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Abstract. Group testing is an approach aimed at identifying up to d
defective items among a total of n elements. This is accomplished by
examining subsets to determine if at least one defective item is present.
In our study, we focus on the problem of identifying a subset of ℓ ≤ d
defective items. We develop upper and lower bounds on the number of
tests required to detect ℓ defective items in both the adaptive and non-
adaptive settings while considering scenarios where no prior knowledge
of d is available, and situations where an estimate of d or at least some
non-trivial upper bound on d is available.
When no prior knowledge on d is available, we prove a lower bound

of Ω( ℓ log2 n
log ℓ+log logn

) tests in the randomized non-adaptive settings and

an upper bound of O(ℓ log2 n) for the same settings. Furthermore, we
demonstrate that any non-adaptive deterministic algorithm must ask
Θ(n) tests, signifying a fundamental limitation in this scenario. For adap-
tive algorithms, we establish tight bounds in different scenarios. In the
deterministic case, we prove a tight bound of Θ(ℓ log (n/ℓ)). Moreover,
in the randomized settings, we derive a tight bound of Θ(ℓ log (n/d)).
When d, or at least some non-trivial estimate of d, is known, we prove
a tight bound of Θ(d log(n/d)) for the deterministic non-adaptive set-
tings, and Θ(ℓ log(n/d)) for the randomized non-adaptive settings. In
the adaptive case, we present an upper bound of O(ℓ log(n/ℓ)) for the
deterministic settings, and a lower bound of Ω(ℓ log(n/d)+ logn). Addi-
tionally, we establish a tight bound of Θ(ℓ log(n/d)) for the randomized
adaptive settings.

Keywords: Group testing · Pooling design · Finding defectives partially

1 Introduction

Group testing is a technique for identifying a subset of items known as defective
items set within a large amount of items using small number of tests called group
tests. A group test is a subset of items, where the test result is positive if the
subset contains at least one defective item and negative otherwise. Formally, let
X = {1, 2, . . . , n} be a set of items, and I ⊆ X is the set of defectives. A group
test is set Q ⊆ X. The answer of the test Q with respect to the defective set I
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is 1 if Q∩ I ̸= ∅, and 0 otherwise. Throughout the paper, we denote the number
of defective items by d and the number of items by n := |X|.

Group testing was formerly purposed by Robert Dorfman [14], for econo-
mizing mass blood testing during WWII. Since it was initially proposed, group
testing methods have been utilized in a variety of applications including DNA
library screening, product quality control and neural group testing for acceler-
ating deep learning [16,18,41,31,43,33,28,12,34]. Among its recent applications,
group testing has been advocated for accelerating mass testing for COVID-19
PCR-based tests around the world [22,9,4,26,35,40,46,27].

Several settings for group testing has been developed over the years. The
distinction between adaptive and non-adaptive algorithms is widely considered.
In adaptive algorithms, the tests can depend on the answers to the previous ones.
In the non-adaptive algorithms, they are independent of the previous one and;
therefore, one can make all the tests in one parallel step. An r−round algorithm
is an intermediate approach. We say that an adaptive algorithm is an r-round
if it runs in r stages where each stage is non-adaptive. That is, the queries may
depend on the answers of the queries in previous stages, but are independent of
the answers of the current stage queries.

Unlike conventional group testing, we consider the problem of finding only
a subset of size ℓ ≤ d from the d defective items. In [1], the authors solve this
problem for ℓ = 1 in the adaptive deterministic settings. They prove a tight
bound of log n tests. For general ℓ, they prove an upper bound of O(ℓ log n).
Both results are derived under the assumption that d is known exactly to the
algorithm. When no prior knowledge on d is available, Katona, [30], proves that
for the deterministic non-adaptive settings, finding a single defective item (i.e.
ℓ = 1) requires n tests. For ℓ = 1 in the adaptive deterministic settings, however,
Katona proves a tight bound of Θ(log n) tests, and for deterministic 2−round
settings (and ℓ = 1) a tight bound of Θ (

√
n) is given. Gerbner and Vizer,

[25], generalized Katona’s result for the deterministic r−round settings for all
ℓ ≥ 1. They give a lower bound of Ω

(
r(ℓn)1/r − rℓ

)
and an upper bound of

O
(
r(ℓr−1n)1/r

)
.

In this paper, we study the test complexity of this problem in adaptive, non-
adaptive, randomized and deterministic settings. We establish lower and upper
bounds for the scenario where no prior knowledge of the value of d is available.
Moreover, we study the same problem when there is either an estimation or at
least an upper bound on the value of d. In the literature, some results assume
that d is known exactly, or some upper bound on the number of defective items is
known in advance to the algorithm. In practice, only an estimate of d is known. In
this paper, when we say that d is known in advance to the algorithm, we assume
that some estimate D that satisfies d/4 ≤ D ≤ 4d is known to the algorithm.
We will also assume that ℓ ≤ d/4. Otherwise, use the algorithm that detects all
the defective items. Our results are summarized in the following subsection.



On Detecting Some Defective Items in Group Testing 3

1.1 Detecting ℓ Defective Items from d Defective Items

The results are in the Table in Figure 1. The results marked with ⋆ are the most
challenging results of this paper.
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Fig. 1. Results of detecting ℓ from d defective items. In (1) and (2), the bounds are
asymptotically tight when there is a constant c < 1, such that d ≤ nc. The results
marked with ⋆ are the most difficult and challenging results of this paper.

– In (1) and (2), (in the table in Figure 1) the algorithm is deterministic
adaptive, and d is known in advance to the algorithm. The upper bound is
ℓ log(n/ℓ) + O(ℓ). The algorithm splits the items into equal sizes ℓ disjoint
sets and uses binary search to detect ℓ defective items in the sets.
The lower bound is max(ℓ log(n/d), log n). In what follows, when we say
input, we mean I ⊂ [n], |I| = d (the defective items)1 and, when we say
output, we mean a subset L ⊂ I of size ℓ. A set of ℓ items can be an output
of at most

(
n−ℓ
d

)
inputs. This gives a lower bound for the number of outputs

of the algorithm, which, in turn, (its log) gives a lower bound ℓ log(n/d)−ℓ for
the test complexity. For the lower bound log n, we show that if the number
of possible outputs of the algorithm is less than n−d, then one can construct
a size d input I that contains no output. Therefore, the test complexity is
at least log(n− d).

– In (3) and (4), the algorithm is deterministic adaptive, and d is unknown to
the algorithm. The upper bound is ℓ log(n/ℓ) + O(ℓ). The algorithm in (1)
also works when d is unknown to the algorithm. The lower bound follows
from (2) when we choose d = 4ℓ.

1 A lower bound for the number of tests when the algorithm knows exactly d, is also
a lower bound when the algorithm knows some estimate of d or does know d.
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– In (5) and (6), the algorithm is randomized adaptive, and d is known in
advance to the algorithm. The upper bound is ℓ log(n/d) + O(ℓ). The al-
gorithm uniformly at random chooses each element in X with probability
O(ℓ/d) and puts the items in X ′. We show that, with high probability, X ′

contains ℓ defective items and |X ′| = O(nℓ/d). Then, the algorithm deter-
ministically detects ℓ defective items in X ′ using the algorithm of (3). This
gives the result.
For the lower bound, ℓ log(n/d) − 1, we use the same argument as in the
proof of (2) in Figure 1 with Yao’s principle.

– In (7) and (8), the algorithm is randomized adaptive, and d is unknown to
the algorithm. The upper bound is ℓ log(n/ℓ)+O(ℓ+log log(min(n/d, d))) =
O(ℓ log(n/ℓ)). We first give a new algorithm that estimates d that uses
log log(min(n/d, d)) tests and then use the algorithm in (5). The lower bound
follows from (4).

– In (9) and (10), the algorithm is deterministic non-adaptive, and d is known
in advance to the algorithm.
For the upper bound, we first define the (2d, d + ℓ)-restricted weight one
t × n-matrix. This is a t × n 0-1-matrix such that any set of 2d columns
contains at least d + ℓ distinct weight one vectors. Using this matrix, we
show how to detect ℓ defective items with t tests. Then we show that there
is such a matrix with t = O(d log(n/d)) rows.
We then give a tight lower bound. We show that such construction is not
avoidable. From any non-adaptive algorithm, one can construct a (2d, 1)-
restricted weight one t × n-matrix. We then show that such a matrix must
have at least t = Ω(d log(n/d)) rows.

– In (11) and (12), the algorithm is deterministic non-adaptive, and d is un-
known to the algorithm.
We show that any such algorithm must test all the items individually.

– In (13) and (14), the algorithm is randomized non-adaptive, and d is known
in advance to the algorithm.
The upper bound is O(ℓ log(n/d)). The algorithm runs t = O(ℓ) parallel
iterations. At each iteration, it uniformly at random chooses each element
in X = [n] with probability O(1/D) and puts it in X ′. With constant prob-
ability, X ′ contains one defective item. Then it uses the algorithm that tests
if X ′ contains exactly one defective item and detects it.
The lower bound follows from (6).

– In (15) and (16), the algorithm is randomized non-adaptive, and d is un-
known to the algorithm.
The upper bound is O(ℓ log2 n). The algorithm runs the non-adaptive algo-
rithm that gives an estimation d/2 ≤ D ≤ 2d of d [5,13,23], and, in parallel,
it runs log n randomized non-adaptive algorithms that find ℓ defective items
assuming D = 2i for all i = 1, 2, . . . , log n (the algorithm in (13)).
The lower bound is Ω̃(ℓ log2 n). The idea of the proof is the following. Sup-
pose a randomized non-adaptive algorithm exists that makes ℓ log2 n/(c logR)
tests where R = ℓ log n and c is a large constant. We partition the internal
[0, n] of all the possible sizes of the tests |Q| into r = Θ(log n/ logR) disjoint
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sets Ni = {m|n/R8i+8 < m ≤ n/R8i}, i ∈ [r]. We then show that, with
high probability, there is an interval Nj where the algorithm makes at most
(ℓ/c) log n tests Q that satisfy |Q| ∈ Nj . We then show that if we choose
uniformly at random a set of defective items I of size d = (ℓ log n)8j+4, then
with high probability, all the tests Q of size |Q| < n/(ℓ log n)8j+8 give an-
swers 0, and all the tests Q of size |Q| > n/(ℓ log n)8j give answers 1. So,
the only useful tests are those in Nj , which, by the lower bound in (14) (and
some manipulation), are insufficient for detecting ℓ defective items.

1.2 Known Results for Detecting all the Defective Items

The following results are known for detecting all the d defective items. See the
Table in Figure 2.
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Fig. 2. Results for the test complexity of detecting the d defective items. The lower
bounds are in the Ω-symbol and the upper bound are in the O-symbol

– In (1) and (2) (in the table in Figure 2), the algorithm is deterministic
adaptive, and d is known in advance to the algorithm. The best lower bound
is the information-theoretic lower bound log

(
n
d

)
≥ d log(n/d)+Ω(d). Hwang

in [29] gives a generalized binary splitting algorithm that makes log
(
n
d

)
+

d− 1 = d log(n/d) +O(d) tests.
– In (3) and (4), the algorithm is deterministic adaptive, and d is unknown to

the algorithm. The upper bound d log(n/d)+O(d) follows from [3,11,17,19,20,39,44]
and the best constant currently known in O(d) is 5 − log 5 ≈ 2.678 [44].
The lower bound follows from (2). In [6], Bshouty et al. show that estimat-
ing the number of defective items within a constant factor requires at least
Ω(d log(n/d)) tests.
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– In (5) and (6), the algorithm is randomized adaptive, and d is known in
advance. The upper bound follows from (1). The lower bound follows from
Yao’s principle with the information-theoretic lower bound.

– In (7) and (8), the algorithm is randomized adaptive, and d is unknown to
the algorithm. The upper bound d log(n/d) + O(d) follows from (3). The
lower bound follows from (6).

– In (9) and (10), the algorithm is deterministic non-adaptive, and d is known
in advance to the algorithm. The lower bound Ω(d2 log n/ log d) is proved
in [10,21,24,38]. A polynomial time algorithm that constructs an algorithm
that makes O(d2 log n) tests was first given by Porat and Rothschild [36].

– In (11) and (12), the algorithm is deterministic non-adaptive and d is un-
known to the algorithm. In [5], Bshouty shows that estimating the number
of defective items within a constant factor requires at least Ω(n) tests. The
upper bound is the trivial bound of testing all the items individually.

– In (13) and (14), the algorithm is randomized non-adaptive, and d is known
in advance to the algorithm. The lower bound follows from (6). The up-
per bound is O(d log(n/d)). The constant in the O-symbol was studied
in [2,7,8,15] and referenced within. The best constant known in the O-symbol
is log e ≈ 1.443 [8].

– In (15) and (16), the algorithm is randomized non-adaptive, and d is un-
known to the algorithm. The lower bound Ω(n) follows from Yao’s principle
and the fact that, for a random uniform i ∈ [n], to detect the defective items
[n]\{i}, we need at least Ω(n) tests. The upper bound is the trivial bound
of testing all the items individually.

1.3 Applications

In many cases, the detection of a specific number of defective items, ℓ, is of
utmost importance due to system limitations or operational requirements. For
instance, in scenarios like blood tests or medical facilities with limited resources
such as ventilators, doctors, beds, or medicine supply, it becomes crucial to
employ algorithms that can precisely identify ℓ defectives instead of detecting
all potential cases. This targeted approach offers significant advantages in terms
of efficiency, as the time required to detect only ℓ defective items is generally
much shorter than the time needed to identify all defects. By focusing on any
subset of ℓ defectives, the algorithms proposed in this paper offer more efficient
procedures.

In the following, we present some real-world applications that demonstrate
the practical use of the problem of finding only a subset of size ℓ ≤ d of the
defective set items.

Identifying a subset of samples that exhibit a PCR-detectable syn-
drome Polymerase Chain Reaction or PCR testing is a widely used labora-
tory technique in molecular biology. This technique is used to amplify specific
segments of DNA or RNA in a sample, and therefore, allowing for detection,
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quantification and analyses of these specific genetic sequences [46,15,27]. PCR
tests can be designed to identify various organisms, including pathogens such as
viruses or bacteria (e.g. COVID-19), by targeting their unique DNA or RNA sig-
natures. Although PCR tests are associated with high costs and time consump-
tion, they are extensively utilized in a wide range of fields, including medical
diagnostics, research laboratories, forensic analysis, and other applications that
demand accurate and sensitive detection of genetic material. This popularity is
primarily attributed to their exceptional accuracy. To enhance the efficiency and
cost-effectiveness of PCR testing, group testing methodologies can be applied
to PCR testing. Applying group testing to PCR involves combining multiple
samples into a single test sample. The combined sample, also called the group
test, is then examined. If the sample screening indicates an infectious sample,
this implies that at least one of the original samples is infected. Conversely,
if none of the samples in the combined sample exhibit signs of infection, then
none of the individual samples are infected. Typically, PCR tests are conducted
by specialized machines capable of simultaneously performing approximately 96
tests. Each test-run can span over several hours. Therefore, when applying group
testing to accelerate PCR process, it is recommended to employ non-adaptive
methodologies.

Assume that a scientific experiment need to be conducted over a group of
study participants to examine the efficiency of a new drug developed for medi-
cating some disease related to bacterial or virus infection. Suppose that a PCR
test is required to check whether a participant is affected by the disease or not.
Moreover, assume that the number of the participants that volunteered for the
experiment is n and the incidence rate of the infection among them is known
in advance, denote that by p. Therefore, an approximation of the number of
infected participants can be derived from n and p, denote that value by d. In
situations where logistic constraints necessitate selecting a limited number of
infected individuals, specifically ℓ ≤ d, to participate in an experiment, a non-
adaptive group testing algorithm for identifying ℓ defectives (virus carriers) from
n samples when d is known can be employed.

Abnormal event detection in surveillance camera videos Efficiently de-
tecting abnormal behavior in surveillance camera videos plays a vital role in
combating crimes. These videos are comprised of a sequence of continuous im-
ages, often referred to as frames. The task of identifying suspicious behavior
within a video is equivalent to searching for abnormal behavior within a col-
lection of frames. Training deep neural networks (shortly, DNN) for automating
suspicious image recognition is currently a widely adopted approach for the
task [45,42,32]. By utilizing the trained DNN, it becomes possible to classify a
new image and determine whether it exhibits suspicious characteristics or not.
However, once the training process is complete, there are further challenges to
address, specially when dealing with substantial amount of images that need to
be classified via the trained network. In this context, inference is the process of
utilizing the trained model to make predictions on new data that was not part of
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the training phase. Due to the complexity of the DNN, inference time of images
can cost hundreds of seconds of GPU time for a single image. Long inference
time poses challenges in scenarios where real-time or near-real-time processing
is required, prompting the need for optimizing and accelerating the inference
process.

The detection of abnormal behavior in surveillance camera videos is often
characterized by an imbalanced distribution of frames portraying abnormal be-
havior, also called abnormal frames, in relation to the total number of frames
within the video. Denote the total number of frames in a video by n and the
number of abnormal frames by d. To identify suspicious behavior in a video, the
goal is to find at least one abnormal frame among the d frames. In most cases,
we cannot assume any non-trivial upper bound or estimation of any kind for
d. Therefore, applying non-adaptive group testing algorithms for finding ℓ < d
defectives when d is unknown best suits this task.

It is unclear, however, how group testing can be applied to instances like
images. Liang and Zou, [34], proposed three different methods for pooling im-
age instances: 1) merging samples in the pixel space, 2) merging samples in the
feature space, and 3) merging samples hierarchically and recursively at different
levels of the network. For each grouping method, they provide network enhance-
ments that ensure that the group testing paradigm continues to hold. This means
that a positive prediction is inferred on a group if and only if it contains at least
one positive image (abnormal frame).

2 Definitions and Preliminary Results

In this section, we give some definitions and preliminary results that we will
need in the rest of the paper.

Let X = [n] := {1, 2, . . . , n} be a set of items that contains defective items
I ⊆ X. In Group testing, we test a subset Q ⊆ X of items, and the answer to
the test is TI(Q) := 1 if Q ∩ I ̸= ∅, and TI(Q) = 0 otherwise.

We will use the following version of Chernoff’s bound.

Lemma 1. Chernoff’s Bound. Let X1, . . . , Xm be independent random vari-
ables taking values in {0, 1}. Let X =

∑m
i=1 Xi denotes their sum, and µ = E[X]

denotes the sum’s expected value. Then

Pr[X > (1 + λ)µ] ≤
(

eλ

(1 + λ)(1+λ)

)µ

≤ e−
λ2µ
2+λ ≤

{
e−

λ2µ
3 if 0 < λ ≤ 1

e−
λµ
3 if λ > 1.

(1)

In particular,

Pr[X > Λ] ≤
(eµ
Λ

)Λ
. (2)

For 0 ≤ λ ≤ 1 we have

Pr[X < (1− λ)µ] ≤
(

e−λ

(1− λ)(1−λ)

)µ

≤ e−
λ2µ
2 . (3)
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The following lemma follows from [6,23].

Lemma 2. Let ϵ < 1 be any positive constant. There is a polynomial time adap-
tive algorithm that makes O(log log d + log(1/δ)) expected number of tests and
with probability at least 1− δ outputs D such that (1− ϵ)d ≤ D ≤ (1 + ϵ)d.

In Appendix A, we use a similar technique to prove:

Lemma 3. Let ϵ < 1 be any positive constant. There is a polynomial time adap-
tive algorithm that makes O(log log(min(d, n/d))+ log(1/δ)) expected number of
tests and with probability at least 1−δ outputs D such that (1−ϵ)d ≤ D ≤ (1+ϵ)d.

In [5,13,23], the following is proved

Lemma 4. There is a polynomial time non-adaptive randomized algorithm that
makes O(log(1/δ) log n) tests and, with probability at least 1−δ, finds an integer
D that satisfies d/2 < D < 2d.

3 Adaptive and Deterministic

In this section, we study the test complexity of adaptive deterministic algorithms.
We first prove the following upper bound. This proves results (1) and (3) in

Figure 1. Here d can be known or unknown to the algorithm.

Theorem 1. Let d ≥ ℓ. There is a polynomial time adaptive deterministic
algorithm that detects ℓ defective items and makes at most ℓ log(n/ℓ) + 3ℓ =
O(ℓ log(n/ℓ)) tests.

Proof. We first split the items X = [n] to ℓ disjoint sets X1, . . . , Xℓ of (almost)
equal sizes (each of size ⌊n/ℓ⌋ or ⌈n/ℓ⌉). Then we use the binary search algorithm
(binary splitting algorithm) for each i to detect all the defective items in Xi until
we get ℓ defective items.

Each binary search takes at most ⌈log(n/ℓ)⌉+1 tests, and testing all Xi takes
at most ℓ tests. ⊓⊔

We now prove the lower bound. This proves (2) in Figure 1. We remind the
reader that when we say that d is known in advance to the algorithm, we mean
that an estimate D that satisfies d/4 ≤ D ≤ 4d is known to the algorithm. The
following lower bound holds even if the algorithm knows d exactly in advance.

Theorem 2. Let ℓ ≤ d ≤ n/2 and d be known in advance to the algorithm.
Any adaptive deterministic algorithm that detects ℓ defective items must make
at least max(ℓ log(n/d), log n− 1) = Ω(ℓ log(n/d) + log n) tests.

Proof. Let A be an adaptive deterministic algorithm that detects ℓ defective
items. Let L1, . . . , Lt be all the possible ℓ-subsets of X that A outputs. Since
the algorithm is deterministic, the test complexity of A is at least log t. Since
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Li ⊆ I (the set of d defective items), each Li can be an output of at most
(
n−ℓ
d−ℓ

)
sets I. Since the number of possible sets of defective items I is

(
n
d

)
, we have

t ≥
(
n
d

)(
n−ℓ
d−ℓ

) ≥ n(n− 1) · · · (n− ℓ+ 1)

d(d− 1) · · · (d− ℓ+ 1)
≥
(n
d

)ℓ
.

Therefore the test complexity of A is at least log t ≥ ℓ log(n/d).
We now show that t > n− d. Now suppose, to the contrary, that t ≤ n− d.

Choose any xi ∈ Li and consider any S ⊆ X\{xi|i ∈ [t]} of size d. For the set
of defective items I = S, the algorithm outputs some Li, i ∈ [t]. Since Li ̸⊆ S,
we get a contradiction. Therefore, t > n− d and log t > log(n− d) ≥ log(n/2) =
log n− 1. ⊓⊔

Note that the upper bound O(ℓ log(n/ℓ)) in Theorem 1 asymptotically matches
the lower bound Ω(ℓ log(n/d)) in Theorem 2 when d = no(1).

The following Theorem proves result (4) in Figure 2.

Theorem 3. Let ℓ ≤ d ≤ n/2 and d be unknown to the algorithm. Any adap-
tive deterministic algorithm that detects ℓ defective items must make at least
ℓ log(n/ℓ) tests.

Proof. Since the algorithm works for any d, we let d = 4ℓ. Then by the first
bound in Theorem 2, the result follows. ⊓⊔

4 Adaptive and Randomized

In this section, we study the test complexity of adaptive randomized algorithms.
The following theorem proves the upper bound when d is known in advance

to the algorithm. This proves result (5) in Figure 1.

Theorem 4. Let ℓ ≤ d/2. Suppose some integer D is known in advance to the
algorithm where d/4 ≤ D ≤ 4d. There is a polynomial time adaptive randomized
algorithm that makes ℓ log(n/d)+ ℓ log log(1/δ)+O(ℓ) tests and, with probability
at least 1− δ, detects ℓ defective items.

Proof. Let c = 32 log(2/δ). If D < cℓ, we can use the deterministic algorithm
in Theorem 1. The test complexity is ℓ log(n/ℓ) + 2ℓ = ℓ log(cn/D) + 2ℓ =
ℓ log(n/d) + ℓ log log(1/δ) +O(ℓ).

If D > cℓ, then the algorithm uniformly at random chooses each element in
X with probability cℓ/D < 1 and puts the items in X ′. If |X ′| ≤ 3cℓn/D, then
deterministically detects ℓ defective items in X ′ using Theorem 1.

Let Yi be an indicator random variable that is 1 if the ith defective item is
in X ′ and 0 otherwise. Then E[Yi] = cℓ/D. The number of defective items in X ′

is Y = Y1 + · · · + Yd and µ := E[Y ] = cdℓ/D ≥ cℓ/4. By Chernoff’s bound, we

have Pr[Y < ℓ] ≤ e−(1−4/c)2cℓ/8 < e−cℓ/32 ≤ δ/2. Also, E[|X ′|] = cℓn/D, and
by Chernoff’s bound, Pr[|X ′| > 3cℓn/D] ≤ (e/3)3cℓn/D ≤ δ/2. Therefore, with
probability at least 1 − δ, the number of defective items in X ′ is at least ℓ and
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|X ′| ≤ 3cℓn/D. Therefore, with probability at least 1− δ, the algorithm detects
ℓ defective items.

Since |X ′| ≤ 3cℓn/D ≤ 12cℓn/d, by Theorem 1, the test complexity is at
most ℓ log(|X ′|/ℓ) + 2ℓ = ℓ log(n/d) + ℓ log log(1/δ) +O(ℓ). ⊓⊔

We now prove the lower bound when d is known in advance to the algorithm.
This proves results (6) and (8) in Figure 1.

Theorem 5. Let ℓ ≤ d ≤ n/2 and d be known in advance to the algorithm.
Any adaptive randomized algorithm that, with probability at least 2/3, detects ℓ
defective items must make at least ℓ log(n/d)− 1 tests.

Proof. We use Yao’s principle in the standard way. Let A(s, I) be any adaptive
randomized algorithm that, with probability at least 2/3, detects ℓ defective
items. Here s is the random seeds, and I is the set of defective items. Let X(I, s)
be an indicator random variable that is equal 1 if A(s, I) returns a subset L ⊂
I of size ℓ and 0 otherwise. Then for every I, Es[X(s, I)] ≥ 2/3. Therefore,
Es[EI [X(s, I)]] = EI [Es[X(s, I)]] ≥ 2/3, where the distribution in EI is the
uniform distribution. Thus, there is a seed s0 such that EI [X(s0, I)] ≥ 2/3.
That is, for at least 2

(
n
d

)
/3 sets of defective items I, the deterministic algorithm

A(s0, I) returns L ⊆ I of size ℓ. Now, similar to the proof of Theorem 2, the
algorithm A(s0, I) makes at least

log
2
3

(
n
d

)(
n−ℓ
d−ℓ

) ≥ ℓ log(n/d)− 1.

⊓⊔

In particular,

Theorem 6. Let ℓ ≤ d ≤ n/2 and d is unknown to the algorithm. Any adaptive
randomized algorithm that, with probability at least 2/3, detects ℓ defective items
must make at least ℓ log(n/d)− 1 tests.

We now prove the upper bound when d is unknown to the algorithm. This
proves result (7) in Figure 1.

Theorem 7. Let ℓ ≤ d/2 and d be unknown to the algorithm. There is a poly-
nomial time adaptive randomized algorithm that detects ℓ defective items and
makes ℓ log(n/d) + ℓ log log(1/δ) +O(ℓ+ log log(min(n/d, d)) + log(1/δ)) tests.

Proof. We first estimate d within a factor of 2 and probability at least 1−δ/2. By
Lemma 3, this can be done in 2 log log(n/d)+O(log(1/δ)). Then, by Theorem 4,
the result follows. ⊓⊔

5 Non-Adaptive and Deterministic

In this section, we study the test complexity of non-adaptive deterministic algo-
rithms.

For the upper bound, we need the following definition.
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Definition 1. A (r, s)-restricted weight one t×n-matrix M is a t×n 0-1-matrix
such that any r columns in M contains at least s distinct weight one vectors.

That is, for every r distinct columns j1, j2, . . . , jr ∈ [n] in M , there are s rows
i1, i2, . . . , is ∈ [t] such that {(Mik,j1 ,Mik,j2 , . . . ,Mik,jr )}k=1,...,s are s distinct
vectors of weight one.

The following is obvious.

Lemma 5. Let ℓ < s. If M is (r, s)-restricted weight one t × n-matrix, then it
is (r − ℓ, s− ℓ) and (r, s− ℓ)-restricted weight one t× n-matrix.

We prove the following simple properties of such a matrix.

Lemma 6. Let n > d > ℓ > 0. Let M be a (2d, d + ℓ)-restricted weight one
t× n-matrix. Let Q(i) = {j|Mi,j = 1} for i ∈ [t].

1. For every two sets A ⊂ B ⊆ [n] where |A| = d and |B| = 2d, there is Q(i)

such that Q(i) ∩A = ∅ and Q(i) ∩B ̸= ∅.
2. For every C ⊆ E ⊆ [n] where |C| = d and |E| ≤ 2d there are ℓ sets

Q(i1), . . . , Q(iℓ) such that |Q(ij) ∩E| = |Q(ij) ∩C| = 1 and for every j1 ̸= j2,
Q(ij1 ) ∩ C ̸= Q(ij2 ) ∩ C.

Proof. Consider the columns of M with the indices of A and B. There are d+ ℓ
distinct weight one vectors in the columns with indices B. Since d + ℓ > d and
|A| = d, one of those vectors is zero in all the indices of A. Therefore, M contains
a row i that is zero in the indices of A and of weight one on the indices of B.
Thus, Q(i) satisfies Q(i) ∩A = ∅ and Q(i) ∩B ̸= ∅. This proves 1.

Assume that |E| = 2d. Otherwise, add 2d−|E| new items to E. Consider the
columns of M with the indices of E and C ⊆ E. There are d+ ℓ distinct weight
one vectors in the columns of M with indices of E. Since C ⊂ E and |E\C| = d,
at least ℓ of those vectors are zero in the indices of E\C and weight one in the
indices of C. Let i1, . . . , iℓ be the rows that correspond to those vectors. Then
|Q(ij) ∩E| = |Q(ij) ∩ C| = 1, and for every j1 ̸= j2, Q

(ij1 ) ∩ C ̸= Q(ij2 ) ∩ C. ⊓⊔

We now prove

Lemma 7. Let s ≤ cr for some constant 1/2 < c < 1 and

t = O

(
r log(n/r) + log(1/δ)

log(1/c)

)
.

consider a t× n 0-1-matrix M where Mi,j = 1 with probability 1/r. Then, with
probability at least 1− δ, M is a (r, s)-restricted weight one t× n-matrix.

In particular, there is a (r, s)-restricted weight one t× n-matrix with

t = O

(
r log(n/r)

log(1/c)

)
.
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Proof. Consider any r columns J = {j1, . . . , jr} in M . Let AJ be the event
that columns J in M do not contain at least s distinct weight one vectors. For
every i ∈ [t], the probability that (Mi,j1 , . . . ,Mi,jr ) is of weight 1 is

(
r
1

)
(1/r)(1−

1/r)r−1 ≥ 1/2. In every such row, the entry that is equal to 1 is distributed
uniformly at random over J . LetmJ be the number of such rows. The probability
that columns J in M do not contain at least s distinct weight one vectors is at
most

Pr[AJ |mJ = m] ≤
(

r

s− 1

)(
s− 1

r

)m

≤ 2rcm.

Since E[mJ ] ≥ t/2, by Chernoff’s bound,

Pr

[
mJ <

t

4

]
≤ 2−t/16.

Therefore, the probability that M is not (r, s)-restricted weight one t×n-matrix
is at most

Pr[(∃J ⊂ [n], |J | = r)AJ ] ≤
(
n

r

)
Pr[AJ ]

≤
(
n

r

)
(Pr[AJ |mJ ≥ t/4] + Pr[mJ < t/4])

≤
(
n

r

)(
2rct/4 + 2−t/16

)
≤
(
n

r

)
2r+1ct/16 ≤ δ

⊓⊔

We now show how to use the (r, s)-restricted weight one matrix for testing.

Lemma 8. Let D be an integer. If there is a t × n-matrix such that for every
D/4 ≤ d′ ≤ 4D, M is (2d′, d′ + ℓ)-restricted weight one matrix, then there is
a non-adaptive deterministic algorithm that, when d/4 ≤ D ≤ 4d is known in
advance to the algorithm, detects ℓ defective items and makes t tests.

Proof. Since d/4 ≤ D ≤ 4d, we have D/4 ≤ d ≤ 4D, and therefore, the matrix
M is (2d, d+ ℓ)-restricted weight one t× n-matrix. We give the algorithm. The
tests of the algorithm are Q(i) = {j|Mi,j = 1}, i ∈ [t]. The following is the
algorithm:

1. Let Answeri = TI(Q
(i)).

2. Let X = [n]; Y = ∅.
3. For i = 1 to t
4. If Answeri = 0 then X ← X\Q(i).
5. For i = 1 to t
6. If Answeri = 1 and |Q(i) ∩X| = 1 then Y ← Y ∪ (Q(i) ∩X).
7. Output Y .
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Let X ′ = X after executing steps 3-4. We first show that |X ′| < 2d and I ⊂ X ′,
i.e., X ′ contains all the defective items. First, if Answeri = TI(Q

(i)) = 0, then
Q(i) ∩ I = ∅, and therefore, I ⊂ X\Q(i). Thus, by step 4, I ⊆ X ′.

By step 4, it follows that if TI(Q
(i)) = 0, then X ′ ∩ Q(i) = ∅. Now, assume

to the contrary that |X ′| ≥ 2d. Consider any subset X ′′ ⊂ X ′ of size |X ′′| = 2d.
Since |I| = d, by Lemma 6, there is Q(j) such that Q(j)∩I = ∅ and Q(j)∩X ′′ ̸= ∅.
Therefore, TI(Q

(j)) = 0 and X ′ ∩Q(j) ̸= ∅. A contradiction.
Now I ⊆ X ′, |I| = d and |X ′| ≤ 2d. By Lemma 6, there are ℓ setsQ(i1), . . . , Q(iℓ)

such that |Q(ij)∩I| = |Q(ij)∩X ′| = 1, and for every j1 ̸= j2,Q
(ij1 )∩I ̸= Q(ij2 )∩I.

Therefore, step 6 detects at least ℓ defective items. ⊓⊔

We are now ready to prove the upper bound. This proves (9) in Figure 1.

Theorem 8. Let ℓ ≤ D/8. There is a non-adaptive deterministic algorithm
that, when d/4 ≤ D ≤ 4d is known in advance to the algorithm, detects ℓ defective
items and makes O(d log(n/d)) tests.

Proof. Since d/4 ≤ D ≤ 4d, we have D/4 ≤ d ≤ 4D. We construct a (r, s)-
restricted weight one t × n-matrix where r = 8D and s = 7 3

4D + ℓ. Since
ℓ ≤ D/8, we have s/r ≤ 0.985, and by Lemma 7, there is a

(
8D, 7 3

4D + ℓ
)
-

restricted weight one t× n-matrix with

t = O
(
8D log

n

8D

)
= O

(
d log

n

d

)
.

Let D/4 ≤ d′ ≤ 4D. By Lemma 5, M is also a (8D, 7 3
4D + ℓ − (d′ − D/4) =

8D − d′ + ℓ)-restricted weight one t × n-matrix and (8D − (8D − 2d′), (8D −
d′ + ℓ)− (8D− 2d′)) = (2d′, d′ + ℓ)-restricted weight one t× n-matrix. Then, by
Lemma 8, the result follows. ⊓⊔

We now prove the lower bound. This proves (10) in Figure 1.

Theorem 9. Suppose some integer D is known in advance to the algorithm
where d/4 ≤ D ≤ 4d. Any non-adaptive deterministic algorithm that detects one
defective item must make at least Ω(d log(n/d)) tests.

Proof. Consider any non-adaptive deterministic algorithm A that detects one
defective item. Let M be a 0-1-matrix of size t× n that their rows are the 0-1-
vectors that correspond to the tests of A. That is, if Q(i) is the ith test of A,
then the ith row of M is (Mi,1, . . . ,Mi,n) when Mi,j = 1 if j ∈ Q(i) and Mi,j = 0
otherwise. Let M (i) be the ith column of M . Let I = {i1, i2, . . . , iw} ⊆ [n] be
any set of size w ∈ {d, d + 1, . . . , 2d}. If I is the set of defective items, then
∨i∈IM

(i) (bitwise or) is the vector of the answers of the tests of A. Suppose that
when I is the set of defective items, A outputs ij . Consider the case when the
set of defective items is I ′ = I\{ij}. Since the answer of A on I ′ is different from
the answer on I, and A is deterministic, we must have ∨i∈IM

(i) ̸= ∨i∈I′M (i).
Therefore, columns I must contain a vector of weight one in M . So far, we have
proved that every w ∈ {d, d + 1, . . . , 2d} columns in M contains a vector of
weight one.
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This also implies that if J ⊂ [n] and |J | ∈ {d, d+1, . . . , 2d}, then ⊕j∈JM
(j) ̸=

0 (bitwise xor). This is because if ⊕j∈JM
(j) = 0, then the columns J do not

contain a vector of weight one.
Now consider the maximum size subset J0 ⊂ [n], |J0| < d such that⊕j∈J0M

(j) =
0. We claim that there is no set J ′ ⊂ [n]\J0, |J ′| ≤ d, such that ⊕j∈J′M (j) = 0.
This is because if such J ′ exists, then ⊕j∈J0∪J′M (j) = 0. Then if |J0 ∪ J ′| ∈
{d, d+1, . . . , 2d}, we get a contradiction, and if |J0∪J ′| < d, then |J0∪J ′| > |J0|
and J0 is not maximum, and again we get a contradiction. Therefore, no set
J ′ ⊂ [n]\J0, |J ′| ≤ d satisfies ⊕j∈J′M (j) = 0.

Consider the sub-matrix M ′ composed of the n − |J0| ≥ n − d columns
[n]\J0 of M . The above property shows that every 2d columns in M ′ are linearly
independent over the field GF (2). Then the result immediately follows from the
bounds on the number of rows of the parity check matrix in coding theory [37].
We give the proof for completeness.

We now show that the xor of any d columns in M ′ is district from the xor of
any other d columns. If there are two sets of d columns J1 and J2 that have the
same xor, then ⊕j∈J1∆J2

M (j) = 0 and |J1∆J2| ≤ 2d. A contradiction. Therefore,
by summing all the possible d columns of M ′, we get

(
n
d

)
distinct vectors. Thus,

the number of rows of M ′ is at least

t ≥ log

(
n

d

)
= Ω

(
d log

n

d

)
.

⊓⊔

We now prove the lower bound when d is unknown to the algorithm. This
proves result (11) in Figure 1. Result (12) follows from the algorithm that tests
every item individually.

Theorem 10. If d is unknown, then any non-adaptive deterministic algorithm
that detects one defective item must make at least Ω(n) tests.

Proof. Consider any non-adaptive deterministic algorithm A that detects one
defective item. Let M be a 0-1-matrix of size t × n whose rows correspond to
the tests of A.

Suppose for the set of defective items I0 = [n] the algorithm outputs i1, for
the set I1 = [n]\{i1} outputs i2, for I2 = [n]\{i1, i2} outputs i3, etc. Obviously,
{i1, . . . , in} = [n]. Now, since the output for I0 is distinct from the output for
I1, we must have a row in M that is equal to 1 in entry i1 and zero elsewhere.
Since the output for I1 is distinct from the output for I2, we must have a row in
M that is equal to 1 in entry i2 and zero in entries [n]\{i1, i2}. Etc. Therefore,
M must have at least n rows. ⊓⊔

6 Non-Adaptive and Randomized

In this section, we study the test complexity of non-adaptive randomized algo-
rithms.

We will use the following for the upper bound.
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Lemma 9. There is a non-adaptive deterministic algorithm that makes t =
log n+ 0.5 log log n+ O(1) tests and decides whether d ≤ 1 and if d = 1 detects
the defective item.

Proof. We define a 0-1-matrix M , where the rows of the matrix correspond to
the tests of the algorithm. The size of the matrix is t×n, where t is the smallest
integer such that n ≤

(
t

⌊t/2⌋
)
and its columns contain distinct Boolean vectors

of weight ⌊t/2⌋. Therefore t = log n+ 0.5 log log n+O(1).
Now, if there are no defective items, we get 0 in all the answers of the tests.

If there is only one defective item, and it is i ∈ [n], then the vector of answers
to the tests is equal to the column i of M . If there is more than one defective
item, then the weight of the vector of the answers is greater than ⌊t/2⌋. ⊓⊔

For the upper bound, we prove the following. This proves (13) in Figure 1.

Theorem 11. Suppose some integer D is known in advance to the algorithm
where d/4 ≤ D ≤ 4d. There is a polynomial time non-adaptive randomized
algorithm that makes O(ℓ log(n/d)+log(1/δ) log(n/d)) tests and, with probability
at least 1− δ, detects ℓ defective items.

Proof. If ℓ ≥ D/32, then the non-adaptive randomized algorithm that finds
all the defective items makes O(d log(n/d)) = O(ℓ log(n/d)) tests. So, we may
assume that ℓ < D/32 ≤ d/8.

Let ℓ ≤ d/8. The algorithm runs t = O(ℓ+ log(1/δ)) iterations. At each iter-
ation, it uniformly at random chooses each element in X = [n] with probability
1/(2D) and puts it in X ′. If |X ′| > 4n/D, then it continues to the next iteration.
If |X ′| ≤ 4n/D, then it uses the algorithm in Lemma 9 to detect if X ′ contains
one defective item, and if it does, it detects the item. If X ′ contains no defective
item or more than one item, it continues to the next iteration.

Although the presentation of the above algorithm is adaptive, it is clear that
all the iterations can be run non-adaptively.

Let A be the event that X ′ contains exactly one defective item. The proba-
bility of A is

Pr[A] =

(
d

1

)
1

2D

(
1− 1

2D

)d−1

≥ 1

10
.

Since E[|X ′|] = n/(2D), by Chernoff’s bound

Pr[|X ′| > 4n/D] ≤
(
e7

88

)n/(2D)

≤ 1

20
.

Therefore,

Pr[A and |X ′| ≤ 4n/D] ≥ 1

20
.

Now, assuming A occurs, the defective in X ′ is distributed uniformly at random
over the d defective items. Since ℓ < d/8, at each iteration, as long as the
algorithm does not get ℓ defective items, the probability of getting a new defective
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item in the next iteration is at least 7/8. Let Bi be the event that, in iteration
i, the algorithm gets a new defective item. Then

Pr[Bi] =
7

8
Pr[A and |X ′| ≤ 4n/D] ≥ 7

160
.

By Chernoff’s bound, after O(ℓ+ log(1/δ)) iterations, with probability at least
1− δ, the algorithm detects ℓ defective items.

Therefore, by Lemma 9, the test complexity of the algorithm is

O((ℓ+ log(1/δ)) log |X ′|) = O
(
ℓ log

n

d
+ log(1/δ) log

n

d

)
.

⊓⊔

The following lower bound follows from Theorem 5. This proves (14) in Fig-
ure 1.

Theorem 12. Let ℓ ≤ d ≤ n/2 and d be known in advance to the algorithm. Any
non-adaptive randomized algorithm that, with probability at least 2/3, detects ℓ
defective items must make at least ℓ log(n/d)− 1 tests.

The following Theorem proves the upper bound for non-adaptive random-
ized algorithms when d is unknown to the algorithm. This proves result (15) in
Figure 1.

Theorem 13. Let c < 1 be any constant, ℓ ≤ nc, and d be unknown to the
algorithm. There is a polynomial time non-adaptive randomized algorithm that
makes O(ℓ log2 n+log(1/δ) log2 n) tests, and with probability at least 1−δ, detects
ℓ defective items.

Proof. Wemake all the tests of the non-adaptive algorithm that, with probability
at least 1− δ/2, 1/4-estimate d, i.e., finds an integer D such that d/4 < D < 4d.
By Lemma 4, this can be done with O(log(1/δ) log n) tests.

We also make all the tests of the non-adaptive algorithms that, with probabil-
ity at least 1−δ/2, detects ℓ defective items for all d = 2iℓ, i = 1, 2, . . . , log(n/ℓ).
By Theorem 11, this can be done with

O

log(n/ℓ)∑
i=1

ℓ log
n

2iℓ
+ log

2

δ
log

n

2iℓ

 = O((ℓ+ log(1/δ)) log2 n)

tests. ⊓⊔

We now prove the lower bound when d is unknown to the algorithm. This
proves result (16) in Figure 1.

Theorem 14. Let c < 1 be any constant, ℓ ≤ nc, and d be unknown to the
algorithm. Any non-adaptive randomized algorithm that, with probability at least
3/4, detects ℓ defective items must make at least

Ω

(
ℓ log2 n

log ℓ+ log log n

)
tests.
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Proof. If nc ≥ ℓ ≥ n1/32, then for d = n(1+c)/2 > ℓ, by Theorem 12, the lower
bound is

Ω(ℓ log(n/d)) = Ω

(
ℓ log2 n

log ℓ+ log log n

)
.

Therefore, we may assume that ℓ < n1/32.

Suppose, to the contrary, there is a non-adaptive randomized algorithm
A(s, I) that, with probability at least 3/4, detects ℓ defective items and makes

t =
ℓ log2 n

3072(log ℓ+ log log n)
.

Here s is the random seeds, and I is the set of defective items. Define the set of
integers Ni = {k|n/(ℓ log n)8i+8 ≤ k < n/(ℓ log n)8i} for i = 1, 2, . . . , r where

r =
log n

32(log ℓ+ log log n)
.

Let ti be a random variable representing the number of tests Q made by A(s, I)
where |Q| ∈ Ni. Then t ≥ t1 + t2 + · · ·+ tr and

ℓ log2 n

3072(log ℓ+ log log n)
= t = E[t] ≥

r∑
i=1

E[ti].

Therefore, there is j ∈ [r] such that

E[tj ] ≤
E[t]

r
=

ℓ log n

96
.

By Markov’s bound, with probability at least 1 − 4/96 = 1 − 1/24 we have
tj < (ℓ log n)/4.

Let d = (ℓ log n)8j+4. Define the following sets random variables: M1 the set
of all tests Q that A(s, I) makes where |Q| < n/(ℓ log n)8j+8, M2 the set of all
tests Q that A(s, I) makes where |Q| ≥ n/(ℓ log n)8j and M3 the set of tests Q
that A(s, I) makes where |Q| ∈ Nj = {k|n/(ℓ log n)8j+8 ≤ k < n/(ℓ log n)8j}.
For a set of defective items I, let A1(I) be the event that all the tests in M1

give answers 0 and A2(I) the event that all the tests in M2 give answers 1. Let
D be the distribution over I ⊂ [n], |I| = d, where the items of I are selected
uniformly at random without replacement from [n]. Let D′ be the distribution
over I = {i1, . . . , id} ⊂ [n], where the items of I are selected uniformly at random
with replacement from [n]. Let B be the event that I, chosen according to D′,
has d items. Then, since ℓ < n1/32,

Pr
D′
[¬B] = 1−

d−1∏
i=1

(
1− i

n

)
≤ d(d− 1)

2n
≤ (ℓ log n)16j+8

2n
≤ (ℓ log n)16r+8

2n
=

(ℓ log n)8

2
√
n

= o(1).
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We now have

Pr
I∼D

[¬A1(I)] ≤ Pr
I∼D′

[(∃Q ∈M1)Q ∩ I ̸= ∅] + Pr
I∼D′

[¬B]

≤ t Pr
I∼D′

[Q ∩ I ̸= ∅|Q ∈M1] + o(1)

≤ ℓ log2 n

3072(log ℓ+ log log n)

(
1−

(
1− 1

(ℓ log n)8j+8

)d
)

+ o(1)

≤ ℓ log2 n

3072(log ℓ+ log log n)

d

(ℓ log n)8j+8
+ o(1)

≤ 1

3072 log log n

1

ℓ3 log2 n
+ o(1) = o(1).

and

Pr
I∼D

[¬A2(I)] ≤ Pr
I∼D′

[(∃Q ∈M2)Q ∩ I = ∅] + Pr
I∼D′

[¬B]

≤ t Pr
I∼D′

[Q ∩ I = ∅|Q ∈M2] + o(1)

≤ ℓ log2 n

3072(log ℓ+ log log n)

(
1− 1

(ℓ log n)8j

)d

+ o(1)

≤ ℓ log2 n

3072(log ℓ+ log log n)
e
− d

(ℓ log n)8j + o(1)

≤ ℓ log2 n

3072(log ℓ+ log log n)
e−ℓ4 log4 n + o(1) = o(1).

We now give a non-adaptive randomized algorithm that for d = (ℓ log n)8j+4

makes (ℓ/4) log n tests and with probability at least 2/3 detects ℓ defective items.
By Theorem 12, and since ℓ < n1/32 and d = (ℓ log n)8j+4 ≤ (ℓ log n)8r+4 =
(ℓ log n)4n1/4 ≤ n1/2/2, the test complexity is at least

ℓ log
n

d
− 1 ≥ 1

2
ℓ log n,

and we get a contradiction.
The algorithm is the following. Choose uniformly at random a permutation

ϕ : [n] → [n]. Consider the tests of algorithm A. Let Mi, i = 1, 2, 3, be the sets
defined above. Define

M ′
i = {(aϕ(1), . . . , aϕ(n))|(a1, . . . , an) ∈Mi}.

Answer 0 for all the tests inM ′
1 and 1 for all the tests inM ′

2. If |M ′
3| > (ℓ/4) log n,

then return FAIL. Otherwise, make all the tests in M ′
3. Give the above answers

of the tests to the algorithm A and let L be its output. Output ϕ−1(L) =
{ϕ−1(i)|i ∈ L}.
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Since ϕ is chosen uniformly at random, the new set of defective items ϕ(I)
is distributed uniformly at random over all the subsets of [n] of size d. The
probability that the answers for tests in M ′

1 and M ′
2 are wrong is o(1). The

probability that |M ′
3| > (ℓ/4) log n is at most 1/24. By the promises, the failure

probability of A is at most 1/4. Therefore, the probability that this algorithm
fails is at most 1/4 + 1/24 + o(1) < 1/3. This completes the proof. ⊓⊔
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A Estimating d

In this section, we prove Lemma 3.
We first prove.

Lemma 10. Let ϵ < 1 be any positive constant. There is a polynomial time
adaptive algorithm that makes O(log log(n/d)+log(1/δ)) expected number of tests
and with probability at least 1− δ outputs D such that (1− ϵ)d ≤ D ≤ (1 + ϵ)d.

We first give an algorithm that makes O(log log(n/d)) expected number of
tests and outputs D that with probability at least 1− δ satisfies

δd2

4n log2(2/δ)
≤ D ≤ d. (4)

The algorithm is

1. λ = 2.
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2. Let each x ∈ [n] be chosen to be in the test Q with probability 1− 2−λ/n.

3. If TI(Q) = 0 then λ← λ2; Return to step 2.

4. D = δn/(4λ).

5. Output D.

We now prove

Lemma 11. We have

Pr

[
δd2

4n log2(2/δ)
≤ D ≤ d

]
≥ 1− δ.

Proof. Let λi = 22
i

and Qi be a set where each x ∈ [n] is chosen to be in Qi ⊆ [n]
with probability 1− 2−λi/n, i = 0, 1, · · · . Let i′ be such that λi′ < δn/(4d) and
λi′+1 ≥ δn/(4d). Let D = δn/(4λj) be the output of the algorithm. Then, since
λi ≤ λi+1/2, we have λi′−t < δn/(2t+2d) and

Pr[D > d] = Pr[δn/(4λj) > d] = Pr[λj < δn/(4d)] = Pr[j ∈ {0, 1, . . . , i′}]

= Pr[TI(Q0) = 1 ∨ TI(Q1) = 1 ∨ · · · ∨ TI(Qi′) = 1] ≤
i′∑

i=0

Pr[TI(Qi) = 1]

=

i′∑
i=0

(1− 2−dλi/n) ≤
i′∑

i=0

dλi

n
≤ · · ·+ δ

8
+

δ

4
≤ δ

2
.

Also, since λj > a implies λj−1 >
√
a,

Pr

[
D <

δd2

4n log2(2/δ)

]
= Pr

[
λj ≥

n2

d2
log2

2

δ

]
= Pr

[
TI(Qj−1) = 0 ∧ λj ≥

n2

d2
log2

2

δ

]
≤ 2−dλj−1/n ≤ 2− log(2/δ) =

δ

2
.

This completes the proof. ⊓⊔

Lemma 12. The expected number of tests of the algorithm is log log(n/d) +
O(1).

Proof. For (n/d)2 > λk ≥ (n/d), the probability that the algorithm makes
k + t+ 1 tests is less than

2−dλk+t/n = 2−dλ2t

k /n ≤ 2−(n/d)2
t−1

.

Therefore the expected number of tests of the algorithm is at most k + O(1).

Since λk = 22
k

< (n/d)2, we have k = log log(n/d) +O(1). ⊓⊔
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We now give another adaptive algorithm that, given that (4) holds, it makes
log log(n/d) + O(log log(1/δ)) tests and with probability at least 1 − δ outputs
D′ that satisfies dδ/8 ≤ D′ ≤ 8d/δ.

By (4), we have

1 ≤ d

D
≤ H :=

√
4 log2(2/δ)

δ

n

D

Let τ = ⌈log(1+logH)⌉. Then 1 ≤ d/D ≤ 22
τ−1 and 0 ≤ log(d/D) ≤ 2τ −1.

Consider an algorithm that, given a hidden number 0 ≤ i ≤ 2τ − 1, binary
searches for i with queries of the form “Is i > m”. Consider the tree T (τ) that
represents all the possible runs of this algorithm, with nodes labeled with m.
See, for example, the tree T (4) in Figure 3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.5 2.5 4.5 6.5 8.5 10.5 12.5 14.5

1.5 5.5 9.5 13.5

3.5 11.5

7.5

Fig. 3. The tree T (4), which is all the runs of the binary search algorithm for 0 ≤ i ≤ 15.
Suppose we search for the hidden number i = 9. We start from the tree’s root, and the
first query is “Is i > 7.5”. The answer is yes, and we move to the right son of the root.
The following query is “Is i > 11.5” the answer is no, and we move to the left son. Etc.

We will do a binary search for an integer close to log(d/D) in the tree T (τ).
The algorithm is the following

1. Let ℓ = 0; r = 2τ − 1;
2. While ℓ ̸= r do
3. Let m = (ℓ+ r)/2
4. Let each x ∈ [n] be chosen to be in the test Q with probability 1 −

2−1/(2mD).
5. If TI(Q) = 1 then ℓ = ⌈m⌉ else r = ⌊m⌋.
6. Output D′ := D2ℓ.

We first prove

Lemma 13. Consider T (τ) for some integer τ . Consider an integer 0 ≤ i ≤
2τ − 1 and the path Pi in T (τ) from the root to the leave i. Then
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1. Pi passes through a node labeled with i− 1/2, and the next node in Pi is its
right son.

2. Pi passes through a node labeled with i+ 1/2, and the next node in Pi is its
left son.

Proof. If the path does not go through the node labeled with i − 1/2 (resp.
i + 1/2), then, in the search, we cannot distinguish between i and i − 1 (resp.
i+1). Obviously, if we search for i and reach the node labeled with i− 1/2, the
next node in the binary search is the right son. ⊓⊔

Now, by Lemma 13, if the algorithm outputs ℓ′, then there is a node labeled
with m = ℓ′ − 1/2 that the algorithm went through, and the answer to the test
was 1. That is, the algorithm continues to the right node.

Pr

[
D′ >

8d

δ

]
= Pr

[
D2ℓ >

8d

δ

]
= Pr

[
ℓ > log

d

D
+ log

8

δ

]
=

2τ−1∑
ℓ′=⌈log(d/D)+log(8/δ)⌉

Pr[ℓ = ℓ′]

=

2τ−1∑
ℓ′=⌈log(d/D)+log(8/δ)⌉

Pr[Answer in node labeled with m = ℓ′ − 1/2 is 1]

=

2τ−1∑
ℓ′=⌈log(d/D)+log(8/δ)⌉

1− 2−d/(2ℓ
′−1/2D)

≤
2τ−1∑

ℓ′=⌈log(d/D)+log(8/δ)⌉

d

D2ℓ′−1/2
≤ δ

4
+

δ

8
· · · ≤ δ

2
.

By Lemma 13, if the algorithm outputs ℓ′, then there is a node labeled with
m = ℓ′ + 1/2 that the algorithm went through, and the answer to the test was
0.

Pr

[
D′ <

δd

8

]
= Pr

[
D2ℓ <

δd

8

]
= Pr

[
ℓ < log

d

D
− log

8

δ

]

=

⌊log(d/D)−log(8/δ)⌋∑
ℓ′=0

Pr[ℓ = ℓ′]

=

⌊log(d/D)−log(8/δ)⌋∑
ℓ′=0

Pr[Answer in node labeled with m = ℓ′ + 1/2 is 0]

=

⌊log(d/D)−log(8/δ)⌋∑
ℓ′=0

2−d/(D2ℓ
′+1/2)

≤ 2−4/δ + 2−8/δ + 2−16/δ + · · · ≤ δ

4
+

δ

8
+ · · · = δ

2
.
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Therefore, with probability at least 1− δ, D′ satisfies dδ/8 ≤ D′ ≤ 8d/δ.

Lemma 14. The number of tests of the algorithm is log log(n/d)+O(log log(1/δ)).

Proof. Since, by (4), δd2/(4n log2(2/δ)) ≤ D, the number of tests is

τ + 1 ≤ log logH + 3

≤ 3 + log log

√
4 log2(2/δ)

δ

n

D

≤ 3 + log log

(
4 log2 2

δ

δ
· n
d

)
= log log

n

d
+O

(
log log

1

δ

)
.

⊓⊔

Finally, given D′ that satisfies dδ/8 ≤ D′ ≤ 8d/δ, Falahatgar et al. [23]
presented an algorithm that, for any constant ϵ > 0, makes O(log(1/δ)) queries
and, with probability at least 1−δ, returns an integer D′′ that satisfies (1−ϵ)d ≤
D′′ ≤ (1 + ϵ)d.

By Lemma 12 and 14, Lemma 10 follows.
One way to prove Lemma 3 is by running the algorithms in Lemma 2 and

Lemma 10 in parallel, one step in each algorithm, and halt when one of them
halts. Another way is by using the following result.

Lemma 15. Let d and m be integers, and ϵ ≤ 1 be any real number. There is a
non-adaptive randomized algorithm that makes O((1/ϵ2) log(1/δ)) tests and

– If d < m then, with probability at least 1− δ, the algorithm returns 0.
– If d > (1+ ϵ)m, then, with probability at least 1− δ, the algorithm returns 1.
– If m ≤ d ≤ (1 + ϵ)m then, the algorithm returns 0 or 1.

Proof. Consider a random test Q ⊆ X where each x ∈ X is chosen to be in
Q with probability 1 − (1 + ϵ)−1/(mϵ). The probability that TI(Q) = 0 is (1 +
ϵ)−d/(mϵ). Since

Pr[TI(Q) = 0|d < m]− Pr[TI(Q) = 0|d > (1 + ϵ)m] ≥ (1 + ϵ)−1/ϵ − (1 + ϵ)−(1+ϵ)/ϵ

= (1 + ϵ)−1/ϵ ϵ

1 + ϵ

≥ ϵ

2e
.

By Chernoff’s bound, we can, with probability at least 1−δ, estimate Pr[TI(Q) =
0] up to an additive error of ϵ/(8e) using O((1/ϵ2) log(1/δ)) tests. If the estima-
tion is less than (1 + ϵ)−(1+ϵ)/ϵ + ϵ/(4e) we output 0. Otherwise, we output 1.
This implies the result. ⊓⊔

Now, to prove Lemma 3, we first run the algorithm in Lemma 15 with m =
√
n

and ϵ = 1. If the output is 0 (d < 2
√
n), then we run the algorithm in Lemma 2.

Otherwise, we run the algorithm in Lemma 10.
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