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Abstract
Given a graph G = (V, E) and a list of available colors L(v) for each vertex v ∈ V , where
L(v) ⊆ {1, 2, . . . , k}, List k-Coloring refers to the problem of assigning colors to the vertices of G

so that each vertex receives a color from its own list and no two neighboring vertices receive the
same color. The decision version of the problem List 3-Coloring is NP-complete even for bipartite
graphs, and its complexity on comb-convex bipartite graphs has been an open problem. We give
a polynomial-time algorithm to solve List 3-Coloring for caterpillar-convex bipartite graphs, a
superclass of comb-convex bipartite graphs. We also give a polynomial-time recognition algorithm
for the class of caterpillar-convex bipartite graphs.
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1 Introduction

Graph coloring is the problem of assigning colors to the vertices of a given graph in such a way
that no two adjacent vertices have the same color. List coloring [26, 15] is a generalization of
graph coloring in which each vertex must receive a color from its own list of allowed colors.
In this paper, we study the list coloring problem with a fixed number of colors in subclasses
of bipartite graphs. We give a polynomial-time algorithm for the list 3-coloring problem
for caterpillar-convex bipartite graphs, a superclass of comb-convex bipartite graphs. We
also give a polynomial-time recognition algorithm for the class of caterpillar-convex bipartite
graphs. Our results resolve the open question regarding the complexity of list 3-coloring for
comb-convex bipartite graphs stated in [4, 5].

We consider finite simple undirected graphs G = (V, E) with vertex set V and edge set E.
By NG(v) (or by N(v) if the graph is clear from the context) we denote the neighborhood of
v in G, i.e., the set of vertices that are adjacent to v. A k-coloring of G is a labeling that
assigns colors to the vertices of G from the set [k] = {1, 2, . . . , k}. A coloring is proper if
no two adjacent vertices have the same color. A list assignment of a graph G = (V, E) is a
mapping L that assigns each vertex v ∈ V a list L(v) ⊆ {1, 2, . . .} of admissible colors for v.
When L(v) ⊆ [k] = {1, 2, . . . k} for every v ∈ V we say that L is a k-list assignment of G.
The total number of available colors is bounded by k in a k-list assignment. On the other
hand, when the only restriction is that |L(v)| ≤ k for every v ∈ V , then we say that L is a
list k-assignment of G. List coloring is the problem of deciding, for a given graph G = (V, E)
and list assignment L, whether G has a proper coloring where each vertex v receives a color
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Figure 1 (a) A comb-convex bipartite graph G1, (b) a comb representation of G1, (c) a caterpillar-
convex bipartite graph G2, and (d) a caterpillar representation for G2.

from its list L(v). If L is a k-list assignment for a fixed value of k, the problem becomes the
list k-coloring problem:
List k-Coloring (Li k-Col)
Instance: A graph G = (V, E) and a k-list assignment L.
Question: Does G have a proper coloring where each vertex v receives a color from its list
L(v)?

If L is a list k-assignment instead of a k-list assignment, the problem is called k-List
Coloring.

The classes of bipartite graphs of interest to us are defined via a convexity condition for
the neighborhoods of the vertices on one side of the graph with respect to a tree defined on
the vertices of the other side. The following types of trees are relevant here: A star is a
tree of diameter at most 2. A comb is a tree that consists of a chordless path P , called the
backbone, with a single leaf neighbor attached to each backbone vertex [9]. A caterpillar is
a tree that consists of a chordless path P , called the backbone, with an arbitrary number
(possibly zero) of leaf vertices attached to each vertex on P . Note that if a caterpillar has
exactly one leaf vertex attached to each vertex on P , then that caterpillar is a comb.

A bipartite graph G = (X ∪ Y, E) is called a star-convex (or comb-convex, or caterpillar-
convex) bipartite graph if a star (or comb, or caterpillar) T = (X, F ) can be defined on X

such that for each vertex y ∈ Y , its neighborhood NG(y) induces a subtree of T . The star (or
comb, or caterpillar) T = (X, F ) is then called a star representation (or comb representation,
or caterpillar representation) of G.

Figure 1 shows an example of a comb-convex bipartite graph and its comb representation,
and a caterpillar-convex bipartite graph and its caterpillar representation. Both the comb
(in part (b)) and the caterpillar (in part (d)) have the path P = x1x3x5 as backbone.

The remainder of this paper is organized as follows. In Section 2, we discuss related
work. In Section 3, we give a polynomial-time algorithm for Li 3-col for caterpillar-convex
bipartite graphs (and thus also for comb-convex bipartite graphs). In Section 4, we give a
polynomial-time recognition algorithm for caterpillar-convex bipartite graphs. In Section 5,
we give concluding remarks.
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Convex Bipartite: Li k-Col PTIME [12, 1]

Chordal Bipartite: Li 3-Col [⊙]
Li k-Col, k ≥ 4 NP-C [20]

Circular Convex Bipartite:
Li k-Col PTIME [4]

Bipartite Li 3-Col NP-C [24]

Tree Convex Bipartite:
Li 3-Col NP-C [4]

Star Convex Bipartite:
Li 3-Col PTIME [5]

Li k-Col, k ≥ 4 NP-C [5]
(∞, 3)-tree convex:
Li 3-Col NP-C [4]

Caterpillar Convex Bipartite:
Li 3-Col PTIME [*]

Comb Convex Bipartite:
Li 3-Col PTIME [*]

Li k-Col, k ≥ 4 NP-C [5]

Figure 2 Computational complexity results for Li k-Col on subclasses of bipartite graphs. [*]
refers to this paper, [⊙] refers to an open problem, NP-C denotes NP-complete problem, PTIME
denotes polynomial-time solvable problem.

2 Related Work

Deciding whether a graph has a proper coloring with k colors is polynomial-time solvable
when k = 1 or 2 [25] and NP-complete for k ≥ 3 [26]. As Li k-col generalizes this problem, it
is also NP-complete for k ≥ 3. When the list coloring problem is restricted to perfect graphs
and their subclasses, it is still NP-complete in many cases such as for bipartite graphs [24]
and interval graphs [2]. On the other hand, it is polynomially solvable for trees and graphs of
bounded treewidth [21]. The problems Li k-col and k-List Coloring are polynomial-time
solvable if k ≤ 2 and NP-complete if k ≥ 3 [25, 26]. k–list coloring has been shown to
be NP-complete for small values of k for complete bipartite graphs and cographs by Jansen
and Scheffler [21], as observed in [16]. The 3-List Coloring problem is NP-complete even
if each color occurs in the lists of at most three vertices in planar graphs with maximum
degree three, as shown by Kratochvil and Tuza [23].

We use the following standard notation for specific graphs: Pt denotes a path with t

vertices; Kt denotes a clique with t vertices; Kℓ,r denotes a complete bipartite subgraph with
parts of sizes ℓ and r; K1

1,s denotes the 1-subdivision of K1,s (i.e., every edge e = {u, v} of
K1,s is replaced by two edges {u, we} and {we, v}, where we is a new vertex); and sP1 + P5
is the disjoint union of s isolated vertices and a P5. Li k-col is known to be NP-complete
even for k = 3 within the class of 3–regular planar bipartite graphs [22]. On the positive
side, for fixed k ≥ 3, Li k-col is polynomially solvable for P5-free graphs [18]. Li 3-col is
polynomial for P6-free graphs [7] and for P7-free graphs [3]. Li 3-col is polynomial-time
solvable for (K1

1,s, Pt)-free graphs for every s ≥ 1 and t ≥ 1 [10]. Li k-col is polynomial-time
solvable for (sP1 + P5)-free graphs, which was proven for s = 0 by Hoàng et al. [18] and for
every s ≥ 1 by Couturier et al. [11].

An overview of complexity results for Li k-col in some subclasses of bipartite graphs is
shown in Fig. 2. The computational complexity of Li 3-col for chordal bipartite graphs
has been stated as an open problem in 2015 [20] and has been of interest since then [12]. In
[12] a partial answer is given to this question by showing that Li 3-col is polynomial in
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the class of biconvex bipartite graphs and convex bipartite graphs. Li 3-col is solvable in
polynomial time when it is restricted to graphs with all connected induced subgraphs having
a multichain ordering [14]. This result can be applied to permutation graphs and interval
graphs. In [12], it is shown that connected biconvex bipartite graphs have a multichain
ordering, implying a polynomial time algorithm for Li 3-col on this graph class. They also
provide a dynamic programming algorithm to solve Li 3-col in the class of convex bipartite
graphs and show how to modify the algorithm to solve the more general Li H-col problem
on convex bipartite graphs. The computational complexity of Li 3-col for P8-free bipartite
graphs is open [2]. Even the restricted case of Li 3-col for P8-free chordal bipartite graphs
is open. Golovach et al. [16] survey results for Li k-col on H-free graphs in terms of the
structure of H.

So-called width parameters play a crucial role in algorithmic complexity. For various
combinatorial problems, it is possible to find a polynomial-time solution by exploiting bounded
width parameters such as mim-width, sim-width and clique-width. Given a graph class, it
is known that when mim-width is bounded, then Li k-col is polynomial-time solvable [6].
Brettell et al. [6] proved that for every r ≥ 1, s ≥ 1 and t ≥ 1, the mim-width is bounded
and quickly computable for (Kr, K1

1,s, Pt)-free graphs. This result further implies that for
every k ≥ 1, s ≥ 1 and t ≥ 1, Li k-col is polynomial-time solvable for (K1

1,s, Pt)-free graphs.
Most recently, Bonomo-Braberman et al. [4] showed that mim-width is unbounded for star-
convex and comb-convex bipartite graphs. On the other hand, Li 3-col is polynomial-time
solvable for star-convex bipartite graphs whereas Li k-col is NP-complete for k ≥ 4 [5].
Furthermore, Bonomo-Braberman et al. [5] show that for comb-convex bipartite graphs, Li
k-col remains NP-complete for k ≥ 4 and leave open the computational complexity of Li
3-col for this graph class. In this paper, we resolve this problem by showing that Li 3-col
is polynomial-time solvable even for caterpillar-convex bipartite graphs.

As for the recognition of graph classes, Bonomo-Braberman et al. [5] provide an algorithm
for the recognition of (t, ∆)-tree convex bipartite graphs by using a result from Buchin et
al. [8]. Here, a tree is a (t, ∆)-tree if the maximum degree is bounded by ∆ and the tree
contains at most t vertices of degree at least 3. This result for the recognition of (t, ∆)-tree
convex bipartite graphs, however, does not apply to caterpillar-convex bipartite graphs.
Therefore, we give a novel algorithm for the recognition of caterpillar-convex bipartite graphs.

3 List 3-Coloring Caterpillar-Convex Bipartite Graphs

In this section we give a polynomial-time algorithm for solving Li 3-col in caterpillar-convex
bipartite graphs. Let a caterpillar-convex bipartite graph G = (X ∪ Y, E) be given, together
with a 3-list assignment L. We assume that a caterpillar T = (X, F ) is also given, where
NG(y) induces a subtree of T for each y ∈ Y . If the caterpillar is not provided as part of
the input, we can compute one in polynomial time using the recognition algorithm that we
present in Section 4.

Let T consist of a backbone B with vertices b1, b2, . . . , bn (in that order) and a set of
leaves L(bi), possibly empty, attached to each bi ∈ B. We use L to denote the set of all leaves,
i.e., L =

⋃n
i=1 L(bi). Furthermore, for any 1 ≤ i ≤ j ≤ n, we let Bi,j = {bi, bi+1, . . . , bj} and

Li,j =
⋃j

k=i L(bk).
The idea of the algorithm is to define suitable subproblems that can be solved in polynomial

time, and to obtain the overall coloring as a combination of solutions to subproblems. Roughly
speaking, the subproblems consider stretches of the backbone in which all backbone vertices
are assumed to be assigned the same color in a proper list 3-coloring. More precisely, a
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subproblem SP (i, j, c1, c2, c3) is specified via two values i, j with 1 ≤ i ≤ j ≤ n and three
colors c1, c2, c3 with c1 ̸= c2 and c2 ̸= c3 where ci ∈ [3], for i = 1, 2, 3. Hence, there are O(n2)
subproblems.

The subproblem S = SP (i, j, c1, c2, c3) is concerned with the subgraph GS of G induced
by Bi−1,j+1 ∪ Li,j ∪ {y ∈ Y | N(y) ∩ (Bi,j ∪ Li,j) ̸= ∅}. It assumes that color c1 is assigned
to bi−1, color c2 to the backbone vertices from bi to bj , and color c3 to bj+1. See Fig. 3 for
an illustration of SP (i, j, 2, 1, 2). Solving the subproblem S means determining whether this
coloring of Bi−1,j+1 can be extended to a proper list 3-coloring of GS . The result of the
subproblem is False if this is not possible, or True (and a suitable proper list 3-coloring of
GS) otherwise. If c1 /∈ L(bi−1), or c3 /∈ L(bj+1), or c2 /∈ L(bk) for some i ≤ k ≤ j, then the
result of the subproblem is trivially False.

We will show that this subproblem can be solved in polynomial time as it can be reduced to
the 2-list coloring problem, which is known to be solvable in linear time [13, 17]. Furthermore,
solutions to consecutive ‘compatible’ subproblems can be combined, and a proper list 3-
coloring of G exists if and only if there is a collection of subproblems whose solutions can
be combined into a list 3-coloring of G. For example, the colorings of two subproblems
SP (i, j, c1, c2, c3) and SP (j + 1, k, c2, c3, c4) can be combined because they agree on the
colors of backbone vertices that are in both subproblems, they do not share any leaf vertices,
and the vertices y ∈ Y that have neighbors in both Bi,j ∪ Li,j and Bj+1,k ∪ Lj+1,k must
be adjacent to bj and bj+1, which are colored with colors c2 and c3 (where c2 ̸= c3) in the
colorings of both subproblems, and hence must have received the same color (the only color
in {1, 2, 3} \ {c2, c3}) in both colorings. To check whether there is a collection of compatible
subproblems whose solutions can be combined into a list 3-coloring of G, we will show that
it suffices to search for a directed path between two vertices in an auxiliary directed acyclic
graph (DAG) on the subproblems whose result is True.

For a subproblem S = SP (i, j, c1, c2, c3), if i = 1, there is no vertex bi−1, and we write
∗ for c1; similarly, if j = n, there is no vertex bj+1, and we write ∗ for c3. The graph GS

considered when solving such a subproblem does not contain bi−1 or bj+1, respectively, but
is otherwise defined analogously. If i = 1 and j = n, then GS contains neither bi−1 nor bj+1.

▶ Lemma 1. There is a linear-time algorithm for solving any subproblem of the form
SP (i, j, c1, c2, c3).

Proof. Consider the subproblem S = SP (i, j, c1, c2, c3). Let GS be the subgraph of G defined
by S, and let XS ⊆ X, YS ⊆ Y be such that the vertex set of GS is XS ∪ YS . First, we
check whether c1 ∈ L(bi−1) (only if i > 1), c3 ∈ L(bj+1) (only if j < n), and c2 ∈ L(bk) for
all i ≤ k ≤ j. If one of these checks fails, we return False. Otherwise, we assign color c1 to
bi−1, color c2 to all vertices in Bi,j , and color c3 to bj+1.

For every vertex y ∈ YS , we check if N(y) contains any vertices of Bi−1,j+1 and, if so,
remove the colors of those vertices from L(y) (if they were contained in L(y)). If the list of
any vertex y ∈ YS becomes empty in this process, we return False.

Let BS denote the backbone vertices in XS and LS the leaf vertices in XS (with respect
to the caterpillar T ). If there is a vertex in LS or YS with a list of size 1, assign the color in
that list to that vertex and remove that color from the lists of its neighbors (if it is contained
in their lists). Repeat this operation until there is no uncolored vertex with a list of size 1.
(If an uncolored vertex with a list of size 1 is created later on in the algorithm, the same
operation is applied to that vertex.) If the list of any vertex becomes empty in this process,
return False. Otherwise, we must arrive at a state where all uncolored vertices in GS have
lists of size 2 or 3.
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bi−1
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1 1 1 1 1
bj bj+1
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Figure 3 Illustration of subproblem SP (i, j, c1, c2, c3) for the case SP (i, j, 2, 1, 2).

If there is a vertex y ∈ YS with a list of size 3, that vertex must be adjacent to a single
leaf ℓ in LS (as it cannot be adjacent to a backbone vertex). In this case we remove an
arbitrary color from L(y): This is admissible as, no matter what color ℓ receives in a coloring,
vertex y can always be colored with one of the two colors that have remained in its list.

If there is a vertex ℓ ∈ LS with a list of length 3, assign color c2 to ℓ (and remove color
c2 from the lists of vertices in N(ℓ)). This color assignment does not affect the existence of a
proper list 3-coloring for the following reasons (where we let bk denote the backbone vertex
with ℓ ∈ L(bk)):

If a vertex y ∈ N(ℓ) is adjacent to more than one vertex, it must be adjacent to bk, which
has been colored with c2, and hence it cannot receive color c2 in any case.
If a vertex y ∈ N(ℓ) is adjacent only to ℓ and no other vertex, then y can still be colored
after ℓ is assigned color c2, because we cannot have L(y) = {c2}; this is because, if y had
the list L(y) = {c2}, it would have been colored c2 and the color c2 would have been
removed from L(ℓ).

If at any step of this process, an uncolored vertex with an empty list is created, return False.
Otherwise, we arrive at an instance I of Li 3-col where all uncolored vertices have lists
of size 2. Such an instance can be solved in linear time [13, 17] (via reduction to a 2SAT
problem). If I admits a proper list 3-coloring, that coloring gives a proper list 3-coloring of
GS , and we return True and that coloring. Otherwise, we return False.

Correctness of the algorithm follows from its description, and the algorithm can be
implemented to run in linear time using standard techniques. ◀

Call a subproblem S = SP (i, j, c1, c2, c3) valid if its answer is True (and a proper list
3-coloring of GS has been produced), and invalid otherwise. To check whether the colorings
obtained from valid subproblems can be combined into a list 3-coloring of G, we make use of
an auxiliary DAG H constructed as follows. The existence of a proper list 3-coloring of G

can then be determined by checking whether H contains a directed path from s to t.

▶ Definition 2. The auxiliary DAG H = (VH , A) has vertices s, t, and a vertex for
each valid subproblem SP (i, j, c1, c2, c3). Its arc set A contains the following arcs: An arc
(s, SP (1, i, ∗, c2, c3)) for each i < n and c2, c3 ∈ [3] such that SP (1, i, ∗, c2, c3) is valid;
an arc (SP (i, n, c1, c2, ∗), t) for each i > 1 and c1, c2 ∈ [3] such that SP (i, n, c1, c2, ∗) is
valid; arcs (s, SP (1, n, ∗, c2, ∗)) and (SP (1, n, ∗, c2, ∗), t) if SP (1, n, ∗, c2, ∗) is valid; an arc
(SP (i, j, c1, c2, c3), SP (j + 1, k, c2, c3, c4) for each i ≤ j ≤ k − 1 and each c1, c2, c3, c4 ∈ [3]
(or c1 = ∗ or c4 = ∗ if i = 1 or k = n, respectively) such that SP (i, j, c1, c2, c3) and
SP (j + 1, k, c2, c3, c4) are both valid.

▶ Theorem 3. Li 3-col can be solved in polynomial time for caterpillar-convex bipartite
graphs.
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Algorithm 1 List-3-Coloring Algorithm for Caterpillar-Convex Bipartite Graphs

Require: A caterpillar-convex bipartite graph G = (X ∪ Y, E) (with caterpillar T = (X, F ))
and a list assignment L.

Ensure: A proper coloring that obeys L, or False if no such coloring exists.
1: ▷ Compute solutions to all subproblems
2: for i = 1 to n do
3: for j = i to n do
4: for ci ∈ [3], i = 1, 2, 3 with c1 ̸= c2 and c2 ̸= c3 do
5: ▷ let c1 = ∗ if i = 1 and c3 = ∗ if j = n

6: Solve SP (i, j, c1, c2, c3) (Lemma 1)
7: end for
8: end for
9: end for

10: ▷ Check if solutions of subproblems can be combined into a list 3-coloring of G

11: Build a DAG H whose vertices are s, t, and a vertex SP (i, j, c1, c2, c3) for each subproblem
with answer True (Definition 2)

12: if H contains a directed path P from s to t then
13: Return the coloring obtained as union of the colorings of the subproblems on P

14: else
15: Return False
16: end if

Proof. Let a caterpillar-convex bipartite graph G = (X ∪Y, E) with caterpillar representation
T = (X, F ) be given. Let n denote the number of backbone vertices in T , and |G| =
|X| + |Y | + |E| the size of G. The algorithm, shown in Algorithm 1, first computes the
solutions to all O(n2) subproblems SP (i, j, c1, c2, c3). This can be done in linear time O(|G|)
per subproblem (Lemma 1), and thus in time O(n2|G|) overall.

Then it constructs the auxiliary DAG H (Definition 2) and checks if H contains a path
P from s to t. As H contains O(n2) vertices and O(n3) edges, the construction of H and
the check for the existence of an s-t path can be carried out in O(n3) time.

Finally, if an s-t path P is found, the colorings corresponding to the subproblems on P

can be combined into a list 3-coloring of G in O(|G|) time. Thus, the overall running-time of
the algorithm can be bounded by O(n2|G|), which is polynomial in the size of the input. If
the caterpillar representation T = (X, F ) is not given as part of the input, it can be computed
via our recognition algorithm (Section 4) in polynomial time (the proof of Theorem 12 shows
that the time for computing T = (X, F ) is at most O(|X ∪ Y |3)).

To show that the algorithm is correct, assume first that the algorithm finds an s-t path
P in H. Let S be the set of valid subproblems on P . By construction, each backbone vertex
receives the same color in the at most three subproblems in S in which it occurs. Each leaf
of the caterpillar occurs in exactly one subproblem in S. Every vertex in Y that occurs
in more than one subproblem in S must receive the same color in each such subproblem
(because it must be adjacent to the two backbone vertices with different colors at the border
between any two consecutive subproblems in which it is contained). The other vertices in Y

occur in only one subproblem. Hence, the coloring obtained by the algorithm is a proper list
3-coloring of G.

For the other direction, assume that G admits a proper list 3-coloring. Then partition
the backbone b1, b2, . . . , bn into maximal segments B1,i1 , Bi1+1,i2 , . . . , Bik−1+1,ik

for some
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k ≥ 1 and ik = n, so that all backbone vertices in each segment receive the same color.
Let the color of the backbone vertices in Bij−1+1,ij

be cj (where ij−1 = 0 if j = 1), for
1 ≤ j ≤ k. This implies that the subproblems SP (1, i1, ∗, c1, c2), SP (i1 + 1, i2, c1, c2, c3), . . . ,
SP (ik−1 + 1, ik, ck−1, ck, ∗) are all valid and constitute an s-t-path in the DAG H. Therefore,
the algorithm will output a proper list 3-coloring. ◀

As comb-convex bipartite graphs are a subclass of caterpillar-convex bipartite graphs, we
obtain:

▶ Corollary 4. Li 3-col can be solved in polynomial time for comb-convex bipartite graphs.

Combining Corollary 4 with Theorem 4 in [5] and the polynomial-time solvability of Li
k-col for k ≤ 2 [15, 26] yields a complexity dichotomy: Li k-col is polynomial-time solvable
on comb-convex bipartite graphs when k ≤ 3; otherwise, it is NP-complete.

4 Recognition of Caterpillar-Convex Bipartite Graphs

We give a polynomial-time recognition algorithm for caterpillar-convex bipartite graphs. We
are given a bipartite graph G = (X ∪Y, E) and want to decide whether it is caterpillar-convex
and, if so, construct a caterpillar representation T = (X, F ). First, we assume that a specific
partition of the vertex set into independent sets X and Y is given as part of the input, and
we want to decide whether there is a caterpillar representation T = (X, F ) with respect to
that given bipartition (i.e., the vertex set of the caterpillar is the independent set X that
was specified in the input). At the end of this section, we will discuss how to handle the case
that the bipartite graph is given without a specific bipartition of the vertex set and we want
to decide whether the vertex set can be partitioned into independent sets X and Y in such a
way that there is a caterpillar representation with respect to that bipartition.

The main idea of the algorithm for recognizing caterpillar-convex bipartite graphs is to
construct an auxiliary DAG D on vertex set X in such a way that the sinks in D can be
used as the backbone vertices of T . To make this work, it turns out that we first need to
remove some vertices from G that have no effect on whether G is caterpillar-convex. First,
we show that we can remove isolated vertices from X and vertices of degree 0 or 1 from Y .

▶ Lemma 5. Let x ∈ X be a vertex with degree 0, and let G′ be the graph obtained from G by
removing x. Then G′ is caterpillar-convex if and only if G is caterpillar-convex. Furthermore,
a caterpillar representation of G can be constructed from a caterpillar representation of G′

by adding x in a suitable location.

Proof. Let T be a caterpillar representation of G. If x is a leaf in T , we obtain a caterpillar
representation T ′ of G′ simply by removing x from T . If x is a backbone vertex in T with at
least one leaf ℓ attached to it, we obtain T ′ by replacing x in the backbone with ℓ. If x is a
backbone vertex in T without leaves attached to it, we obtain T ′ by removing x and making
the two former backbone neighbors of x adjacent (if x had two backbone neighbors).

For the other direction, let T ′ be a caterpillar representation of G′. We can obtain a
caterpillar representation T of G from T ′ by adding x as a backbone vertex to one end of
the backbone of T ′. ◀

▶ Lemma 6. Let y ∈ Y be a vertex with degree 0 or 1, and let G′ be the graph obtained from
G by removing y. Then G′ is caterpillar-convex if and only if G is caterpillar-convex. Any
caterpillar representation of G′ is also a caterpillar representation of G.
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Proof. It is clear that any caterpillar representation T of G is also a caterpillar representation
of G′. For the other direction, let T ′ be a caterpillar representation of G′. The neighborhood
of y induces an empty subtree or a single-vertex subtree in T ′, so T ′ is also a caterpillar
representation of G. ◀

We call a pair of vertices xi and xj twins if NG(xi) = NG(xj). The twin relation on X

partitions X into equivalence classes, such that x1, x2 ∈ X are twins if and only if they are
in the same class. We say that two twins x, x′ are special twins if {x, x′} is an equivalence
class of the twin relation on X and if there is y ∈ Y with NG(y) = {x, x′}. Now, we show
that removing a twin from X (with some additional modification in the case of special twins)
has no effect on whether the graph is caterpillar-convex or not.

▶ Lemma 7. Let x, x′ ∈ X be twins of non-zero degree, and let G′ = (X ′ ∪ Y ′, E′) be the
graph obtained from G by deleting x. If x, x′ are special twins in G, then modify G′ by adding
a new vertex x̄ to X ′, a new vertex ȳ to Y ′, and the edges {x′, ȳ} and {x̄, ȳ} to E′. Then
G is caterpillar-convex if and only if G′ is caterpillar-convex. Furthermore, a caterpillar
representation of G can be constructed from a caterpillar representation of G′ by adding x in
a suitable location (and removing x̄ if it has been added to G′).

Proof. First, consider the case that x and x′ are not special twins. Assume that G is
caterpillar-convex, and let T be a caterpillar representation. If at least one of x and x′ is
a leaf in T , we can assume without loss of generality that x is a leaf (because the graph
obtained from G by deleting x and the graph obtained by deleting x′ are isomorphic, as x

and x′ are twins). In that case, removing x from T yields a caterpillar T ′ that is a caterpillar
representation of G′. Now assume that both x and x′ are backbone vertices in T . Form a
caterpillar T ′ by attaching the leaves in L(x) (where L(x) denotes the set of leaves attached to
backbone vertex x in caterpillar T ) as leaves to x′, removing x, and adding an edge between
the two previous backbone neighbors of x (unless x was an end vertex of the backbone path).
It is easy to see that T ′ is a caterpillar representation of G′. Hence, in both cases it follows
that G′ is caterpillar-convex.

For the other direction, assume that G′ is caterpillar-convex, with caterpillar representa-
tion T ′. If x′ is a backbone vertex in T ′, we attach x as leaf vertex to x′ in T ′ to obtain a
caterpillar representation T of G. If x′ is a leaf in T ′ but G′ contains a twin x′′ of x′ that
is a backbone vertex in T ′, we attach x as leaf vertex to x′′ in T ′ to obtain a caterpillar
representation T of G. It remains to handle the case that x′ and all its twins (if any) in G′

are leaf vertices in T ′. If x′ has a twin x′′ in G′, this means that there is no y ∈ Y ′ with
NG′(y) = C, where C is the equivalence class of x′ in X ′; otherwise, NG′(y) would not be
connected in T ′. Therefore, there is also no y ∈ Y with NG(y) = C ∪ {x}. Thus, if we denote
by b the backbone vertex in T ′ to which x′ is attached, we must have b ∈ NG′(y) for every
y ∈ Y ′ with C ⊆ NG′(y), and there must be at least one such y as x′ has non-zero degree.
This implies b ∈ NG(y) for every y ∈ Y with C ∪ {x} ⊆ NG(y). Then we can attach x as leaf
vertex to that backbone vertex b in T ′ to obtain a caterpillar representation T of G. If x′

does not have a twin in G′, we know that {x, x′} is an equivalence class in X and there is no
y ∈ Y with NG(y) = {x, x′} (otherwise, x and x′ would be special twins). Thus, if we denote
by b the backbone vertex in T ′ to which x′ is attached, we must have b ∈ NG′(y) for every
y ∈ Y ′ with x′ ∈ NG′(y). This implies b ∈ NG(y) for every y ∈ Y with {x, x′} ⊆ NG(y).
Then we can attach x as leaf vertex to that backbone vertex b in T ′ to obtain a caterpillar
representation T of G. Hence, it follows that G is caterpillar-convex.

Now, we deal with the case that x and x′ are special twins. First, assume that G is
caterpillar-convex, with caterpillar representation T . As there is y ∈ Y with NG(y) = {x, x′},
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it is not possible that both x and x′ are leaves in T . Without loss of generality, assume
that x′ is a backbone vertex. To obtain T ′ from T , proceed as follows. First, if x is a leaf,
remove x from T , and if x is a backbone vertex, attach all the leaves in L(x) to x′, remove
x, and make the previous backbone neighbors of x adjacent to each other (only in case x

was not an end vertex of the backbone). Then, add x̄ as a leaf attached to x′. Observe
that NG′(ȳ) = {x′, x̄} induces a connected subgraph of T ′. Therefore, T ′ is a caterpillar
representation of G′, and so G′ is caterpillar-convex.

For the other direction, assume that G′ is caterpillar-convex, with caterpillar representa-
tion T ′. If x′ is a leaf vertex in T ′, then it must be attached to the backbone vertex x̄ (as
NG′(ȳ) = {x′, x̄}). Furthermore, the only vertex in Y ′ that is adjacent to x̄ is ȳ. Therefore,
we can swap the positions of x′ and x̄ in T ′, and the resulting tree is still a caterpillar
representation of G′. Hence, we can assume that x′ is a backbone vertex in T ′. To obtain a
caterpillar representation T of G, we add x as a leaf attached to x′ to T ′, and we remove x̄:
If x̄ is a leaf vertex, we simply remove it, and if x̄ is a backbone vertex, we attach all the
leaves in L(x̄) to an arbitrary other backbone vertex (for example, to x′), remove x̄, and
make the two previous backbone neighbors of x̄ adjacent to each other (unless x̄ was an
end vertex of the backbone). The latter operation is correct as the only vertex in Y ′ that is
adjacent to x̄ is ȳ. The resulting tree is a caterpillar representation of G. ◀

We remark that the special treatment of special twins in Lemma 7 is necessary because
there is a graph G = (X ∪ Y, E) with special twins that does not have a caterpillar represent-
ation T = (X, F ), while simply removing one of the two special twins (without adding the
extra vertices x̄ and ȳ) would produce a graph G′ = (X ′ ∪Y ′, E′) that has a caterpillar repres-
entation T ′ = (X ′, F ′). An example of such a graph is the graph with X = {a, b, c, f, g, x, x′}
where the neighborhoods of the vertices in Y are {a, f}, {a, b}, {b, x, x′}, {x, x′}, {b, c}, {c, g}.
Here, the vertices x and x′ are special twins, and the graph obtained after removing x has the
caterpillar representation with backbone path abc and leaf f attached to a, leaf x′ attached
to b, and leaf g attached to c.

Let G1 = (X1 ∪ Y1, E1) be the graph obtained from G = (X ∪ Y, E) by removing vertices
of degree 0 from X, vertices of degree 0 or 1 from Y , and twins from X (with the extra
modification detailed in Lemma 7 in case of special twins) as long as such vertices exist.
Lemmas 5–7 imply:

▶ Corollary 8. G1 is caterpillar-convex if and only if G is caterpillar-convex.

We now define a directed graph D = (X1, A) based on G1: For every pair of distinct
vertices x, x′ ∈ X1, we let D contain the arc (x, x′) if and only if NG1(x) ⊆ NG1(x′), i.e., we
add the arc (x, x′) if and only if every vertex in y that is adjacent to x in G1 is also adjacent
to x′ in G1. Note that D is transitive: If it contains two arcs (x, x′) and (x′, x′′), it must
also contain (x, x′′).

▶ Lemma 9. D is a directed acyclic graph.

Proof. Assume there is a cycle on vertices xi, xi+1, . . . , xj in D. Then, N(xi) ⊆ N(xi+1) ⊆
· · · ⊆ N(xj) ⊆ N(xi). Thus N(xi) = N(xi+1) = · · · = N(xj), and so xi, xi+1, . . . , xj are
twins, a contradiction because there are no twins in X1. Thus D is acyclic. ◀

▶ Lemma 10. If G1 = (X1 ∪Y1, E1) is caterpillar-convex, there is a caterpillar representation
T1 = (X1, F ) in which no two backbone vertices are connected by an arc in D.

Proof. Let T1 = (X1, F ) be a caterpillar representation for G1 in which there are two
backbone vertices xi and xj that are connected by an arc (xi, xj) in D. If xi and xj are
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Ai Zj Ai Zj

a b c

xi−1 xi xj xj+1

a b xi c

xi−1 xj xj+1

Figure 4 Caterpillar transformation from T1 (left) to T ′
1 (right) used in the proof of Lemma 10.

not adjacent on the backbone path P1 of T1, observe that xi also has an arc to every vertex
between xi and xj on P1. This is because, in G1, each neighbor of xi is also adjacent to xj

and hence to all vertices between xi and xj on P1. Thus, we can choose xi and xj to be
adjacent backbone vertices that have an arc (xi, xj) in D.

Let L(b) denote the set of leaf vertices attached to a backbone vertex b in T1. Observe
that each leaf ℓ ∈ L(b) must have an arc to b in D. This is because each neighbor (in G1) of
ℓ has degree at least 2 and is hence also adjacent to b. Therefore, every leaf in L(xi) has
an arc to xi and, by transitivity of D, also an arc to xj . We now create a new caterpillar
T ′

1 from T1 by (1) attaching xi and all the leaves in L(xi) as leaves to xj , and (2) making
the two previous backbone neighbors of xi adjacent (only if xi was not an end vertex of the
backbone path). See Fig. 4 for an illustration.

We will show in the remainder of this proof that T ′
1 is a caterpillar representation of G1.

By applying the same operation repeatedly as long as there exist two backbone vertices that
are connected by an arc in D, the statement of the lemma follows.

Assume the vertices on the backbone path of T1 are x1, x2, . . . , xi, xj , . . . , xr with j = i+1.
Define Ai =

⋃i−1
k=1({xk} ∪ L(xk)) and Zj =

⋃r
k=j+1({xk} ∪ L(kk)). These are the parts of

the backbone that are not affected by the transformation from T1 to T ′
1. Note that Ai and/or

Zj can also be empty. We now prove for every y ∈ Y that N(y) induces a tree in T ′
1:

Case 1: N(y) ∩ ({xi, xj} ∪ L(xi) ∪ L(xj)) = ∅. Since N(y) induces a tree in T1, we must
have N(y) ⊆ Ai or N(y) ⊆ Zj , and hence N(y) also induces a tree in T ′

1.
Case 2: N(y) ∩ ({xi, xj} ∪ L(xi) ∪ L(xj)) ̸= ∅. Note that xj ∈ N(y) as all the vertices in
{xi} ∪ L(xi) ∪ L(xj) have an arc to xj in D. As N(y) induces a tree in T1, we observe that
N(y) ∩ Ai is either empty or contains xi−1, and that N(y) ∩ Zj is either empty or contains
xj+1. As the caterpillar part on Ai and Zi has not changed in the transformation from T1 to
T ′

1, N(y) ∩ Ai is either empty or induces a tree containing xi−1 in T ′
1, and N(y) ∩ Zj is either

empty or induces a tree containing xj+1 in T ′
1. Furthermore, N(y)\ (Ai ∪Zj) contains xj and

some subset of the leaf neighbors of xj in T ′
1 and hence induces a star containing xj in T ′

1.
As xj is adjacent to xi−1 and xj+1 (if those vertices exist), N(y) induces a tree in T ′

1. ◀

▶ Lemma 11. If G1 = (X1 ∪Y1, E1) is caterpillar-convex, there is a caterpillar representation
T1 = (X1, F ) such that the set of backbone vertices is exactly the set of sinks in D.

Proof. By Lemma 10, there exists a caterpillar representation T1 of G1 in which no two
backbone vertices are connected by an arc in D. Furthermore, every leaf attached to a
backbone vertex (in T1) has an arc (in D) to that backbone vertex (because every y ∈ Y has
degree at least 2). A backbone vertex cannot have an arc (in D) to a leaf attached to it (in
T1), as D is acyclic (Lemma 9). Finally, a backbone vertex b cannot have an arc (in D) to a
leaf vertex ℓ attached to a different backbone vertex b′ because that would imply that b has
an arc to b′ (since every vertex in y that is adjacent to b is also adjacent to ℓ and hence, as
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Algorithm 2 Recognition Algorithm for Caterpillar-Convex Bipartite Graphs

Require: A bipartite graph G = (X ∪ Y, E)
Ensure: Either return a caterpillar representation T = (X, F ) of G, or decide that G is not

caterpillar-convex and return ‘fail’
1: Obtain G1 = (X1 ∪ Y1, E1) from G by removing vertices of degree 0 from X, vertices of

degree 0 or 1 from Y , and twins from X (with the extra modification stated in Lemma 7
in case of special twins), as long as any such vertex exists (Lemmas 5–7)

2: Create a directed graph D = (X1, A) that contains the arc (x, x′) if and only if NG1(x) ⊆
NG1(x′)

3: B = the set of sinks in D, L = all other vertices in D

4: Use an algorithm for consecutive ones [19] to order B. If the algorithm fails, return ‘fail’.
5: Form caterpillar T1 by taking the ordered backbone B and attaching each vertex in L as

leaf to an arbitrary vertex in B to which it has an arc in D

6: Obtain T from T1 by adding the vertices that were deleted from X in Step 1 (and
removing vertices that have been added when special twins were processed) (Lemmas 5
and 7).

7: Return T

N(y) induces a tree in T1, also to b′). Therefore, the backbone vertices of T1 are exactly the
sinks (vertices without outgoing edges) of D. ◀

▶ Theorem 12. Algorithm 2 decides in polynomial time whether a given bipartite graph G =
(X ∪ Y, E) is caterpillar-convex and, if so, outputs a caterpillar representation T = (X, F ).

Proof. Let G = (X ∪ Y, E) be a bipartite graph. Let n = |X ∪ Y | and m = |E|. First, the
algorithm removes vertices of degree 0 from X, vertices of degree 0 or 1 from Y , and twins
from X (with the extra modification detailed in Lemma 7 in case of special twins) as long
as such vertices exist. The resulting graph is G1 = (X1 ∪ Y1, E1). By Corollary 8, G1 is
caterpillar-convex if and only if G is caterpillar-convex.

We show that G1 can be computed from G in O(n2) time. If G is given as adjacency
matrix, we can compute an adjacency list representation in O(n2) time. Then, in O(n + m)
time, we can compute the degree of every vertex and make a list L0 of vertices in X with
degree 0 and vertices in Y of degree 0 or 1. As long as L0 is non-empty, we remove a vertex
v from L0, decrease the degree of its neighbor (if any) by 1, and delete v from G. If v had a
neighbor (which is only possible if v ∈ Y ) and that neighbor now has degree 0, we add that
neighbor (which must be in X) to L0. This takes O(n) time as each vertex removed from
L0 can be processed in O(1) time and we remove at most n vertices. Let X ′ and Y ′ denote
the vertices that have not yet been deleted at this stage. Next, we compute a partition of
X ′ into equivalence classes, where x and x′ are in the same equivalence class if and only
if they are twins in the current graph. This can be done in O(n2) time. For example, one
can start with a partition P consisting of a single equivalence class equal to X ′ and then,
for each y ∈ Y ′, refine P in O(n) time so that each equivalence class C with N(y) ∩ C ≠ ∅
and C \ N(y) ̸= ∅ gets split into N(y) ∩ C and C \ N(y). During that process, we can
also determine for each resulting equivalence class C whether there is a vertex y ∈ Y ′ with
N(y) = C, without exceeding the time bound of O(n2). Then, for each equivalence class
C of size at least 2, we remove all but one vertex in C from X ′ and update the degrees of
the neighbors of the deleted vertices accordingly; the vertices in Y ′ whose degree becomes 1
in this process are again added to the list L0 and then deleted from the graph in the same
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way as above. Besides, if x′ is the vertex in C that we do not remove and if there is a
y ∈ Y ′ with N(y) = C, we add new vertices x̄, ȳ and edges {x̄, ȳ} and {x′, ȳ} to the graph
in order to implement the treatment of special twins according to Lemma 7. We note that
processing one equivalence class C in this way does not alter the other equivalence classes.
In particular, it cannot happen that two other equivalence classes C1 and C2 get merged
because the processing of C leads to the deletion of some vertices with degree 1 in Y ′: the
vertices deleted from Y ′ while processing C are not adjacent to any vertex outside C, and
hence their deletion has no effect on the twin relationship between vertices outside C. The
time for processing one equivalence class C can be bounded by the sum of the degrees of
the vertices in C, and hence the time for processing all equivalence classes is bounded by
O(m) ⊆ O(n2). Thus, G1 can be obtained in O(n2) time. Note that G1 has O(n) vertices as
the number of new vertices added to G1 is bounded by 2s, where s ≤ n

2 is the number of
equivalence classes C with |C| ≥ 2 for which a vertex y ∈ Y ′ with N(y) = C exists.

Next, the algorithm constructs the directed graph D = (X1, A) from G1 = (X1 ∪ Y1, E1)
by adding an arc (xi, xj) for xi, xj ∈ X1 if NG1(xi) ⊆ NG1(xj). For any two vertices
xi, xj ∈ X1 one can trivially check in O(n) time whether N(xi) ⊆ N(xj), so D can easily be
constructed in O(n3) time. As |X ′| = O(n) and |A| = O(n2), the set B of sinks and the set
L of remaining vertices can be determined in O(n2) time once D has been constructed.

Once the set B has been determined, we create a set system S containing for every y ∈ Y

the set N(y) ∩ B and apply an algorithm for checking the consecutive ones property [19] to
check if B can be ordered in such a way that every set in S consists of consecutive vertices.
If so, the resulting order is used to determine the order in which B forms the backbone
path. Otherwise, G1 (and hence G) cannot be caterpillar-convex (cf. Lemma 11), and the
algorithm returns ‘fail’. As the input to the consecutive ones algorithm can be represented as
a matrix of size O(n2), running Hsu’s linear-time algorithm [19] on S takes O(n2) time.

Next, the algorithm attaches each vertex ℓ ∈ L as a leaf to an arbitrary vertex b ∈ B to
which it has an arc in D. It can be shown as follows that every ℓ ∈ L must indeed have
at least one arc to a vertex in B: As D is acyclic, every vertex ℓ that is not a sink must
have a directed path leading to some sink b, and as D is transitive, the arc (ℓ, b) must exist.
Attaching ℓ to b yields a valid caterpillar representation for the following reason: As every
neighbor y of ℓ is also adjacent to b, and as N(y) ∩ B is a contiguous segment of B, it is
clear that N(y) induces a tree in the resulting caterpillar T1. Hence, T1 is a caterpillar
representation of G1. Attaching the vertices of L as leaves to suitable vertices in B can easily
be done in O(n2) time.

Finally, the vertices that have been deleted in the first step are added back (and vertices
that have been added when special twins were processed are removed) in order to extend the
caterpillar T1 to a caterpillar representation T of G. This can easily be done in O(n) time
per vertex following the arguments used in the proofs of Lemmas 5 and 7. By Corollary 8,
T is a caterpillar representation of G.

The running-time of the algorithm is dominated by the time for constructing D, which we
have bounded by O(n3). We remark that we have not attempted to optimize the running-time,
as our main goal was to show that caterpillar-convex bipartite graphs can be recognized in
polynomial time. ◀

Finally, we discuss the case that the bipartition of the vertex set V of the input graph
G = (V, E) into independent sets X and Y is not provided as part of the input. First, if
G = (V, E) is a connected bipartite graph, note that there is a unique partition of V into
two independent sets Q and R. We can then run the recognition algorithm twice, once with
X = Q and Y = R and once with X = R and Y = Q. G is caterpillar-convex if and only
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if at least one of the two runs of the algorithm produces a caterpillar representation. If
G = (V, E) is not connected, let H1, . . . , Hr for some r > 1 be its connected components.
As just discussed, we can check in polynomial time whether each connected component
Hj , 1 ≤ j ≤ r, is a caterpillar-convex bipartite graph. If all r connected components are
caterpillar-convex, the whole graph G is caterpillar-convex, and a caterpillar representation
can be obtained by concatenating the backbones of the caterpillar representations of the
connected components in arbitrary order. If at least one of the connected components, say,
the component Hj , is not caterpillar-convex, then G is not caterpillar-convex either. This
can be seen as follows: Assume for a contradiction that G is caterpillar-convex while Hj is
not caterpillar-convex. Then let T = (X, F ) be a caterpillar representation of G. Observe
that the subgraph of T induced by V (Hj) ∩ X, where V (Hj) denotes the vertex set of Hj ,
must be connected. Therefore, that subgraph of T provides a caterpillar representation of Hj ,
a contradiction to our assumption. This establishes the following corollary.

▶ Corollary 13. There is a polynomial-time algorithm that decides whether a given bipartite
graph G = (V, E) is caterpillar-convex, i.e., whether it admits a bipartition of V into
independent sets X and Y such that there is a caterpillar representation T = (X, F ).

5 Conclusion

Determining the computational complexity of Li k-col for k ≥ 3 when restricted to comb-
convex bipartite graphs was stated as an open problem by Bonomo-Braberman et al. [4].
Subsequently, the same authors proved that the problem is NP-complete for k ≥ 4 [5], but
the complexity for k = 3 was still left open. In this paper, we resolve this question by showing
that Li 3-col is solvable in polynomial time even for caterpillar-convex bipartite graphs, a
superclass of comb-convex bipartite graphs.

Recall that if mim-width is bounded for a graph class G, then Li k-col is polynomially
solvable when it is restricted to G. Polynomial-time solvability of Li k-col on circular convex
graphs is shown by demonstrating that mim-width is bounded for this graph class [4]. On
the other hand, there are graph classes for which Li 3-col is tractable but mim-width is
unbounded, such as star-convex bipartite graphs [5]. By combining our result with Theorem 3
in [4], we conclude that caterpillar-convex bipartite graphs and comb-convex bipartite graphs
also belong to this type of graph classes. On a much larger graph class, chordal bipartite
graphs, the computational complexity of Li 3-col is still open [20].

Finally, as for future work, it would be interesting to see whether one can modify and
extend Algorithm 2 to recognize comb-convex bipartite graphs.
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