, 1),
(1 + β, 0, · · · , 0), (0, 1 + β, 0, · · · , 0), · · · , (0, · · · , 0, 1 + β),
(1 + β + β2, 0, · · · , 0), (0, 1 + β + β2, 0, · · · , 0), · · · , (0, · · · , 0, 1 + β + β2),

· · ·

(
∑w−1

j=0 βj, 0, · · · , 0), (0,
∑w−1

j=0 βj , 0, · · · , 0), · · · , (0, · · · , 0,
∑w−1

j=0 βj).

The last randomized candidate is equal to
(
(1− ǫ)(1 + λ) ·

∑w−1
j=0 βj/ǫ, 0, · · · , 0

)
with proba-

bility ǫ and is equal to (0, 0, · · · , 0) with probability 1 − ǫ. We will prove that given our prior
distribution F , the gambler’s expected utility is always at most 1 no matter which candidate they
choose.

Notice that as with similar constructions in claim 4.1 and claim 4.2, if the gambler picks a
deterministic candidate in some row i, then their utility is maximized by picking the first candidate
in row i, which results in utility

Eσ∼F [Ugb(σ, i · k + 1)] = ‖σ(i·k+1)‖1 − λ ·
(
‖~s(i·k+1)‖1 − ‖σ(i·k+1)‖1

)
=

i−1∑

j=0

βj − λ · (k − 1) ·

i−2∑

j=0

βj

=

i−1∑

j=0

(λ(k − 1))j − λ · (k − 1) ·

i−2∑

j=0

(λ(k − 1))j = 1.

Finally, if the gambler picks the last candidate(i.e. the randomized candidate), then their expected
utility is

Eσ∼F [Ugb(σ,wk + 1)] = ǫ ·

(
(1− ǫ)(1 + λ) ·

w−1∑

i=0

βi/ǫ− λ · (k − 1) ·
w−1∑

i=0

βi

)
+ (1− ǫ) ·

(
−λ · k ·

w−1∑

i=0

βi

)

≤ (1− ǫ) ·

(
(1 + λ) ·

w−1∑

i=0

βi − λ · k ·
w−1∑

i=0

βi

)

= (1− ǫ) · (1− λ(k − 1)) ·
1− (λ(k − 1))w

1− λ(k − 1)
= (1− ǫ) · (1− (λ(k − 1))w) < 1.

Therefore it is not possible for the biased gambler to get utility more than 1, consequently,
EF
[
U∗
gb

]
≤ 1. On the other hand, the rational prophet can get expected utility

EF [Upr ] = E[V ∗] = ǫ · ‖σ(wk+1)‖1 + (1− ǫ) · ‖σ(wk)‖1

= ǫ ·

(
(1− ǫ)(1 + λ) ·

w−1∑

i=0

βi/ǫ

)
+ (1− ǫ) ·

w−1∑

i=0

βi

= (1− ǫ)(2 + λ) ·
1− (λ(k − 1))w

1− λ(k − 1)
.

Similarly, the rational gambler can simply always choose the last candidate, thus

EF
[
U∗
gr

]
≥ ǫ ·

(
(1− ǫ)(1 + λ) ·

w−1∑

i=0

βi/ǫ

)
= (1− ǫ)(1 + λ) ·

1− (λ(k − 1))w

1− λ(k − 1)
.
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Let ǫ be such that (1− ǫ)2 = 1− δ and let w = logλ(k−1) ǫ. Then (λ(k − 1))w = ǫ and thus

EF [Upr ]

EF
[
U∗
gb

] ≥ (2 + λ) · (1− ǫ)2

1− λ(k − 1)
=

2 + λ

1− λ(k − 1)
· (1− δ).

Similarly,

EF
[
U∗
gr

]

EF
[
U∗
gb

] ≥
(1 + λ) · (1− ǫ)2

1− λ(k − 1)
=

1 + λ

1− λ(k − 1)
· (1− δ).

B Omitted Proofs of Section 4.2

Proposition 4.15. When the feature-amplified bias λ · (k − 1) > 1, for all n ∈ N
+, there exists

a prior distribution F0(n) where all candidates are i.i.d such that when F = F0(n), the prophet

utility ratio
EF [Upr ]

EF
[
U∗
gb

] and the online utility ratio
EF [U∗

gr ]
EF

[
U∗
gb

] are both equal to Ω

(
(λ(k − 1))f(λ,k)·log

1
2 n

)
,

where f(λ, k) is a function that only depends on λ and k.

Proof. The corollary follows in a relatively straightforward manner from claim 4.1 and lemma 4.14.

Let σ(m) be the sequence considered in claim 4.1 of lengthm. Then
Upr (σ(m))
Ugb

(σ(m)) = Ω
(
(λ(k − 1))

m
k
−1
)
,

and in particular
Upr (σ(m))
Ugb

(σ(m)) ≥ (λ(k−1))
m
k
−1. Observe that σ(m) is succinct. Thus by lemma 4.14, for

any ǫ ∈ (0, 1), there exists a distribution F with n = mα(m−1)·logα(m) where α = logm

(
(λ(k−1))

m
k

−1

ǫ

)
+

2 such that
EF [Upr ]

EF
[
U∗
gb

] ≥ (1− ǫ) · (λ(k − 1))
m
k
−1. Now in order to get a bound in terms of n we only

need to establish the relationship between n and m.
Since n = mα(m−1) · logα(m) ≤ mm·α = elogm·m·α, this means that

log n ≤ m · logm ·

(
logm

(
(λ(k − 1))

m
k
−1

ǫ

)
+ 2

)

≤ m · log

(
(λ(k − 1))

m
k
−1

ǫ

)
+ 2 ·m · logm

≤ m ·
(m
k

− 1
)
· log(λ(k − 1)) +m · log

(
1

ǫ

)
+ 2m · logm.

Let ǫ = 1/2, since m ≥ 2, we know that logm ≥ 1, this means that

log n ≤
m2

k
· log(λ(k − 1)) +m · log 2 + 2m logm

≤
m2

k
· log(λ(k − 1)) + 4m logm

≤ 2 ·max

(
m2

k
· log(λ(k − 1)), 4m logm

)
.

Now there are two cases:
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1. When m2

k · log(λ(k− 1)) ≥ 4m logm, we know that log n ≤ 2 · m
2

k · log(λ(k− 1)). This implies

that m2 ≥ k·logn
2·log(λ(k−1)) and thus m ≥

√
k·log

1
2 n√

2·log1/2(λ(k−1))
.

2. When m2

k · log(λ(k − 1)) < 4m logm, we know that log n ≤ 8m logm ≤ 8m2, which means

that m ≥ log
1
2 n

2
√
2
.

We conclude that no matter which case we are in, m ≥ 1√
2
· log

1
2 n · min

( √
k

log1/2(λ(k−1))
, 12

)
, which

means that

EF [Upr ]

EF
[
U∗
gb

] ≥ (1− ǫ) ·
(
λ(k − 1))

m
k
−1
)
= Ω

(
(λ(k − 1))

1√
2k

·log
1
2 n·min

(
1

log1/2(λ(k−1))
, 1
2
√

k

)
−1
)
.

Let f(λ, k) = 1√
2k

· min
(

1
log1/2(λ(k−1))

, 1
2
√
k

)
− 1, and we get the desired claim that

EF [Upr ]

EF
[
U∗
gb

] =

Ω

(
(λ(k − 1))f(λ,k)·log

1
2 n

)
. By claim 2.4,

EF [U∗
gr ]

EF
[
U∗
gb

] = Ω

(
(λ(k − 1))f(λ,k)·log

1
2 n

)
as well.

Proposition 4.16. When the feature-amplified bias λ · (k − 1) = 1, for all n ∈ N
+, there exists

a prior distribution F0(n) where all candidates are i.i.d such that when F = F0(n), the prophet

utility ratio
EF [Upr ]

EF
[
U∗
gb

] and the online utility ratio
EF [U∗

gr ]
EF

[
U∗
gb

] are both equal to Ω
(

logn
k·log logn

)
.

Proof. The corollary follows in a relatively straightforward manner from claim 4.2 and lemma 4.14.

Let σ(m) be the sequence considered in claim 4.2 of length m. Then
Upr (σ(m))
Ugb

(σ(m)) = Ω
(
m
k

)
, and in

particular
Upr (σ(m))
Ugb

(σ(m)) ≥ m
k . Observe that σ(m) is succinct. Thus by lemma 4.14, for any ǫ ∈ (0, 1),

there exists a distribution F with n = mα(m−1) · logα(m) where α = logm
(
m
k·ǫ
)
+ 2 such that

EF [U∗
pr ]

EF [Ugb ]
≥ (1− ǫ) · m

k .

By using a similar analysis as in corollary 4.15, we can compute the relationship between n and
m as follows:

log n ≤ log
(
mα(m−1) · logα(m)

)
≤ log(mαm) = α ·m logm.

Now let us set ǫ = 1/2 and β = α− 3, then

β =
(
logm

( m

k · ǫ

)
+ 2
)
− (2 + logmm) = logm

(
1

kx · ǫ

)
= logm

(
2

k

)
= O(1).

We conclude that α = 3 + β = 3 +O(1) = Θ(1). We will now show that m = Ω( logn
log logn).

1. Assume m ≥ log n, then it’s clear that m = Ω( logn
log logn).

2. Assume m ≤ log n, then logm ≤ log log n, since log n ≤ α ·m logm, we conclude that

m ≥
log n

α logm
≥

log n

α log log n
= Ω

(
log n

log log n

)
.

28



Consequently,
EF [Upr ]

EF
[
U∗
gb

] ≥ (1 − ǫ) · m
k = Ω

(
logn

k·log logn

)
and by claim 2.4

EF [U∗
gr ]

EF
[
U∗
gb

] = Ω
(

logn
k·log logn

)
as

well.

Theorem 4.17. In the i.i.d prior distribution setting, when the feature-amplified bias λ·(k−1) ≥ 1,
the prophet and online competitive ratio are both equal to ∞.

Proof. By corollaries 4.15 and 4.16 we know that when λ · (k−1) ≥ 1, for any n ∈ N
+, there exists

an i.i.d distribution F0(n) such that the prophet and online utility ratio of F0(n) is an unboundedly
increasing function in terms of the number of candidates n. Thus for any T ∈ N, there exists a
n ∈ N

+ such that the prophet and online utility of F0(n) both exceed T .
Recall that the formal definition for competitive ratio is slightly different in the i.i.d prior

distribution setting in contrast to the adversarial order setting. Namely, the prophet and online

competitive ratios are defined as max
F∈U

EF [Upr ]

EF
[
U∗
gb

] and max
F∈U

EF [U∗
gr ]

EF
[
U∗
gb

] , where U is the set of all i.i.d

distribution. Observe that the prophet competitive ratio max
F∈U

EF [Upr ]

EF
[
U∗
gb

] is at least max
n∈N+

EF0(n)[Upr ]

EF0(n)

[
U∗
gb

] ,

thus any T ∈ N serves as a lower bound to the prophet competitive ratio, and thus the prophet
competitive ratio is equal to ∞. Similarly, the online competitive ratio is equal to ∞.

Claim 4.18. When the feature-amplified bias λ(k − 1) < 1, for any δ ∈ (0, 1), there exists an i.i.d

prior distribution F where the prophet utility ratio
EF [Upr ]

EF
[
U∗
gb

] ≥ (1− δ) · 1
(1−λ(k−1)) .

Proof. We will consider a sequence that is similar to the mostly deterministic distribution considered
in theorem 4.6, except that the last candidate, which has randomized value, is excluded. Specifically,
let β = λ · k, let w be a parameter that we will set later and let σ be the following sequence:

(1, 0, · · · , 0), (0, 1, 0, · · · , 0), · · · , (0, · · · , 0, 1),
(1 + β, 0, · · · , 0), (0, 1 + β, 0, ·(1 − λ(k − 1))(1 + δ)s, 0), · · · , (0, · · · , 0, 1 + β),
(1 + β + β2, 0, · · · , 0), (0, 1 + β + β2, 0, · · · , 0), · · · , (0, · · · , 0, 1 + β + β2),

· · ·

(
∑w−1

i=0 βi, 0, · · · , 0), (0,
∑w−1

i=0 βi, 0, · · · , 0), · · · , (0, · · · , 0,
∑w−1

i=0 βi).

As reasoned in theorem 4.6, the biased gambler has utility ≤ 1 when selecting any candidate in
this sequence. However, the rational prophet will pick a candidate in the last row, and gains utility∑w−1

i=0 βi = 1−βw

1−β . Thus,

Upr(σ)

Ugb(σ)
≥

1− βw

1− β
=

1− (λ(k − 1))w

1− λ(k − 1)
.

Let ǫ be such that (1− ǫ)2 = 1− δ, and let w = ǫ · logλ(k+1), then (λ(k − 1))w = ǫ. Thus

Upr(σ)

Ugb(σ)
≥

1− (λ(k − 1))w

1− λ(k − 1)
≥ (1− ǫ) ·

1

1− λ(k − 1)
.

Since all candidates in σ are distinct, σ is succinct, hence by lemma 4.14, there exists a prior
distribution F where all candidates are i.i.d such that

EF [Upr ]

EF [U∗
gb
]
≥ (1− ǫ) ·

Upr(σ)

Ugb(σ)
= (1− ǫ)2 ·

1

1− λ(k − 1)
= (1− λ(k − 1)) · (1− δ).
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C Monotonicity Results

Claim C.1. If ‖s′(t)‖1 < ‖s(t)‖1 for sequences σ′ and σ, where σ(t) = σ′(t), then Ugb(σ, t) ≤
Ugb(σ

′, t).

Proof. From the definition of the biased gambler’s utility we have:

‖σ(t)‖1 − λ

(
‖~s(t)‖1 − ‖σ(t)‖1

)
≤ ‖σ′(t)‖1 − λ

(
‖~s′(t)‖1 − ‖σ′(t)‖1

)
=⇒ Ugb(σ, t) ≤ Ugb(σ

′, t)

Claim C.2. For any super candidate s(t) and candidate σ(t), if λ′ > λ ≥ 0, then, when they select
candidate σ(t), the biased gambler receives greater utility with loss aversion λ than with loss aversion
λ′, namely Ugbλ

(σ, t) ≥ Ugb
λ′
(σ, t).

Proof. From the definition of the biased gambler’s utility and the fact that λ′ > λ, we have:

‖σ(t)‖1 − λ

(
‖~s(t)‖1 − ‖σ(t)‖1

)
≥ ‖σ(t)‖1 − λ′

(
‖~s(t)‖1 − ‖σ(t)‖1

)
=⇒ Ugbλ

(σ, t) ≥ Ugbλ′
(σ, t)

Next, we conduct analysis regarding Kleinberg et al. [11]’s construct of patience in our multi-
dimensional setting. For sake of semantic clarity, we re-iterate their definition here:

Definition C.3 (Patient). A stopping rule π is more patient than a stopping rule π′ if for every
realization of the candidates the stopping rule π either selects the same candidate as π′ or selects a
candidate that is later in the sequence.

Furthermore, for any stopping rule π, let us define the notation π(σ) to denote the value of the
candidate selected by the π when the realization of the candidates is the sequence σ. Specifically,
πλ(σ) denotes the value of the candidate selected by the optimal λ-biased stopping rule.

Claim C.4. Given a prior distribution F , if an optimal multidimensional λ-biased stopping rule
πλ is more patient than another multidimensional stopping rule π, then the expected value of the
candidate selected by πλ is higher than the expected value of the candidate selected by π (i.e.
Eσ∼F [πλ(σ)] ≥ Eσ∼F [π(σ)]).

Proof. First, note that we are reasoning about the objective value of the selected candidates not
about the utilities that they yield to the agents. Let t(σ) and w(σ) denote the index of the candidate
selected by π and πλ when the realization of candidates is the sequence σ.

By the definition of patience, for any sequence σ in the support of F , t(σ) ≤ w(σ). Since πλ is
optimal for a λ-biased agent, for a λ-biased agent playing optimally on σ:

Eσ∼F [Ugb(σ,w(σ))] ≥ Eσ∼F [Ugb(σ, t(σ))]

Note that this is a statement about utilities not about the objective values of the items selected.
Now we can substitute in the definition of Ugb and relate the values of candidates σ(t(σ)) and σ(w(σ)).

Eσ∼F
[
‖σ(w(σ))‖1 − λ(‖s(w(σ))‖1 − ‖σ(w(σ))‖1)

]
≥ Eσ∼F

[
‖σ(t(σ))‖1 − λ(‖s(t(σ))‖1 − ‖σ(t(σ))‖1)

]
.
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Re-expressing this algebraically, we have:

(1 + λ)Eσ∼F
[
‖σ(w(σ))‖1

]
− λEσ∼F

[
‖s(w(σ))‖1

]
≥ (1 + λ)Eσ∼F

[
‖σ(t(σ))‖1

]
− λEσ∼F

[
‖s(t(σ))‖1

]
.

Now assume for contradiction that Eσ∼F
[
‖σ(w(σ))‖1

]
< Eσ∼F

[
‖σ(t(σ))‖1

]
. Observe that since

for any sequence σ in the support of F , w(σ) ≥ t(σ), it follows that ‖s(t(σ))‖1 ≤ ‖s(w(σ))‖1 and thus
Eσ∼F

[
‖s(t(σ))‖1

]
≤ Eσ∼F

[
‖s(w(σ))‖1

]
. Consequently, our assumption violates the above inequality

which we know to be true, thus it must be the case that Eσ∼F
[
‖σ(w(σ))‖1

]
> Eσ∼F

[
‖σ(t(σ))‖1

]
.

Claim C.5. The optimal λ-biased stopping rule, πλ, is more patient than the optimal λ′-biased
stopping rule, πλ′, for λ ≤ λ′.

Proof. Let t′ denote the random variable representing the index of the candidate π′
λ selects. For

contradiction, assume that there exists realization σ(1), · · · , σ(t) = σ1, ...., σt for which πλ selects
σ(t) and t′ (the choice of πλ′) is the index of some candidate after t. Let event A be the event where
σ(1), · · · , σ(t) = σ1, ...., σt and let st be the super candidate at time step t conditioned on event A.
We claim that after seeing σ1, ...., σt, the λ′-biased agent will get higher expected utility by using a
strategy that selects σt with probability 1 than by using any other strategy. Thus our assumption
must be false. We now prove our claim. Since πλ is optimal for a λ-biased agent, it must be the

case that Eσ∼F
[
Ugbλ

(σ, t)
∣∣∣A
]
≥ Eσ∼F

[
Ugbλ

(σ, t′)
∣∣∣A
]
, namely for a λ-biased agent, we have:

‖σt‖1 − λ(‖st‖1 − ‖σt‖1) ≥ Eσ∼F
[
‖σ(t′)‖1 − λ(‖s(t

′)‖1 − ‖σ(t′)‖1)
∣∣∣A
]
. (1)

As an intermediate claim, We show that ‖st‖1 − ‖σt‖1 ≤ Eσ∼F
[
‖s(t

′)‖1 − ‖σ(t′)‖1

∣∣∣A
]
. First,

let’s consider the case where ‖σt‖1 ≤ Eσ∼F
[
‖σ(t′)‖1

∣∣∣A
]
. Due to the fact that the value of the

super candidate is monotonically increasing, we have ‖st‖1 ≤ Eσ∼F
[
‖s(t

′)‖1

∣∣∣A
]
. Combining the

two inequalities gives us the desired inequality.

Next, we consider the case where ‖σt‖1 > Eσ∼F
[
‖σ(t′)‖1

∣∣∣A
]
. Observe that

Eσ∼F
[
‖s(t

′)‖1

∣∣∣A
]
− Eσ∼F

[
‖σ(t′)]‖1

∣∣∣A
]
≥ ‖st‖1 − Eσ∼F

[
‖σ(t′)]‖1

∣∣∣A
]
,

since st ≤ Eσ∼F
[
‖s(t

′)‖1

∣∣∣A
]
. Combining this with the assumption that ‖σt‖1 > Eσ∼F

[
‖σ(t′)‖1

∣∣∣A
]
,

we get Eσ∼F
[
‖s(t

′)‖1

∣∣∣A
]
− Eσ∼F

[
‖σ(t′)]‖1

∣∣∣A
]
≥ ‖st‖1 − ‖σt‖1, as desired.

Having shown the intermediate claim, we can re-express it algebraically as follows:

−(λ′ − λ) · (‖st‖1 − ‖σt‖1) ≥ −(λ′ − λ) · Eσ∼F
[
(‖s(t

′)‖1 − ‖σ(t′)‖1)
∣∣∣A
]
. (2)

Combining statements (1) and (2), we get the following:

‖σt‖1 − λ′(‖st‖1 − ‖σt‖1) ≥ Eσ∼F
[
‖σ(t′)‖1 − λ′(‖s(t

′)‖1 − ‖σ(t′)‖1)
∣∣∣A
]
. (3)

By the definition of the biased agents utility, statement (3) is equivalent to the statement that

Eσ∼F
[
Ugbλ′

(σ, t)
∣∣∣A
]
≥ Eσ∼F

[
Ugbλ′

(σ, t′)
∣∣∣A
]
, namely that conditioned on event A, a λ′-biased

agent is at least as well off selecting t as selecting t′ thus contradicting our initial assumption and
showing no such σ1, · · · , σt can exist.
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Corollary C.6. If λ ≤ λ′, then, when both are playing optimally, the expected value of the candidate
selected by a λ-biased agent is higher than the expected value of a candidate selected by a λ′-biased
agent(i.e. Eσ∼F [πλ(σ)] ≥ Eσ∼F [πλ′(σ)]).

Proof. It follows as a direct consequence of claims C.4 and C.5 when they are taken together.

We now move on to consider monotonicity in the number of candidates.

Claim C.7. Let n,m be two integers such that m > n. Let F1, · · · ,Fm be m value distributions
for each of n+1 distinct candidates. Let F = ×i∈[n]Fi and F ′ = ×i∈[m]Fi. We will use πλ and π′

λ

to denote the optimal λ-biased stopping rule for σ ∼ F and σ′ ∼ F ′ respectively. We claim that π′
λ

is more patient than πλ.

Proof. Assume for the sake of contradiction that there exist σ1, · · · , σm where σ = σ1, · · · , σn and
σ′ = σ1, · · · , σm such that πλ(σ) is later in the sequence than π′

λ(σ
′). Since, πλ is the optimal

λ-biased stopping rule, this assumption implies that

Ugbλ
(σ, πλ(σ)) > Ugbλ

(σ, π′
λ(σ

′)) = Ugbλ
(σ′, π′

λ(σ
′)).

This is a contradiction since a stopping rule for σ′ ∼ F ′ can get strictly better utility compared to
π′
λ by taking the same action as πλ and never selecting candidates with index greater than n.

Claim C.8. Let n,m be two integers such that m > n. Let F1, · · · ,Fm be m value distributions for
each of m distinct candidates. Let F = ×i∈[n]Fi and F ′ = ×i∈[m]Fi. Consider σ ∼ F and σ′ ∼ F ′

where σ is a prefix of σ′. For any λ ≥ 0 and optimal λ-biased stopping rule πλ and π′
λ for σ ∼ F

and σ′ ∼ F ′ respectively, Ugbλ
(σ, πλ(σ)) ≤ Ugbλ

(σ′, π′
λ(σ

′)) and πλ(σ) ≤ π′
λ(σ

′). Semantically, both
the utility and expected value of the selected candidate improve monotonically as more candidates
are added to the end of the sequence.

Proof. Since σ is a prefix of σ′, an agent can simply select candidate πλ(σ) and receive at least
as much utility on σ′ as on σ, thus Ugbλ′

(σ, πλ(σ)) ≤ Ugbλ′
(σ′, π′

λ(σ
′)). By claim C.7, the agent is

more patient on σ′ than on σ; combining this with claim C.4, it must be the case that the expected
value of the candidate selected on σ′ is greater than or equal to the expected value of that selected
on σ.

Following the outline of Kleinberg et al. [11], we now consider adding a candidate at the be-
ginning of the sequence. Such addition can decrease the expected utility of a λ-biased agent with
comparative loss aversion, whereas it cannot decrease that of a rational agent.

Claim C.9. Let F1, · · · ,Fn+1 be n + 1 value distributions for each of n + 1 distinct candidates.
Let F = ×n+1

i=2 Fi and F ′ = ×i∈[n+1]Fi. For any λ ≥ 0 and optimal λ-biased stopping rule πλ
and π′

λ for F and F ′ respectively, consider sequences σ ∼ F and σ′ ∼ F ′, where σ′ = σ(0)′ + σ.
(We can view σ′ as the result of appending a candidate, σ(0)′ , to the beginning of σ.) We have
Ugb(σ

′, π′
λ(σ

′)) ≥ 1
1+λUgb(σ, πλ(σ)).

Proof. We lower bound Ugb(σ
′, πλ(σ′)) by considering the utilities for two possible stopping rules:

1. Accept the first candidate in σ′, namely σ(0)′
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2. Ignore the first candidate, σ(0)′ and instead accept the same candidate selected on σ, namely
candidate πλ(σ).

In the first case, since the first candidate seen is selected, there is no regret and the utility of the
gambler is ‖σ(0)′‖1. In the second case, since the same candidate is chosen as under σ and the
super candidate can increase by at most the value of the candidate appended to the beginning, the
utility is lower bounded by Ugb(σ, πλ(σ)) − λ‖σ(0)′‖1. Since πλ is the utility maximizing strategy
we thus have:

Ugb(σ
′, πλ(σ

′)) ≥ max{Ugb(σ, πλ(σ))− λ‖σ(0)′‖1, ‖σ
(0)′‖} (1)

Consider the case where Ugb(σ, πλ(σ)) − λ‖σ(0)′‖1 ≤ ‖σ(0)′‖1, which algebraically re-expressed

is ‖σ(0)′‖1 ≥
Ugb

(σ,πλ(σ))

1+λ . Combining this with inequality (1) yields Ugb(σ
′, πλ(σ′)) ≥

Ugb
(σ,πλ(σ))

1+λ .

Now consider the case where Ugb(σ, πλ(σ))− λ‖σ(0)′‖1 > ‖σ(0)′‖1, algebraically re-expressed this is

the case where ‖σ(0)′‖1 <
Ugb

(σ,πλ(σ))

1+λ . Here we get:

Ugb(σ
′, πλ(σ

′)) ≥ Ugb(σ, πλ(σ))− λ‖σ(0)′‖1 ≥ Ugb(σ, πλ(σ)) − λ
Ugb(σ, πλ(σ))

1 + λ
=

Ugb(σ, πλ(σ))

1 + λ

Thus, we have proven the first the claim, namely that Ugb(σ
′, π′

λ(σ
′)) ≥

Ugb
(σ,πλ(σ))

1+λ .
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