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Abstract. Dialogue systems need to deal with the unpredictability of user intents
to track dialogue state and the heterogeneity of slots to understand user preferences.
In this paper we investigate the hypothesis that solving these challenges as one
unified model will allow the transfer of parameter support data across the different
tasks. The proposed principled model is based on a Transformer encoder, trained
on multiple tasks, and leveraged by a rich input that conditions the model on
the target inferences. Conditioning the Transformer encoder on multiple target
inferences over the same corpus, i.e., intent and multiple slot types, allows learning
richer language interactions than a single-task model would be able to. In fact,
experimental results demonstrate that conditioning the model on an increasing
number of dialogue inference tasks leads to improved results: on the MultiWOZ
dataset, the joint intent and slot detection can be improved by 3.2% by conditioning
on intent, 10.8% by conditioning on slot and 14.4% by conditioning on both intent
and slots. Moreover, on real conversations with Farfetch costumers, the proposed
conditioned BERT can achieve high joint-goal and intent detection performance
throughout a dialogue.

Keywords: Dialogue State Tracking· Intent detection · Slot filling · BERT.

1 Introduction

Conversational assistants need to explicitly maintain information about user goals by
tracking the user intent and storing a set of slot-value pairs. This is critical to ensure
the smoothness of user-agent interaction leading to frustration-free outcomes. Both
dialogue state and slot values can be used as a way to provide a general initial product
suggestion [13], before more fine-grained attributes are requested by the system. Hence,
keeping the dialogue agent up-to-date with user’s perception of the current conversation
is a critical, yet, non-trivial task [12].

Algorithms that support more natural conversations need to tackle complex phrasal
constructions [3] and dialogue contextual information [11]. Each user utterance conveys
multiple and intertwined hints leading to very rich language structures and possible
co-references to the dialogue history.

Recent approaches [3,25,11,12], explored the Transformer model in this context and
leveraged the attention mechanisms to tackle the above challenges. A common practice
is to use the control token to detect intent [4,20,22] or presence of a slot span [23,3,17].
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Recent works extend the Transformer with new heads [4,20,22], tackling both
intent detection and slot filling in a multi-task setting. While these works capture the
dependencies between intent detection and slot-filling, all the inferences are solely
conditioned on the dialogue utterances, without accounting for each target inference
task.

Our research hypothesis is that jointly learning dialogue inference tasks while
conditioning the Transformer on the aforementioned dialogue state-tracking (DST)
tasks, will lead to more precise joint-inferences of user intent and slot filling, i.e.,
more accurate dialogue state inferences. This hypothesis is supported by the way
BERT [7] attends to different tokens [5] – the [CLS] token, retaining a global sequence
embedding, can leverage a number of language tasks [7], by functioning as an attention
hub, contextualizing the whole input sequence. Extra special attention hub tokens can
then be added and learned through fine-tuning. Hence, we argue that introducing new
task-specific tokens, acting as task-specific attention hubs, alongside Transformer heads,
could allow for the introduction of additional domain-specific operations. We argue that
these empirical observations are all rooted on the same principle: when the Transformer
encoder is conditioned on the target task, the self-attention mechanism across all layers
becomes aware of the target inference operation. Thus, the conditioning input can steer
the inferences across all layers. This forms the base assumption of our work.

In the following section we discuss the related work. In sections 3 and 3.1 we describe
the proposed approach. Section 4 presents and discuss experimental results.

2 Related work

Dialogue State Tracking (DST) refers to the act of maintaining a set of user goals
or preferred attributes by performing slot-filling in task-oriented dialogues, which can
be either single or multi-domain. Span-based slot-filling approaches have been widely
explored with promising results, as seen in [23], [3], [17], with the first employing
RNN encoding and the latter two using a BERT-based encoder. Extracting spans may
sometimes be sufficient to attain good performance, but, in open-ended dialogues, may
prove insufficient when facing values implicitly mentioned by the user or values which
refer to previously filled slots. To remedy this, work towards introducing other types
of information has been developed, maintaining the same BERT encoder setup. [11]
proposed to directly refer the previously made slot assignments or system suggestions,
depending on the output of the slot-gate, which is extended so as to perform a more fine-
grained classification. Other approaches, such as [26], make use of predefined ontologies
when slots are considered categorical. While non-categorical slots are classified by
detecting relevant spans in the dialogue, categorical slots use a fixed BERT model to
encode all possible slot key-value combinations in the ontology, and use cosine similarity
matching with the [CLS] token output of both BERT instances. While this work is
similar in spirit to ours, we directly adapt BERT-DST [3] to develop our models, as was
previously attempted by [11].

BERT-DST [3] classifies each slot independently from one another in two steps:
first, using BERT’s [CLS] token embeddings, it classifies whether a slot is or is not
present in the utterances, or whether the user expressed no interest in its value; referred
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to as a slot-gate. Second, for each slot where the slot-gate output is positive, using the
embedding of each token, attempts to extract the dialogue span in which its value is
mentioned.

Intent Detection requires analyzing a user utterance and classifying it, as a whole,
given a set of possible user intents. Transformer encoder-based approaches are especially
adept at this task, performing the classification step using sentence embeddings. Intent
detection data is limited in task-oriented datasets, and most approaches [4,14,16] focus
on single-utterance queries for voice assistants [9,6], forgoing multi-turn interactions.

Recently developed DST datasets, such as [17,24], have attempted to account for the
fact that real-world systems will contain categorical and non-categorical slots. Alongside
this notion, they also push the relevance of intent detection, with [17] supplying intent
annotations and [24], an update to MultiWOZ [2], updating the annotation set with user
intent annotations.

3 Proposed Model

Slot-filling and intent detection are natural language processing tasks associated to the
understanding of a sequence D = {(u1, a1), . . . , (uT , aT )}, of T dialogue turns, where
each turn i is represented by a tuple (ui, ai) composed of user and system utterances,
respectively. First, given the user utterance uT+1 and a set of M possible intents I =
{I1, . . . , IM}, our goal is to infer the correct intent Im of the user utterance. Second,
given all dialogue utterances up to turn T and a set of N slot-keys S = {s1, . . . , sN},
the goal is to assign a slot-value v ∈ {v1, . . . , vi, . . .} to every slot-key sk which was,
explicitly or otherwise, accepted or suggested by the user in the turns present in D. A
slot-value can be anything from a hotel location to the number of people in a restaurant
reservation. The act of maintaining all relevant slot key-value pairs in a dialogue D is
referred to as Dialogue State Tracking (DST).

3.1 Dialogue Task Conditioned Encoder

Conditioning the Transformer encoder on dialogue data can be achieved by considering
the entire sequence of dialogue utterances. We can consider the independent probabilities
of user intent p(Im|uT ,Hc) and slot key-value p(sk = vi|uT ,Hc) where uT stands
for the current user utterance, and Hc = {uT−c, . . . , uT−1} is the set of past dialogue
utterances. Alternatively to the independent modes, the joint-inferences of intent and
slot filling is an explicitly dependency-based model, p(Im, sk = vi|uT ,Hc) where
the joint inference is, again, conditioned on the dialogue history Hc. We extend these
variables and investigate how different conditioning assumptions affect the Transformer
inference performance for joint slot-filling and intent detection. In practice, we enrich
the conditional probability with dialogue task information DT ,

p(Im, sk = vi|uT ,Hc, DT ), (1)

which brings a series of advantages to Transformer-based implementations of the above
model.
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Fig. 1: The dialogue target task is explicitly passed to the encoder to condition its inferences.

3.2 Dialogue Task Conditioning

Large Transformer models [20,12] are able to singlehandedly model complex tasks
within dialogues, such as next sentence prediction, intent detection, and ontology-based
slot-filling. Even though intent detection in TOD-BERT [20] is performed by leveraging
the [CLS] token, both SimpleTOD [12] and TOD-BERT prepend user and assistant
utterances with special tokens that denote the speaker. In DST, user and assistant
turns should be attended differently: in order to perform slot-filling on a slot key, the
user must either state it (explicitly or otherwise) or agree with an assistant suggestion.
The aforementioned tokens can condition the Transformer into performing slot-filling
appropriately in each situation. SimpleTOD [12] further makes use of tokens to delineate
the start and end of each dialogue subtask, such as slot-filling and response generation.

Hence, in light of what we know [20] regarding special token usage on vanilla
BERT ([CLS], [SEP]) and pre-trained TOD systems (utterance source tokens, subtask
delineation), we pass dialogue specific tokens to the encoder to condition its inference
operations (Figure 1). Each one of these dialogue specific tokens is then fine-tuned on the
corresponding target inference tasks. This is extremely important since now, all encoder
layers will have explicit information regarding the required output task.

3.3 BERT-DST: Span slots

First, we build on the BERT-DST [3] model and leverage the fact that BERT overly
attends to special tokens [5]. This baseline model uses the standard input formatting [7]
(first row of Figure 1), where each input token is mapped to an h dimensional internal
representation. The output O ∈ RL×h comprises contextualized embedding representations
of the input tokens.

As previously described, the [CLS] token feeds the slot-gate softmax layer, and the
slot values are extracted using a span-based approach over D. The span detection is
implemented as two classification layers, one for the span-start and one for the span-end,
see Figure 2. All these layers are trained under a common loss function

Lslot =α · Lslot_gate +
1− α

2
· (Lspan_start + Lspan_end), (2)

, a convex combination parameterized by α.
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Fig. 2: The BDST-J architecture explicitly conditions the dialogue state inference operations in an
end-to-end fashion over the intent and domain-slots.

3.4 BDST-I: Intent Detection

Our first take towards conditioning the Transformer encoder in the target inference task
is to introduce an [INTENT] token to the sequence input. This new token embedding is
used by a linear classification layer head to detect the intent.

Introducing the aforementioned token is feasible as both tasks are inherently related—
in fact, recent DST approaches [17] attempt to consolidate intent detection and slot-filling
within the same model. We also argue that slot classification is inherently coupled with
the current user intent. When users intend to, for instance, request hotel information, it is
more likely that they would mention the number of people than also request a restaurant
location in the same turn. This is also shown by a strong Cramer’s V correlation [1]
between utterances of a specific intent and mentioned slots, on all considered datasets
(discussed in Section 4.1). Specifically, the MultiWOZ and Farfetch-Costumers datasets
both exhibit a 0.62, Farfetch-Sim 0.53, and Sim-R with 1.

We fine-tune BDST-I to both slot-filling and intent detection, adding β · Lintent to
the BERT-DST loss function (eq. 2), with Lintent as the cross entropy loss for the intent
prediction target, and β is a convex combination constants:

LBDST−I = β · Lintent + (1− β) · Lslot (3)

The embedding weights of the [INTENT] token are initialized with the [CLS] weights
and are then fine-tuned to the intent detection task. β was determined experimentally on
the validation set.

3.5 BDST-C: Categorical slots

The search for the presence of slots is usually focused on the ones that make sense for
the current dialogue stage—in real world scenarios, it is not plausible to search for all
slots in all dialogue stages. Thus, for each categorical slot that we wish to detect, we
introduce a slot-specific input token, each initialized with random embeddings, signaling
we need to perform inference on each mentioned slot. The BERT model input is shown
in Figure 1: assuming hotel-stars and hotel-price as the categorical slots in the domain.
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In such cases, given a categorical slot [cs], whose possible values are in V[cs], and the
corresponding token BERTcs, the slot value is determined by a classifier head,

argmax
Vcs

Wcs ·BERTcs + bcs (4)

where Vcs is the set of all possible values for slot key [cs] in the domain ontology.
Note that in domains without categorical slots, the model input is the same as vanilla
BERT-DST.

BDST-C uses a different classification strategy depending on the slot type, so special
considerations must be taken. We use a weighted sum for the loss, as follows:

LBDST−C = β · Lcat + (1− β) · Lslot (5)

Following the assumption that each slot is of equal importance to the final result, we
fix β to (#categorical slots)/(#total slots).

3.6 BDST-J: Joint Intent and Multiple-Slots

As previously mentioned, both extensions attempt to exploit BERT being capable of
assigning operations to special tokens. Similarly to how [CLS] is known to contain an
aggregate sequence representation for NSP, it is easy to see how an [INTENT] token
could also contain an aggregate representation based on all the possible intents. The same
rationale applies to the extra categorical tokens, potentially containing sentence-level
representations weighted on the semantic classification of specific slot-keys. Hence, we
generalize the above approaches and introduce a fully flexible input sequence for the
joint task, BDST-J, Figure 1. It follows that, when training BDST-J, the loss function is:

LBDST−J = α · LBDST−I + (1− α) · LBDST−C (6)

All parameters are determined on the validation set.

4 Evaluation

In this section we evaluate the vanilla BERT-DST model, BDST-I, BDST-C, and BDST-J
on Sim-M, Sim-R, MultiWOZ 2.2 benchmarks, and on the Farfetch dataset, with real
testers. All the baselines we tested are encoder-only architectures and have a similar
number of parameters for a fair comparison, with the exception of the low-parameter
TRADE-DST [21]. Other architectures require more training time and are more complex
to deploy.

4.1 Datasets

M2M (Sim-M + Sim-R). Sim-R and Sim-M [18], respectively focusing on the restaurant
and movie ticket domains, use crowdsourced paraphrasing of template utterances to
simulate both user and agent. All slots are non-categorical, which biases the dialogue
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towards simple and direct conversations where slot values are always explicit in utterances.
Dialogues are also noiseless, which may not reflect some of the challenges of an in
production, robust DST system. Both datasets have a high proportion of out of vocabulary
values, meaning that several test set slot values are absent during training. These values
are contained in the restaurant_name and movie slots. Sim-R contains coarse-grained
intent detection, with two possible intent values: find and reserve restaurant. Compared
to other datasets used in this work, the amount of dialogues is relatively low—to perform
well on M2M, models must develop a robust understanding of the semantics of slot-filling
with sparse data.

MultiWOZ 2.2 (MW) MultiWOZ [2] is a widely used DST dataset which follows
a standard human-to-human Wizard of Oz approach, spanning several domains. This
allows for significantly higher language variety and more complex dialogues, as there
are little to no restrictions put on the users when creating data. The lack of language
restrictions and the explicit usage of categorical slots requires inferring values in turns,
alongside extractively collecting slot values from utterances. An extra challenge is entity
bias and misannotations, which have been approached by multiple works [8,24,10,15].
For training and evaluation, we use the 2.2 variant [24] supported by the original MW
authors3. MW 2.2 extends the 2.1 version by cleaning some annotations and, not only
introducing categorical slot annotations, but also introducing a set of active user intents
per user turn. We follow the assumption that the current user intent is the next to be
fulfilled in the active user intent set (i.e. when an intent is removed from the active intent
set, the user had been working towards fulfilling it). We use this assumption to retrieve a
single intent per user utterance.

Farfetch Simulated Dialogues (Farfetch-Sim). This dataset comprises dialogues that
simulate a fashion concierge [19] that understands customer needs and provides the
correct answers. These were created in a way that reflects past real user experiences on
the Farfetch platform, with a massive number of users. The simulated dialogues cover
the complete customer journey: greeting, product search and exploration, to checkout.
Throughout the different conversational journeys, users engage in product-grounded
conversations, across different scenarios. We defined a range of scenarios and flows that
reproduce real-world client-assistant interactions and introduce novel fashion-specific
sub-dialogues that combine language and product metadata. From a total of 39,956
simulated dialogues, we extract 236,072 annotated utterances (slot-filling and intent) for
training, 48,427 for validation and 48,097 testing.

Farfetch User Dialogues (Farfetch-Costumers). This set of real and authentic dialogues
was obtained during a user testing session of a Farfetch’s in-house conversational
shopping assistant prototype. Users (actual costumers) were sampled based on device
(desktop or mobile chat), and clothing gender (men or women), and had no prior
experience using a conversational agent for product discovery. A total of 85 complete
dialogues were annotated with slot-filling and intent detection information, and used for
testing.

3 https://github.com/budzianowski/multiwoz

https://github.com/budzianowski/multiwoz
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Sim-M Sim-R
Model JG Int. Acc. JG Int. Acc.

BERT-DST [3] 81.9 – 88.6 –
BDST-C 82.6 – 86.1 –
BDST-I 83.3 100.0 91.3 99.9

TripPy [11] 83.5 – 90.0 –

Table 1: Results on the M2M datasets.
Fig. 3: Slot key distribution on the Sim-R
train split, by intent.

4.2 Training

Similarly to vanilla BERT-DST, we train the models using randomly sampled batches of
size 32. Unless otherwise stated, we used the [BERT base, Uncased] architecture and
weights and train for 100 epochs—except for the Farfetch dialogues, which we train for
20 epochs, due to their large amount. We set the learning rate to 2e−6 and use ADAM
optimizer.

4.3 Metrics and evaluation methodology

We evaluate slot-filling using the standard joint-goal accuracy (JG) metric. Joint-goal
accuracy is calculated as follows: in dialogue turn T , update a set of active slots S
(initialized as ∅ when the dialogue begins) by adding all (slot key, slot value) pairs
present in T so that S contains at most one of each slot keys, replacing ones that were
previously present. The joint-goal score for turn T is 1 if S is equal to the ground truth,
which is updated in a similar manner. (i.e. active slots for all current and previous
turns have been correctly classified), and 0 otherwise. The final value is the average of
the joint-goal scores of every dialogue turn. The joint-goal score tends to accumulate
errors from earlier dialogue turns, unless the system is able to reclassify. We evaluate
single-turn dialogues using the slot F1 score, as per JointBERT [4].

To evaluate in the M2M dataset, we use the provided BERT-DST [3] evaluation script.
In the MultiWOZ dataset, we use the recommended TRADE-DST [21] pre-processing
and evaluation scripts (we refrain from using the special pre-processing considerations
for plural nouns). We use different evaluation scripts to ensure that comparisons with
other works are adequate. We adapt the TRADE-DST evaluation scripts for the Farfetch
dialogues.

4.4 General Results

In this section we analyze the performance of the proposed approach under different
conditions: no overlap of slots per intent and multi-slot per intent.

No overlap of slots per intent: M2M. Table 1 displays the evaluation metrics on
the M2M datasets of our two proposals alongside vanilla BERT-DST performance. To
generate an ontology for categorical slots, we use a similar heuristic to the one used
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Model MW 2.2
JG Int. Acc.

BERT-DST [3] 33.0 –
BERT-DST (w/ dialogue history) 37.6 –

BDST-I 40.8 88.4
BDST-C 48.4 –
BDST-J 49.0 87.9

BDST-CLARGE 48.6 –
BDST-JLARGE 49.8 87.7

Systems

SGD Baseline [17] 42.0* –
TRADE-DST [21] 45.4* –
DS-DST [26] 51.7* –

Table 2: Joint-goal and intent detection accuracy
scores on MultiWOZ 2.2 dataset. Values with * are
reported by [24]. It should be noted that the DS-
DST model uses two BERT models.

Fig. 4: Cross-domain slot mentions on the
MultiWOZ 2.2 in the hotel vs. restaurant
domains.

for the SGD dataset [17]: slots which refer to a range of values or a small amount of
discrete elements which can easily be listed are categorical, while slots with continuous,
uncountable or several values are non-categorical. In Sim-M, we consider the slot
num_tickets as categorical—in Sim-R, we consider the num_people, price_range, meal
and rating slots.

The BDST-C performance on Sim-M is quite close to the vanilla model, as expected.
This is due to only one slot being considered categorical. It is also important to
note that the data was not created with categorical slots in mind—since all slots are
explicitly present in dialogue spans, moving away from them may not be ideal for
performance; especially relevant in SIM-R. On the other hand, the joint-goal score
of BDST-I was higher than anticipated, showing itself to be competitive with the
state-of-the-art [11]. By analyzing the coarse-grained intent information contained
in the data (none, BUY_MOVIE_TICKETS in Sim-M; none, FIND_RESTAURANT,
RESERVE_RESTAURANT in Sim-R). We find that, in M2M, the user intent directly
correlates with the slots that are being mentioned, containing no overlap of mentioned
slots, per intent (Figure 3). The general performance improvement when introducing
intent information supports our claim that jointly training a model on both slot-filling
and intent detection tasks can improve performance.

Multi-slot per intent: MultiWOZ. Leveraged by the insights from the previous
experiments and the results on the MultiWOZ dataset (Table 2), we reached several
conclusions. First, we observed that training a model for both intent detection and slot-
filling improves slot-filling performance. MultiWOZ 2.2, similarly to Sim-R, displays a
high correlation between the active intent and the slots that are being mentioned. Second,
the proposed conditioning architecture, i.e. tokens and corresponding heads, enabled our
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Model Farfetch-Sim Farfetch-Costumers
Slot F1 Int. Acc. Slot F1 Int. Acc. JG

JointBERT [4] 93.5 96.7 83.2 93.8 54.9
BDST [3] 94.2 – 85.0 – 65.1
BDST-I 94.6 98.1 87.3 95.4 71.0

Table 3: Joint-goal and intent detection accuracy scores on Farfetch dialogues.

models to approach state-of-the-art performance. When compared with TRADE-DST,
our model performs significantly better, proving to be a solid alternative for real-world
systems where probabilistic outputs are preferred. Third, introducing more domain
information improves overall performance. The joint-goal score largely increases by
simply introducing categorical slot tokens. This can be seen when evaluating BERT-DST
instances vs. their BDST-C counterparts. A similar result can be seen when introducing
intent information—in MultiWOZ, the result of the intent detection task can inform slot-
filling modules of the domain relevant to the current utterance. Then, we show how the
domain of the classified user intent is directly related to the frequency of mentioned slots
(Figure 4). When the current domain is restaurant, the slot-gate for hotel related slots
is more likely to be correct when outputting none, while slot-gates related to restaurant
slots are likely to output span. Finally, we also observed that increasing the model size
slightly improves performance. In our tests using BERT-large, which contains about 3
times more trainable parameters than BERT-base (345 million vs. 110 million), shows a
limited, but consistent, performance gain of less than 1% in all situations.

Farfetch Dialogues. Finally, we evaluated the proposed model in an online shopping
assistant with both simulated and real costumer dialogues. For this experiment, models
are trained solely on simulated dialogues. Table 3 reports the obtained results. First,
in the simulated dialogues (Farfetch-Sim), we observe that BDST-I can successfully
detect both intents and slot-values, with significant improvements in slot F1 and intent
accuracy. When we consider dialogues with real costumers, the robustness of BDST-I
becomes more evident: the gap in slot-F1, intent accuracy and, more importantly, the
joint-goal accuracy between BDST-I and the other two baselines increase considerably.
In particular, joint-goal accuracy is 71.0% and intent accuracy reaches 95.4%, which
confirms that performing both tasks simultaneously and conditionally inferring slot
values and intents provides the model with more information to improve its performance.

5 Conclusion

In the context of this work, we explicitly assumed that there are strong dependencies
among language tokens, and that these dependencies become even more salient when the
Transformer is conditioned on the dialogue data and on the dialogue state. We proposed
an extension to a well-established model, which takes advantage of introducing extra
dialogue information and multi-task learning, significantly increasing performance in all
cases. Our contributions are as follows:

– DST inference task conditioning architecture: The multi-head architecture and
the corresponding tokens elegantly extends the Transformer encoder architecture
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to facilitate joint slot-filling and intent detection. We also observed that training on
the different tasks also improved results, thus leveraging the multi-task parameter
sharing nature.

– Multiple slot-filling across domains: The proposed architecture nicely supports
the MultiWOZ 2.2 scenarios where multiple heterogeneous slots co-occur in data,
e.g. restaurant span-based slots with hotel categorical slots.

– State of the art competitive results across heterogeneous domains: Our models
which perform intent detection and slot-filling outperform strong baselines [21] of
equivalent complexity, by learning the intrinsic correlations between the user intent
and the slots which are currently being mentioned.

– Generalization to realistic domain-specific dialogues: Experiments show that
BDST-I effectively generalizes in state-tracking for domain-specific and real scenarios,
outperforming the compared approaches.

To sum up, we proposed a principled and theoretically well grounded approach to
dialogue state tracking that significantly improves performance. The model is flexible
enough be augmented with external heuristics [11], and generalizes to multiple domains.
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