
Lower Bounds of Functions on Finite Abelian Groups
Jiangting Yang

Key Lab of Mathematics

Mechanization, AMSS

University of Chinese Academy of

Sciences

Beijing, 100190, China

yangjianting@amss.ac.cn

Ke Ye

Key Lab of Mathematics

Mechanization, AMSS

University of Chinese Academy of

Sciences

Beijing,100190, China

keyk@amss.ac.cn

Lihong Zhi

Key Lab of Mathematics

Mechanization, AMSS

University of Chinese Academy of

Sciences

Beijing, 100190, China

lzhi@mmrc.iss.ac.cn

ABSTRACT
The problem of computing the optimum of a function on a finite

set is an important problem in mathematics and computer science.

Many combinatorial problems such as MAX-SAT and MAXCUT

can be recognized as optimization problems on the hypercube𝐶𝑛
2
=

{−1, 1}𝑛 consisting of 2
𝑛
points. It has been noticed that if a finite set

is equipped with an abelian group structure, then one can efficiently

certify nonnegative functions on it by Fourier sum of squares (FSOS).

Motivated by these works, this paper is devoted to developing a

framework to find a lower bound of a function on a finite abelian

group efficiently. We implement our algorithm by the SDP solver

SDPNAL+ for computing the verified lower bound of 𝑓 on 𝐺 and

test it on theMAX-2SAT andMAX-3SAT benchmark problems from

the Max-SAT competitions in 2009 and 2016. Beyond that, we also

test our algorithm on random functions on 𝐶𝑛
3
. These experiments

demonstrate the advantage of our algorithm over previously known

methods.

KEYWORDS
Abelian group, Fourier sum of squares, Semidefinite programming,

Sparse Gram matrices, SAT, MAX-SAT

ACM Reference Format:
Jiangting Yang, Ke Ye, and Lihong Zhi. 2023. Lower Bounds of Functions on

Finite Abelian Groups. In Proceedings of ACM Conference (Conference’17).
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/nnnnn.nnnn

1 INTRODUCTION
The problem of computing the optimum of a function on a finite

set is an important but challenging problem in mathematics and

computer science. Examples include the Knapsack problem[30, 31],

the set cover problem[11, 23], the travelling salesman problem[19,

39], the vehicle routing problem[9, 45], the 𝑘-SAT problem [6, 21]

and their numerous variants. Although each of these problems

can be formulated as an integer programming, there do not ex-

ist polynomial time algorithms for most of them unless P=NP
[21, 23, 24, 34, 35, 45]. Therefore various approximation algorithms

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnn.nnnn

are employed to resolve the issue [5, 15, 28, 42, 46, 47]. Semidef-

inite programming (SDP) is one of the most powerful and exten-

sively studied technique to design and analyze an approximation

algorithm[3, 4, 13, 20, 22, 25, 27, 37, 43, 46, 54]. Among those suc-

cessful applications of the SDP technique, the most well-known

ones are MAX-2SAT[16], MAX-3SAT[20] and MAX-CUT[22]. On

the other side, it is noticed in [12, 41, 52, 53] that if a finite set is

equipped with an abelian group structure, then one can efficiently

certify nonnegative functions on it by Fourier sum of squares (FSOS).

Motivated by these works, this paper is concerned with establishing

a framework to solve the following problem by FSOS and SDP.

Problem 1.1 (lower bound by FSOS). Given a function 𝑓 on a finite
abelian group, find a lower bound of 𝑓 efficiently.

Let 𝑆 ⊆ C𝑛 be an algebraic variety. Algebraically, identifying

C[𝑆] with C[𝑧1, . . . , 𝑧𝑛]/𝐼 (𝑆) is a favourable perspective as the

latter ring is endowed with rich geometric and algebraic structures.

For computational purposes, however, regarding a function as an

equivalence class is not convenient, on account of the fact that

an equivalence can be represented by two different polynomials.

If 𝑆 = 𝐺 is a finite group, then there is an alternative algebraic

structure on C[𝐺] which is extremely useful for computations

[12, 41, 52, 53]. Namely, one can identify C[𝐺] with the group ring

of𝐺 via the Fourier transform [14]. The advantage of such a point of

view is that a function 𝑓 on𝐺 can be expanded as 𝑓 =
∑

𝜒 ∈𝐺 𝑓 (𝜒)𝜒 ,
where 𝐺 is the dual group of 𝐺 and 𝑓 (𝜒) is the Fourier coefficient

of 𝑓 at 𝜒 ∈ 𝐺 . This well-known viewpoint enables us to introduce

analytic tools to solve Problem 1.1.

related works and our contributions
Recently, a method for general-purpose polynomial optimization

called the TSSOS hierarchy is proposed in [49]. The new method

follows the well-known methodology established in [26], but it ex-

ploits the sparsity of polynomials to reduce the size of SDP. Comb-

ing the TSSOS hierarchy and the method in [48] for correlative

sparsity, [50] introduces the CS-TSSOS hierarchy for large scale

sparse polynomial optimization. In particular, both TSSOS and CS-

TSSOS hierarchies are applicable to optimization problems on finite

abelian groups.

Many combinatorial problems, such as MAX-SAT and MAX-

CUT, can be recognized as optimization problems on the hypercube

𝐶𝑛
2
= {−1, 1}𝑛 . Due to its great importance in computer science,

there are various solvers for MAX-SAT. For instance, in [46], the

quotient structure of C[𝐶𝑛
2
] is explored for support selection strate-

gies, from which one can solve MAX-SAT by SDP; by combing

ar
X

iv
:2

30
2.

02
18

8v
1

 [
m

at
h.

O
C

]
 4

 F
eb

 2
02

3

https://doi.org/10.1145/nnnnn.nnnn
https://doi.org/10.1145/nnnnn.nnnn

Conference’17, July 2017, Washington, DC, USA Jiangting Yang, Ke Ye, and Lihong Zhi

several optimization techniques specifically designed for MAX-SAT,

[51] provides an efficient SDP-based MIXSAT algorithm; based on

the resolution refutation, a solver called MS-builder is proposed in

[36].

On the one hand, TSSOS and CS-TSSOS hierarchies can handle

general polynomial optimization problems, while specially designed

solvers such as MIXSAT and MS-builder can only deal with MAX-

SAT problems. On the other hand, however, it is natural to expect

that these specially designed solvers would outperform general-

purpose methods on MAX-SAT problems.

It is our framework of optimization by FSOS that balances the

universality and efficiency. Indeed, our method is applicable to

any optimization problems on finite abelian groups, including the

hypercube 𝐶𝑛
2
, cyclic group Z𝑁 and their product.

The main contribution of this paper is the approximation algo-

rithm for the minimum of a function 𝑓 on an abelian group 𝐺 . To

be more specific, for each positive integer 𝑘 , we propose an SDP

(Lemma 3.2) associated with some 𝑆𝑓 ⊆ 𝐺 (Algorithm 1) where

|𝑆𝑓 | = 𝑘 . A solution to the SDP provides a good lower bound for 𝑓

(Theorem 3.5). Since the size of the SDP is 𝑘 × 𝑘 , our approxima-

tion algorithm is applicable to functions on a large abelian group.

Another feature of our method is the support selection strategy

for the SDP. Unlike the strategy suggested in [46], which is almost

the same for all functions on the hypercube, our strategy provides

different bases for different functions by exploiting the magnitudes

of their Fourier coefficients. Moreover, we provide two rounding

methods based on the nullspace of the Gram matrix and the lower

rank approximation of the moment matrix, respectively. We test our

algorithm (Algorithm 2) and rounding methods on numerical exam-

ples in Appendix A, from which one may clearly see the advantage

of our algorithm over aforementioned methods.

applications
Below we mention some potential applications of our algorithm.

Although we can test our algorithm on all these interesting prob-

lems and present numerical experiments in Appendix A, we only

concentrate on MAX-2SAT and MAX-3SAT, due to the page limit.

SAT problems. The characteristic function (cf. Subsection 2.3) of a

Boolean formula in a 𝑘 Conjunctive Normal Form (𝑘-CNF1) with 𝑛

variables can be recognized as a non-negative function on the group

𝐶𝑛
2
. As a consequence, our framework provides an approximation

algorithm for MAX-𝑘SAT2 and its variants such as UN-SAT and

MIN-SAT.

MAX-CUT problems. Let 𝐺 = (𝑉 , 𝐸) be an undirected graph where

|𝑉 | = 𝑛 with edge weights {𝑤𝑖 𝑗 : {𝑖, 𝑗} ∈ 𝐸}. The MAX-CUT

problem for𝐺 is a partition𝑉 = 𝑆
⊔
𝑇 such that the sum of weights

of edges between 𝑆 and 𝑇 is as large as possible. Thus it can be

1
A 𝑘-CNF formula is a CNF formula in which each clause contains at most 𝑘 literals.

2
Here we adopt the most commonly used definition [24] of MAX-𝑘SAT, which requires

one to compute the maximum number of simultaneously satisfiable clauses in a 𝑘-CNF

formula. There are other definitions of MAX-𝑘SAT, though. For instance, it is defined

in [2] to be the NP-hard problem of finding a maximal satisfiable assignment. In [35],

MAX-𝑘SAT means the NP-complete problem which determines the existence of an

assignment satisfying at least a given number of clauses.

formulated as an optimization problem on Z𝑛
2
.

max

∑︁
{𝑖, 𝑗 }∈𝐸

𝑤𝑖 𝑗𝑥𝑖 (1 − 𝑥 𝑗)

𝑠 .𝑡 . 𝑥𝑖 ∈ Z2 = {0, 1}, 1 ≤ 𝑖 ≤ 𝑛

ground states of a lattice model. A lattice model is a fixed set of

locations in R3 on which interacting particles are distributed. A

ground state of a lattice model is a configuration of these particles

which minimizes the Hamiltonian. Mathematically, computing the

ground state of a lattice model may be rephrased as an optimization

problem on Z𝑑1 × · · · × Z𝑑𝑛 where 𝑛 is the number of particles and

𝑑 𝑗 is determined by the type of the 𝑗-th particle. In [18], the case

where 𝑑1 = · · · = 𝑑𝑛 = 2 is considered.

2 PRELIMINARIES
In this section, we first review the Fourier analysis on abelian

groups. After that we provide a brief introduction to Fourier sum

of squares (FSOS) on abelian groups. Lastly, we define characteris-

tic functions of (weighted) 𝑘-CNF formulae, which are important

examples of integer-valued functions on abelian groups.

2.1 Fourier analysis on groups
We briefly summarize fundamentals of group theory and representa-

tion theory in this subsection. For more details, we refer interested

readers to [14, 33, 40].

Let 𝐺 be a finite abelian group. A character of 𝐺 is a group

homomorphism 𝜒 : 𝐺 → C×. Here C× is C \ {0} endowed with the

multiplication of complex numbers as the group operation. The set

of all characters of 𝐺 is denoted by 𝐺 , called the dual group3 of 𝐺 .
According to [14, Chapter 1], any function 𝑓 on 𝐺 admits the

Fourier expansion:
𝑓 =

∑︁
𝜒 ∈𝐺

𝑓 (𝜒)𝜒,

where 𝑓 (𝜒) B 1

|𝐺 |
∑
𝑔∈𝐺 𝑓 (𝑔)𝜒 (𝑔) is called the Fourier coefficient

of 𝑓 at 𝜒 ∈ 𝐺 . The support of 𝑓 is

supp(𝑓) B
{
𝜒 ∈ 𝐺 : 𝑓 (𝜒) ≠ 0

}
.

As an example, the dual group of the hypercube 𝐶𝑛
2
= {−1, 1}𝑛

is

𝐶𝑛
2
= {𝑧𝛼 : 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Z𝑛2 } ≃ Z

𝑛
2
.

Here Z2 = Z/2Z = {0, 1} is the additive group and 𝑧𝛽 B 𝑧
𝛽1
1

. . . 𝑧
𝛽𝑛
𝑛

for each 𝛽 ∈ N𝑛 . Thus a function 𝑓 : 𝐶𝑛
2
→ C can be expressed as

a linear combination of multilinear monomials:

𝑓 =
∑︁
𝛼 ∈Z𝑛

2

𝑓𝛼𝑧
𝛼 .

2.2 Fourier sum of squares on finite abelian
groups

This subsection concerns with the theory of FSOS developed in

[12, 41, 52]. Let 𝑓 be a nonnegative function on a finite abelian group

𝐺 . An FSOS certificate of 𝑓 is a finite family {ℎ𝑖 }𝑖∈𝐼 of complex

valued functions on 𝐺 such that 𝑓 =
∑
𝑖∈𝐼 |ℎ𝑖 |2. The sparsity of

3
Since𝐺 is an abelian group,𝐺 is indeed a group and𝐺 ≃ 𝐺 .

Lower Bounds of Functions on Finite Abelian Groups Conference’17, July 2017, Washington, DC, USA

{ℎ𝑖 }𝑖∈𝐼 is defined to be |⋃𝑖∈𝐼 supp(ℎ𝑖) |. We say that 𝑓 is sparse if
𝑓 admits an FSOS certificate of low sparsity. The proposition that

follows ensures the existence of FSOS certificates.

Proposition 2.1. [12, Proposition 2] A nonnegative function 𝑓 on a
finite abelian group admits an FSOS certificate.

A function 𝑓 on 𝐺 is nonnegative if and only if there exists

a Hermitian positive semidefinite matrix 𝑄 = (𝑄𝜒,𝜒′)𝜒,𝜒′∈𝐺 ∈
C |𝐺 |× |𝐺 | such that:∑︁

𝜒′∈𝐺

𝑄 (𝜒′)−1𝜒,𝜒 = 𝑓𝜒 , ∀𝜒 ∈ 𝐺. (1)

Any |𝐺 | × |𝐺 | complex matrix 𝑄 ⪰ 0 satisfying (1) is called a Gram
matrix of 𝑓 . Gram matrices are of great importance in both the

theoretical and computational study of FSOS. In fact, if𝑄 is a Gram

matrix of 𝑓 and 𝑄 = 𝑀∗𝑀 for some matrix

𝑀 = (𝑀𝑗,𝜒)
1≤ 𝑗≤𝑟,𝜒 ∈𝐺 ∈ C

𝑟×|𝐺 |,

then we have 𝑓 =
∑𝑟

𝑗=1

���∑
𝜒 ∈𝐺 𝑀𝑗,𝜒 𝜒

���2. Clearly this construction

provides us a one-to-one correspondence between (sparse) Gram

matrices and (sparse) FSOS certificates of 𝑓 . Thus the problem of

computing a sparse FSOS certificate of 𝑓 is equivalent to computing

a sparse Gram matrix of 𝑓 .

Theorem 2.2. [52, Lemma 3.6] Let 𝑓 be a nonnegative, nonzero
function on a finite abelian group 𝐺 . Suppose√︁

𝑓 =
∑︁
𝜒 ∈𝐺

𝑎𝜒 𝜒

is the Fourier expansion of
√︁
𝑓 . Then the optimal solution of the convex

relaxation of

min

𝑄 :gram matrix of 𝑓
∥𝑄 ∥0

is the rank-one positive semidefinite matrix 𝐻 ∈ C |𝐺 |× |𝐺 | where

𝐻𝜒,𝜒′ = 𝑎𝜒𝑎𝜒′ .

Here again we respectively index rows and columns of 𝐻 by elements
in 𝐺 .

By fast Fourier transform (FFT) and the inverse fast Fourier

transform (iFFT),

√︁
𝑓 can be computed in quasi-linear time in |𝐺 |.

However, if group 𝐺 = 𝐶𝑛
2
, then the complexity of computing

√︁
𝑓

is O(𝑛 · 2𝑛) which is exponential in 𝑛. In Section 3, we present a

method to estimate

√︁
𝑓 efficiently.

2.3 integer-valued functions and characteristic
functions of weighted 𝑘-CNF formulae

Let 𝐺 be a finite abelian group. In this paper, an integer-valued
function4 on 𝐺 is a function 𝑓 : 𝐺 → Z such that for all 𝑔 ∈ 𝐺 ,

|𝑓 (𝑔) | = 𝑂 (polylog(|𝐺 |)).

4
The assumption on the bound of values of 𝑓 is used to control the complexity of

Algorithm 1. Except for this, all statements in this paper actually hold true for any

𝑓 : 𝐺 → Z.

Typical examples of integer-valued functions are characteristic

functions of weighted 𝑘-CNF formulae. A weighted 𝑘-CNF formula
𝜙 consists of logic clauses{(

∨𝑖∈𝑆+
𝑗
𝑥𝑖

)
∨

(
∨𝑖∈𝑆−

𝑗
¬𝑥𝑖

)}
𝑗 ∈𝐽

and integer weights {𝑤 𝑗 } 𝑗 ∈𝐽 . Here 𝑥𝑖 ’s are logic variables with

values in {True, False} and ∨,¬ are logical operations OR and NOT

respectively. We remark that if𝑤 𝑗 = 1 for all 𝑗 ∈ 𝐽 , then 𝜙 is simply

a 𝑘-CNF [10]: ∑︁
𝑗 ∈𝐽

(
∨𝑖∈𝑆+

𝑗
𝑥𝑖

)
∨

(
∨𝑖∈𝑆−

𝑗
¬𝑥𝑖

)
.

We define the characteristic function of 𝜙 by

𝑓𝜙 (𝑧1, . . . , 𝑧𝑛) =
∑︁
𝑗 ∈𝐽

𝑤 𝑗

2
𝑙

©­­«
∏
𝑖∈𝑆+

𝑗

(1 + 𝑧𝑖) ·
∏
𝑖∈𝑆−

𝑗

(1 − 𝑧𝑖)
ª®®¬ ,

where (𝑧1, . . . , 𝑧𝑛) ∈ 𝐶𝑛
2
. It is clear that the weighted MAX-SAT

problem for 𝜙 is equivalent to the problem of computing the mini-

mum of 𝑓𝜙 .

If we define

𝜏 : {False,True} → 𝐶2, 𝜏 (False) = 1, 𝜏 (True) = −1,
then characteristic functions of 𝑘-CNF formulae have the following

properties.

Proposition 2.3. [52] Let 𝜙 be a 𝑘-CNF formula in 𝑛 variables with
𝑚 clauses and let 𝑓𝜙 be the characteristic function of 𝜙 . Then
(i) For 𝑥1, 𝑥2, · · · , 𝑥𝑛 ∈ {False, True}, 𝑓𝜙 (𝜏 (𝑥1), 𝜏 (𝑥2), · · · , 𝜏 (𝑥𝑛))

is the number of clauses of 𝜙 falsified by 𝑥1, 𝑥2, · · · , 𝑥𝑛 .
(ii) The degree of 𝑓𝜙 is at most 𝑘 .

(iii) The cardinality of supp(𝑓𝜙) is at most min

{
2
𝑘𝑚,

∑𝑘
𝑖=0

(𝑛
𝑖

)}
.

(iv) 𝑓𝜙 can be computed by𝑂 (2𝑘𝑘𝑚) operations. In particular, if we
fix 𝑘 then 𝑓𝜙 can be computed by 𝑂 (𝑚) operations.

(v) For each 𝑥 ∈ {False, True}𝑛 , 𝑓𝜙 (𝜏 (𝑥)) is the number of clauses
of 𝜙 falsified by 𝑥 .

(vi) The image set of 𝑓𝜙 is contained in {0, . . . ,𝑚}.
Moreover, the following statements are equivalent:
(a) The number of satisfiable clauses of 𝜙 is at most (𝑚 − 𝐿).
(b) The number of falsified clauses of 𝜙 is at least 𝐿.
(c) 𝑓𝜙 − 𝐿 + 𝛿 ≥ 0 for some function 𝛿 : 𝐶𝑛

2
→ [0, 1).

(d) 𝑓𝜙 − 𝐿 + 𝛿 ≥ 0 for any function 𝛿 : 𝐶𝑛
2
→ [0, 1).

According to Proposition 2.3, solving MAX-SAT for a CNF for-

mula 𝜙 is equivalent to solving Problem 1.1 for 𝑓𝜙 .

3 LOWER BOUNDS BY FSOS
In this section, we present our solution to Problem 1.1 for an integer-

valued function 𝑓 on𝐺 . Before we proceed, it worths a remark that

if a lower bound 𝐿 of 𝑓 is given, then a better lower bound of 𝑓 can

be obtained by computing a positive lower bound of 𝑓 − 𝐿 unless 𝐿

is already the minimum of 𝑓 .

Our solution to Problem 1.1 is based on the lemma that follows.

Lemma 3.1. Let 𝑓 : 𝐺 ↦→ R be a function on a finite abelian group
𝐺 and let 𝛼0 be a real number. Then 𝛼0 is a lower bound of 𝑓 if and
only if there exists a finite family {ℎ𝑖 }𝑖∈𝐼 of complex-valued functions

Conference’17, July 2017, Washington, DC, USA Jiangting Yang, Ke Ye, and Lihong Zhi

on 𝐺 such that 𝑓 − 𝛼0 =
∑
𝑖∈𝐼 |ℎ𝑖 |2. As a consequence, there is a one

to one correspondence between the set of lower bounds of 𝑓 and the
feasible set of

max

ℎ𝑖 :𝐺 ↦→C,𝑖∈𝐼
𝛼,

s.t. 𝑓 − 𝛼 =
∑︁
𝑖∈𝐼
|ℎ𝑖 |2 . (2)

3.1 support selection
We notice that the inclusion of subsets of 𝐺 induces a filtration on

the feasible set of (2). Namely, for each 𝑆 ⊆ 𝐺 , we define

𝐹𝑆 B
{
{ℎ𝑖 }𝑖∈𝐼 : 𝑓 − 𝛼 =

∑︁
𝑖∈𝐼
|ℎ𝑖 |2 for some 𝛼,

⋃
𝑖∈𝐼

supp(ℎ𝑖) ⊆ 𝑆

}
.

Then we have

feasible set of (2) = 𝐹
𝐺
B

⋃
𝑆⊆𝐺

𝐹𝑆 (3)

and 𝐹𝑆1 ⊆ 𝐹𝑆2 if 𝑆1 ⊆ 𝑆2 ⊆ 𝐺 . Therefore for a given 𝑆 ⊆ 𝐺 , we may

consider the following problem:

max

{ℎ𝑖 }𝑖∈𝐼 ∈𝐹𝑆
𝛼. (4)

By the next lemma, (4) can be reformulated as an SDP.

Lemma 3.2. For each 𝑆 ⊆ 𝐺 , (4) is equivalent to

max𝑄 ∈C𝑆×𝑆 𝑓 (𝜒0) − trace(𝑄), (5)

s.t.
∑︁
𝜒′∈𝐺

𝑄 (𝜒′)−1𝜒,𝜒 = 𝑓 (𝜒), 𝜒 ≠ 𝜒0 ∈ 𝐺 (6)

𝑄 ⪰ 0. (7)

Here 𝜒0 ∈ 𝐺 denotes the identity element in 𝐺 and 𝑄 ∈ C𝑆×𝑆 means
𝑄 is a matrix of size |𝑆 | whose rows and columns are indexed by
elements in 𝑆 .

Proof. Conditions (6) and (7) ensure that 𝑄 is a Gram matrix

of 𝑓 − 𝑓 (𝜒0) + trace(𝑄). Let 𝑄 be a feasible solution of (5) and let

𝑄 = 𝐻∗𝐻 where 𝐻 ∈ C𝑟×𝑆 . We set ℎ𝑖 =
∑

𝜒 ∈𝑆 𝐻 (𝑖, 𝜒)𝜒, 𝑖 = 1, . . . , 𝑟 .

Then {ℎ𝑖 } ∈ 𝐹𝑆 is a feasible solution of (4), with 𝛼 = 𝑓 (𝜒0) −
trace(𝑄). On the contrary, if {ℎ𝑖 }𝑖∈𝐼 is a feasible solution of (4), then
we may define 𝐻 ∈ C𝐼×𝑆 where 𝐻 (𝑖, 𝜒) = ℎ̂𝑖 (𝜒). Thus 𝑄 = 𝐻∗𝐻 is

a feasible solution of (4), with 𝑓 (𝜒0) − trace(𝑄) = 𝛼 . □

According to Lemma 3.1 and (3), each optimal solution of (5)

supplies a lower bound of 𝑓 . The quality of such a lower bound

depends on the choice of 𝑆 . For instance, if 𝑆 ⊇ ⋃
𝑖∈𝐼 supp(ℎ𝑖) for

some optimal solution {ℎ𝑖 }𝑖∈𝐼 of (2), then clearly the lower bound

given by an optimal solution of (5) is the minimum of 𝑓 . Moreover,

the size of (5) is completely determined by |𝑆 |. Thus to efficiently

compute a good lower bound of 𝑓 , we need to choose small 𝑆 which

contains as more elements in

⋃
𝑖∈𝐼 supp(ℎ𝑖) as possible, for some

optimal solution {ℎ𝑖 }𝑖∈𝐼 of (2). The rest of this section is devoted

to the choice of 𝑆 ⊆ 𝐺 , under the guidance of this principal.

Let 𝑓 be a nonnegative function on an abelian group𝐺 . We may

expand

√︁
𝑓 as: √︁

𝑓 =

|𝐺 |∑︁
𝑖=1

𝑎𝑖 𝜒𝑖 ,

where |𝑎1 | ≥ |𝑎2 | ≥ · · · ≥ |𝑎 |𝐺 | | and 𝐺 = {𝜒𝑖 } |𝐺 |𝑖=1
. By Theorem

2.2, 𝑆 = {𝜒𝑖 }𝑘𝑖=1 is already a desired choice of 𝑆 for (5). Here 𝑘 ≤ 𝑛

is some given positive integer. However, as we point out at the

end of Subsection 2.2, the complexity of computing the Fourier

expansion of

√︁
𝑓 is quasi-linear in |𝐺 |, which leads to an exponential

complexity in 𝑛 if 𝐺 = 𝐶𝑛
2
. Thus to reduce the complexity, we may

approximate the Fourier expansion of

√︁
𝑓 instead of computing

it exactly. To this end, an estimate of the approximation error is

necessary, which is the content of the next proposition.

Proposition 3.3. [53, Proposition 4.12] Let 𝑓 be a nonnegative func-
tion on 𝐺 and let 𝜀 > 0 be a fixed number. If 𝑝 is a univariate
polynomial such that max𝑔∈𝐺

���𝑝 (𝑓 (𝑔)) − √︁
𝑓 (𝑔)

��� ≤ 𝜀, then we have

max

𝜒 ∈𝐺

����𝑝 ◦ 𝑓 (𝜒) − 𝑓 (𝜒)
��� ≤ 𝜀.

According to the above discussions, we may construct 𝑆 of cardi-

nality |𝑆 | = 𝑘 by Algorithm 1. If 𝑓 is integer-valued and 𝑙 ≤ 𝑓 ≤ 𝑚

Algorithm 1 Selection of support

Input nonnegative function 𝑓 on 𝐺 and parameters 𝑙,𝑚,𝑑, 𝑘 ∈ N.
Output 𝑆 ⊆ 𝐺 for (5) with |𝑆 | = 𝑘 .

1: approximate

√
𝑡 by a polynomial 𝑝 (𝑡) of degree at most 𝑑 at

integer points in [𝑙,𝑚].
2: compute the composition 𝑝 ◦ 𝑓 =

∑ |𝐺 |
𝑖=1

𝑎𝑖 𝜒𝑖 , where |𝑎1 | ≥ · · · ≥
|𝑎 |𝐺 | | and deg(𝜒𝑖) ≥ deg(𝜒𝑖+1) if |𝑎𝑖 | = |𝑎𝑖+1 |, 1 ≤ 𝑖 ≤ |𝐺 | − 1.
return 𝑆 = {𝜒1, . . . , 𝜒𝑘 }.

for some 0 < 𝑙 ≤ 𝑚, then one can easily compute the polynomial 𝑝

in step 1 of Algorithm 1 by solving a linear programming [53]. We

remind the reader that 𝑓 : 𝐺 → Z satisfies 𝑓 (𝑔) = 𝑂 (polylog(|𝐺 |))
(cf. Subsection 2.3). Thus step 1 of Algorithm 1 can be accomplished

in 𝑂 (polylog(|𝐺 |)) time.

By Proposition 3.3, 𝑝 ◦ 𝑓 is an estimate of

√︁
𝑓 whose coefficient

error is bounded above by max𝑙≤𝑖≤𝑚
��𝑝 (𝑖) − √𝑖��. This ensures that

the set 𝑆 obtained by Algorithm 1 indeed consists of first 𝑘 terms

of

√︁
𝑓 , if 𝑝 (𝑡) approximates

√
𝑡 sufficiently good at integer points

between 𝑙 and𝑚. Furthermore, it is sufficient to take 𝑑 to be small

in practice. In fact, if 𝑓 is the characteristic function of some CNF

formula, then 𝑑 = 1 or 2 already provides us good lower bounds, as

we will see in Appendix A.

Let 𝑓min be the minimum of 𝑓 on 𝐺 . We notice that on the one

hand, for each 𝑎 ≤ 𝑓min, we may apply Algorithm 1 to 𝑓 − 𝑎 to

obtain an 𝑆𝑎 ⊆ 𝐺 . On the other hand, according to (2), (4) and (5),

we can recover 𝑓min from the optimal solution of (5) if and only if

𝑆 contains 𝑆𝑓min
. An implication of the next proposition is that for

each 𝑎 ≤ 𝑓min, 𝑆𝑎 contains elements in 𝑆𝑓min
whose coefficients in

𝑓 are sufficiently large. In particular, if 𝑓 is nonnegative, then we

can even take 𝑆0 to serve as an estimate of 𝑆𝑓min
.

Proposition 3.4. Let 𝑓 be a function on 𝐺 and let 𝑎 > 𝑎 ≥ 0 be
lower bounds of 𝑓 . Assume that 𝑐𝜒 is the coefficient of 𝜒 in

√︁
𝑓 − 𝑎.

If |𝑐𝜒 | >
√
𝑎 − 𝑎, then 𝜒 ∈ supp(

√︁
𝑓 − 𝑎). Moreover, if 𝐺 = 𝐶𝑛

2
and

𝑓 ≤ 𝑚 for some 𝑚 ∈ R, then |𝑐𝜒 | > 𝑎−𝑎
2

(
1√
𝑎−𝑎
− 1√

𝑚−𝑎+
√
𝑚−𝑎

)
implies 𝜒 ∈ supp(

√︁
𝑓 − 𝑎).

Lower Bounds of Functions on Finite Abelian Groups Conference’17, July 2017, Washington, DC, USA

Proof. We recall that 𝑐𝜒 B
1

|𝐺 |
∑
𝑔∈𝐺 𝜒 (𝑔)

√︁
𝑓 (𝑔) − 𝑎. Similarly,

we may write

√︁
𝑓 − 𝑎 =

∑
𝜒 ∈𝐺 𝑐𝜒 𝜒 . For each 𝜒 ∈ 𝐺 , we notice that

|𝑐𝜒 − 𝑐𝜒 | =
1

|𝐺 |

��� ∑︁
𝑔∈𝐺

𝜒 (𝑔)
(√︁

𝑓 (𝑔) − 𝑎 −
√︁
𝑓 (𝑔) − 𝑎

) ���
=
𝑎 − 𝑎
|𝐺 |

��� ∑︁
𝑔∈𝐺

𝜒 (𝑔)√︁
𝑓 (𝑔) − 𝑎 +

√︁
𝑓 (𝑔) − 𝑎

���
≤
√
𝑎 − 𝑎.

Therefore, if |𝑐𝜒 | >
√
𝑎 − 𝑎 then 𝑐𝜒 ≠ 0.

If 𝐺 = 𝐶𝑛
2
, then 𝜒 ∈ 𝐺 ≃ Z𝑛

2
is a multilinear monomial. Thus

𝜒 (𝑔) = ±1 for any 𝑔 ∈ 𝐶𝑛
2
= {−1, 1}𝑛 . Moreover, it is straightfor-

ward to verify that we can construct a bijective map𝜓 : 𝐶𝑛
2
→ 𝐶𝑛

2

such that 𝜒 (𝑔) = −𝜒 (𝜓 (𝑔)) and𝜓2 = Id. Thus we have

|𝑐𝜒 − 𝑐𝜒 | =
𝑎 − 𝑎
|𝐺 |

��� ∑︁
𝑔∈𝐺

𝜒 (𝑔)√︁
𝑓 (𝑔) − 𝑎 +

√︁
𝑓 (𝑔) − 𝑎

���
≤ 𝑎 − 𝑎
|𝐺 |

∑︁
𝑔∈𝐺,𝜒 (𝑔)=1

(
1

√
𝑎 − 𝑎

− 1

√
𝑚 − 𝑎 +

√
𝑚 − 𝑎

)
=
𝑎 − 𝑎
2

(
1

√
𝑎 − 𝑎

− 1

√
𝑚 − 𝑎 +

√
𝑚 − 𝑎

)
.

□

3.2 FSOS with error
Wediscuss in this subsection a remarkable feature of our solution (cf.

Section 3) to Problem 1.1. That is, a solution to the SDP problem (5)

which violates conditions (6) and (7) can still provide us a tight

lower bound of 𝑓 . This is the content of the next Theorem.

Theorem 3.5 (FSOS with error). Let𝐺 be a finite abelian group
and let 𝑆 a subset of𝐺 . Given a function 𝑓 : 𝐺 ↦→ R and a Hermitian
matrix 𝑄 ∈ C𝑆×𝑆 , we have

min

𝑔∈𝐺
𝑓 (𝑔) ≥ −∥𝑒̂ ∥1 + 𝜆 |𝑆 |,

where 𝜆 is the minimal eigenvalue of 𝑄 , 𝑒 = 𝑓 − 𝑣∗
𝑆
𝑄𝑣𝑆 and 𝑣𝑆 =

(𝜒)𝜒 ∈𝑆 is the vector consisting of all characters in 𝑆 .

Proof. For any 𝑔 ∈ 𝐺 , we have

𝑓 (𝑔) − 𝑒 (𝑔) = 𝑣𝑆 (𝑔)∗𝑄𝑣 (𝑔) ≥ 𝜆𝑣𝑆 (𝑔)∗𝑣 (𝑔) .

We observe that |𝜒 (𝑔) | = 1 for each 𝑔 ∈ 𝐺 and 𝜒 ∈ 𝐺 . Thus

𝑣𝑆 (𝑔)∗𝑣𝑆 (𝑔) ≤ |𝑆 | and |𝑒 (𝑔) | ≤ ∥𝑒̂ ∥1 for any 𝑔 ∈ 𝐺 . This implies

𝑓 (𝑔) ≥ −∥𝑒̂ ∥1 + 𝜆 |𝑆 |, 𝑔 ∈ 𝐺.

□

According to Theorem 3.5, −∥𝑒̂ ∥1 + 𝜆 |𝑆 | is a lower bound of 𝑓

even if 𝑄 ⪰̸ 0 or 𝑒 ≠ 0. The example that follows indicates that our

method can give a tight lower bound of 𝑓 even if it does not admit

an FSOS supported on 𝑆 .

Example 3.6. Let 𝑓 : 𝐶3

2
→ R be the function defined by

𝑓 (𝑧1, 𝑧2, 𝑧3) = 4 + 𝑧1 + 𝑧2 + 𝑧3 + 𝑧1𝑧2𝑧3 .

We can check that the SDP (5) has no feasible solution for 𝑆 =

{1, 𝑧1, 𝑧2, 𝑧3}, i.e., 𝑓 has no FSOS supported on 𝑆 . However, if we let
𝑒 (𝑧1, 𝑧2, 𝑧3) B 𝑧1𝑧2𝑧3, then

𝑓 − 𝑒 = 1 + 1

2

3∑︁
𝑖=1

(1 + 𝑧𝑖)2,

from which we obtain 𝑓 ≥ 1 − ∥𝑒̂ ∥1 = 0.

Below we record an algebraic version of Theorem 3.5, which is

the form we need in Section 4.

Corollary 3.7. Let 𝑓 , 𝑆,𝑄, 𝑒, 𝜆 be defined as above. Then𝑄−𝜆 Id ⪰ 0

is a Gram matrix of the function 𝑓 − 𝑒 − 𝜆 |𝑆 |.

We observe that 𝑓 may be represented by the polynomial func-

tion 𝐹𝑄−𝜆 Id + 𝐹𝜆 Id, where 𝐹𝑀 (𝑧) = 𝑧T𝑀𝑧 is the non-negative poly-

nomial determined by a symmetric matrix 𝑀 . Since 𝑄 − 𝜆 Id ⪰ 0,

we obtain that the minimum of 𝐹𝜆 Id supplies a lower bound of 𝑓 .

Unfortunately, when 𝑧 ∈ R𝑛 , the minimum of 𝐹𝜆 Id is −∞ if 𝜆 < 0.

This phenomenon distinguishes our method from the traditional

method of polynomial optimization.

For instance, we consider 𝑓 = 2𝑧1𝑧2 on 𝐶
2

2
so that 𝑄 is

[𝑧1 𝑧2

𝑧1 0 1

𝑧2 1 0

]
and the minimal eigenvalue of 𝑄 is −1. According to Corollary 3.7,

we conclude that𝑄 + Id ⪰ 0 is the Gram matrix of 𝑓 + 2 and 𝑓 ≥ −2
on 𝐶2

2
. As a comparison, 𝑓 is represented by the polynomial

𝐹𝑄+Id + 𝐹− Id = (𝑧1 + 𝑧2)2 − (𝑧21 + 𝑧
2

2
)

and the minimum of 𝐹− Id = −(𝑧2
1
+𝑧2

2
) is −∞, which fails to provide

a non-trivial lower bound of 𝑓 .

We conclude this section by briefly summarizing the main ad-

vantages of FSOS with error. Interested readers are referred to

Appendix A for numerical examples.

(1) Early termination: existing methods [46, 51] need to wait the

algorithm converges to a solution satisfying conditions (6)

and (7). According to Theorem 3.5, our method can find a

lower bound even these conditions are not satisfied. This

feature enables us to set different time limits on solving SDP

problems. Clearly the longer time limit we set, the better

lower bound we obtain.

(2) Adaptivity to more SDP solvers: since the condition (7) is not

required to be satisfied exactly, we can use the more efficient

SDP solver SDPNALplus [44] to solve the problem in Lemma

3.2. As a consequence, MAX-kSAT problems of much larger

sizes from the benchmark set
5 6

can be solved successfully,

with which SOS based algorithms proposed in [46] fail to

deal.

(3) Size reduction: given a monomial basis 𝑆 , algorithms in [46]

can not get a lower bound if supp(𝑓) ⊈ {𝜒 𝜒 ′ : 𝜒, 𝜒 ′ ∈ 𝑆},
since 𝑓 has no FSOS supported on 𝑆 . However, according to

Theorem 3.5, a feasible solution of (5) that fails to satisfy (6)

can still provide us a lower bound. This leads to a reduction

on sizes of our SDP problems.

5
http://www.maxsat.udl.cat/09/index.php

6
http://www.maxsat.udl.cat/16/index.html

http://www.maxsat.udl.cat/09/index.php
http://www.maxsat.udl.cat/16/index.html

Conference’17, July 2017, Washington, DC, USA Jiangting Yang, Ke Ye, and Lihong Zhi

4 COMPUTATION OF LOWER BOUNDS
This section is concerned with turning discussions in Section 3 into

an algorithm for computing a lower bound of a function 𝑓 on a

finite abelian group𝐺 . To begin with, we recall that every function

ℎ on 𝐺 admits the Fourier expansion:

ℎ =
∑︁
𝜒 ∈𝐺

ℎ̂(𝜒)𝜒.

For simplicity, we denoteℎ0 B ℎ̂(1), where 1 is the identity element

in 𝐺 .

4.1 our algorithm
Let 𝑆 be a subset of 𝐺 and let 𝑄 ∈ C𝑆×𝑆 be a Hermitian matrix. We

define 𝑒 B 𝑓 − 𝑓0 − 𝑣∗𝑆𝑄𝑣𝑆 where 𝑣𝑆 is the |𝑆 |-dimensional column

vector consisting of characters in 𝑆 . Applying Theorem 3.5 to 𝑓 − 𝑓0,
we obtain

𝑓 (𝑔) ≥ 𝑓0 + 𝑒0 − ∥�𝑒 − 𝑒0∥1 + 𝜆min (𝑄) |𝑆 |, 𝑔 ∈ 𝐺
where 𝜆min (𝑄) is the smallest eigenvalue of 𝑄 . We also observe

that

𝑒0 = −
∑︁
𝜒=𝜒′

𝑄 (𝜒, 𝜒 ′) = − trace(𝑄) .

Therefore, we can find a lower bound of 𝑓 by solving the following

unconstrained convex optimization problem:

min

𝑄 ∈C𝑆×𝑆 , 𝑄=𝑄∗
𝐹 (𝑄), (8)

where

𝐹 (𝑄) = trace(𝑄) + ∥𝐸 (𝑄)∥1 − 𝜆min (𝑄) |𝑆 |
and 𝐸 : C𝑆×𝑆 ↦→ C |𝐺 | is the affinemapwhichmaps𝑄 to the (sparse)

vector consisting of Fourier coefficients of 𝑒 − 𝑒0. We notice that

the subgradient of 𝐹 is

𝜕𝐹 = Id+ sign(𝐸 (𝑄))𝜕𝐸 − |𝑆 |𝑢𝑢∗,
where 𝜕𝐸 is the gradient of 𝐸, sign(𝑥) is the sign function and 𝑢

is the unit eigenvector of 𝑄 corresponding to 𝜆min (𝑄). Thus we
obtain Algorithm 2 for a lower bound of 𝑓 .

Algorithm 2 Lower Bounds of Functions on Finite Abelian Groups.

Input a function 𝑓 on 𝐺 , positive integers 𝑙 ,𝑚, 𝑑 and 𝑘 .

Output a lower bound of 𝑓 .

1: Select 𝑆 with 𝑙 ,𝑚, 𝑑 and 𝑘 . ⊲ by Algorithm 1

2: Solve (5) for 𝑄0. ⊲ by SDPNAL+

3: Solve (8) for 𝑄 . ⊲ by gradient descent with initial point 𝑄0

4: return 𝑓0 − 𝐹 (𝑄).

4.2 rounding
Rounding is an important step in SDP-based algorithms for combi-

natorial optimization problems, especially when both the optimum

value and optimum point are concerned. There exist several round-

ing techniques in the literature. Examples include rounding by

random hyperplanes [15] together with its improved version [13],

the skewed rounding procedure [29] and the randomized round-

ing technique [46]. Among all these rounding strategies, the one

proposed in [46] can be easily adapted to our situation.

We present two rounding methods, one is based on the null

space of the Gram matrix, and the other is based on the lower rank

approximation of the moment matrix.

(1) Let 𝑄 ∈ R𝑆×𝑆 be a solution to (5). For a given 𝑓 : 𝐺 → R
and 𝑆 ⊆ 𝐺 containing all characters of degree at most one,

we assume

𝑓 − 𝛼 = 𝑣∗𝑆𝑄𝑣𝑆 ,

where 𝛼 is the minimum value of 𝑓 , 𝑣𝑆 is the |𝑆 |-dimensional

column vector consisting of characters in 𝑆 and 𝑄 ⪰ 0.

If the null space of𝑄 is one-dimensional, then by normalizing

the first element of any null vector of𝑄 to be one, we obtain

the desired solution. Once we obtain a desired null vector

𝑣 ∈ R |𝑆 | , we can recover 𝑔 ∈ 𝐺 by rounding elements of 𝑣 .

If the null space of 𝑄 has dimension 𝑑 > 1, then the nor-

malization is no longer sufficient since elements of a null

vector of 𝑄 might be algebraically inconsistent in this case.

We can extract the solution based on the Stickelberger theo-

rem, which is often used to solve polynomial systems in the

literature [7, 8, 17, 32, 38].

(2) Themomentmatrix𝐻 ⪰ 0 is the solution of the dual problem

of (5). Let 𝐻 =
∑ |𝑆 |
𝑖=1

𝜇𝑖𝑢𝑖𝑢
∗
𝑖
be the eigenvalue decomposition

of𝐻 , with 𝜇1 ≥ 𝜇2 ≥ 𝜇3, ... ≥ 𝜇 |𝑆 | . Then𝐻 = 𝜇1𝑢1𝑢
∗
1
∈ R𝑆×𝑆

is the rank-one approximation of 𝐻 . We can recover the

solution 𝑥 from 𝐻 by setting 𝑥𝑖 = 𝐻1,𝑥𝑖 .

In practice, the matrix 𝑄 obtained in Algorithm 2 may not be

positive semidefinite. We need to update it by 𝑄 + 𝜆min (𝑄) Id. It
is a little surprise for us to notice that the numerical corank of

𝑄 + 𝜆min (𝑄) Id is 1 very often, which makes it possible to recover

the optimal solution efficiently from its null vector.

To conclude this section, we illustrate the above rounding proce-

dure by examples.

Example 4.1 (one-dimensional null space). In Example 3.6 we see
that

𝑓 (𝑧1, 𝑧2, 𝑧3) = 4 + 𝑧1 + 𝑧2 + 𝑧3 + 𝑧1𝑧2𝑧3
is a non-negative function on 𝐶3

2
. For

𝑆 = {1, 𝑧1, 𝑧2, 𝑧3, 𝑧1𝑧2𝑧3},

we may obtain a Hermitian (but not positive semidefinite) matrix by
SDPNAL+:

𝑄 =



1 𝑧1 𝑧2 𝑧3 𝑧1𝑧2𝑧3

1 1.9546 0.5000 0.5000 0.5000 0.5000

𝑧1 0.5000 0.4536 0.0000 0.0000 0.0000

𝑧2 0.5000 0.0000 0.4536 0.0000 0.0000

𝑧3 0.5000 0.0000 0.0000 0.4536 0.0000

𝑧1𝑧2𝑧3 0.5000 0.0000 0.0000 0.0000 0.4536


,

whose eigenvalues are

−0.0462, 0.4536, 0.4536, 0.4536, 2.4544.

The normalized eigenvector corresponding to −0.0462 is

𝑣 =
[1 𝑧1 𝑧2 𝑧3 𝑧1𝑧2𝑧3

1 −1.000447 −1.000447 −1.000447 −1.000447
]
.

We recover 𝑧1 = 𝑧2 = 𝑧3 = −1 by rounding the elements of 𝑣 , which
is the optimal solution of 𝑓 = 0.

Lower Bounds of Functions on Finite Abelian Groups Conference’17, July 2017, Washington, DC, USA

Example 4.2 (higher dimensional null space). We consider the
function 𝑓 (𝑧1, 𝑧2) = (1+𝑧1+𝑧2+𝑧1𝑧2)2 on𝐶2

2
and 𝑆 = {1, 𝑧1, 𝑧2, 𝑧1𝑧2}.

We notice that 𝑓 has a Gram matrix

𝑄 =


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 ,
The null space of 𝑄 is spanned by[

1 0 0 −1
]T
,

[
1 0 −1 0

]T
,

[
1 −1 0 0

]T
.

Using these null vectors, we form the multiplication matrix7 of 𝑧1 −
𝑧2/2: 

0 1 −1/2
3/2 1/2 1/2
−3/2 −1 −1


whose eigenvectors are[

−1 −1 1

]T
,

[
−1 1 1

]T
,

[
1 −1 1

]T
.

By normalizing the first element of these eigenvectors to be 1, we
recover three solutions (1,−1), (−1,−1) and (−1, 1) of 𝑓 (𝑧1, 𝑧2) = 0.

A NUMERICAL EXPERIMENTS
In this section, we perform three numerical experiments to test

Algorithm 2 and the rounding techniques discussed in Section 4.2.

We implement our algorithm in Matlab (2016b) with SDPNAL+ [44].

The code is available on github.com/jty-AMSS/Fast-Lower-Bound-

On-FAG. All experiments are performed on a desktop computer

with Intel Core i9-10900X@3.70GHz CPU and 128GB RAMmemory.

A.1 lower bounds of random functions
The goal of the first experiment is to exhibit the correctness and

efficiency of Algorithm 2. We randomly generate non-negative

integer-valued functions on two finite abelian groups and compute

their lower bounds by Algorithm 2, TSSOS[49] and CS-TSSOS [50]

respectively. Without loss of generality, we only consider functions

whose minimum values are zero.

For comparison purposes, we record the running time and the

result for each algorithm in Tables 1 and 2. This experiment indi-

cates that Algorithm 2 is more efficient than the general-purpose

methods TSSOS and CS-TSSOS on random examples.

A.1.1 experiment on 𝐶25

2
. We generate ten polynomials of degree

three and sparsity at most 500 on 𝐶25

2
by randomly picking its

non-constant coefficients from the set {𝑚 ∈ Z : −5 ≤ 𝑚 ≤ 5}.
The constant terms of these polynomials are chosen so that their

minimum values are zero.

For each of these ten polynomial 𝑓 , we perform Algorithm 2

with the following parameters:

𝑑 = 2, 𝑘 = 3 |supp(𝑓) | , 𝑙 = 0,

𝑚 = sum of absolute value of coefficients of 𝑓 .

We apply TSSOS and CS-TSSOS with Mosek [1] of relaxation order

2 to compute lower bounds of these functions. Results are shown

in Table 1, where“sp" means the sparsity and “bound" means the

lower bound obtained by the corresponding algorithm.

7
Any random linear combination of 𝑧1 and 𝑧2 works as well.

No sp

Algorithm 2 TSSOS CS-TSSOS

bound time bound time bound time

1 451 -6.6e-01 903 -2.75 407 9.0e-09 821

2 440 -1.1e-01 587 -3.95 1208 -3.44 1302

3 453 -4.9e-02 519 6.3e-08 1104 4.5e-09 1634

4 453 -1.6e-06 1464 -2.5 1091 -1.92 1510

5 451 -4.4e-01 804 -4.06 636 2.2e-06 1535

6 457 -6.7e-01 581 9.0e-11 1081 2.3e-10 2031

7 452 -2.2e-02 636 4.0e-10 847 7.0e-09 1895

8 455 -6.5e-03 775 4.8e-09 797 7.0e-11 1126

9 443 -1.3e-01 554 4.9e-10 716 2.4e-11 1284

10 454 -1.9e-02 561 2.0e-08 807 3.0e-09 1352

Table 1: Random examples on 𝐶25

2

We notice that in Table 1, Algorithm 2 successfully recovers the

minimum value zero for all these ten functions since our functions

are integer-valued. As a comparison, TSSOS and CS-TSSOS fail to

recover the minimum value on four and two instances, respectively.

Moreover, Algorithm 2 is faster than TSSOS (resp. CS-TSSOS) on

seven (resp. nine) out of ten functions.

A.1.2 experiment on𝐶15

3
. We generate ten functions on𝐶15

3
by the

following procedure:

(1) Set 𝑓 = 0;

(2) Randomly generate an integer-valued function ℎ on𝐶2

3
, such

that 0 ≤ ℎ ≤ 10;

(3) Randomly pick a projection map 𝜏 : 𝐶15

3
→ 𝐶2

3
;

(4) Update 𝑓 ← 𝑓 + ℎ ◦ 𝜏 ;
(5) Repeat steps (2)-(4) until the sparsity of 𝑓 is greater than 190.

(6) Update 𝑓 ← 𝑓 −min𝑔∈𝐶15

3

𝑓 (𝑔).
Functions obtained by the above procedure are integer-valued and

their minimum values are zero. Although Algorithm 2 can handle

functions on 𝐶15

3
of sparsity up to 350, we set the sparsity limit to

be 190 because CS-TSSOS can only deal with functions of sparsity

around 200.

We compute their lower bounds by Algorithm 2 with

𝑑 = 2, 𝑘 = 3 |supp(𝑓) | , 𝑙 = 0

𝑚 = sum of maximum value of ℎ in step (2).

We also apply CS-TSSOS with Mosek of relaxation order
8
4 to these

functions.

We do not test TSSOS in this experiment since it is only applicable

to functions with real variables and real coefficients, and 𝐶3 =

{1, 𝜔, 𝜔2} where 𝜔 = exp(2𝜋𝑖/3) ∈ C. Results are set out in Table

2, where “sp" denotes the sparsity of each function and “bound"

means the lower bound computed by the corresponding algorithm.

As illustrated in Table 2, both Algorithm 2 and CS-TSSOS success-

fully recover the minimum value for all instances, but Algorithm 2

is much faster than CS-TSSOS.

We notice that all the ten functions in Table 2 have the same spar-

sity 191. After a little thought, one can realize that this is a result of

our procedure to generate these functions. Indeed, the function ℎ◦𝜏
in the procedure contains 8monomials 1, 𝑧𝑖 , 𝑧 𝑗 , 𝑧

2

𝑖
, 𝑧2

𝑗
, 𝑧𝑖𝑧 𝑗 , 𝑧

2

𝑖
𝑧 𝑗 , 𝑧𝑖𝑧

2

𝑗

8
CS-TSSOS fails to complete the computation if we use smaller relaxation order.

http://github.com/jty-AMSS/Fast-Lower-Bound-On-FAG
http://github.com/jty-AMSS/Fast-Lower-Bound-On-FAG

Conference’17, July 2017, Washington, DC, USA Jiangting Yang, Ke Ye, and Lihong Zhi

No sp

Algorithm 2 CS-TSSOS

bound time bound time

1 191 -1.20e-01 237.0 -1.98e-05 3148.1

2 191 -3.42e-12 224.8 2.38e-08 1923.3

3 191 -3.53e-03 223.6 2.76e-09 444.5

4 191 -1.74e-01 887.1 -8.55e-06 6623.8

5 191 -3.31e-12 876.6 1.17e-07 1745.5

6 191 -2.40e-12 221.7 5.34e-07 752.4

7 191 -3.82e-12 225.3 3.92e-08 362.9

8 191 -6.92e-02 402.5 8.33e-09 2144.8

9 191 -1.53e-01 227.0 4.21e-07 1695.6

10 191 -5.71e-12 404.3 4.61e-10 1105.3

Table 2: Random examples on 𝐶15

3

for some 1 ≤ 𝑖 < 𝑗 ≤ 15. Once 𝑓 involves all 15 variables in some it-

eration, it must contain all 31 monomials 𝑧𝑘
𝑗
, 1 ≤ 𝑗 ≤ 15, 0 ≤ 𝑘 ≤ 2.

Thus each update 𝑓 +ℎ ◦ 𝜏 only increases the sparsity by 0 or 4 and

the sparsity of the resulting function is of the form 31 + 4𝑘, 𝑘 ∈ N.
Since we terminate the procedure if the sparsity exceeds 190, the

sparsity is expected to be 191 = 31 + 4 × 40.

A.2 upper bounds of MAX-SAT problems
As an application, we test Algorithm 2 on MAX-SAT problems. We

first recall from Proposition 2.3-(v) that for a given CNF formula 𝜙

in 𝑛 variables with𝑚 clauses, the maximum number of simultane-

ously satisfiable clauses in 𝜙 is equal to𝑚 −min𝑔∈𝐶𝑛
2

𝑓𝜙 (𝑔). Thus
solving the MAX-SAT probelm for 𝜙 is equivalent to computing

the minimum value of its characteristic function 𝑓𝜙 on 𝐶𝑛
2
.

Our testing MAX-SAT problems are drawn from the benchmark

problem set in 2016 and 2009 MAX-SAT competitions
9 10

. When

applicable, we also apply TSSOS and CS-TSSOS to solve these prob-

lems. Results are summarized in Tables 3 and 4. From the former,

we may conclude that Algorithm 2 is more effective than TSSOS

and CS-TSSOS on MAX-SAT problems, while from the latter, we

may see the flexibility of Algorithm 2.

A.2.1 experiment on unweighted MAX-2SAT problems. In this ex-

periment, we consider randomly generated unweighted MAX-2SAT

problems in 2016 MAX-SAT competition. Such a problem has 120

variables, in which the number of clauses ranges from 1200 to 2600.

We apply Algorithm 2 to compute lower bounds of the correspond-

ing characteristic functions on𝐶120

2
, with the following parameters:

𝑑 = 1, 𝑘 = |supp(𝑓) | , 𝑙 = 0,

𝑚 = number of clauses.

We apply TSSOS and CS-TSSOS with Mosek of relaxation order

1 to these functions. It is worthwhile to point out that any higher

order relaxations would result in a memory leak. This is because

the size of a Gram matrix in a higher order relaxations increases

exponentially.
11

For example, the size of a Gram matrix in the first

relaxation is 121×121 while it is 7261×7261 in the second relaxation.

9
http://www.maxsat.udl.cat/09/index.php

10
http://www.maxsat.udl.cat/16/index.html

11
There are

∑𝑘
𝑗=0

(
120

𝑘

)
monomials involved in the 𝑘-th relaxation.

Numerical results are reported in Table 3, in which “clause"

denotes the number of clauses in each CNF formula, “min" is the

minimum of the characteristic function and “bound" means the

lower bound of the characteristic function obtained by each method.

From Table 3, we see that lower bounds obtained by Algorithm 2

are very close to minimum values of characteristic functions, which

are better than those obtained by TSSOS and CS-TSSOS. In theory,

one can expect an improvement in the quality of lower bounds

by increasing the order of relaxations in TSSOS and CS-TSSOS.

Unfortunately, as we point out, higher order relaxations are not

possible due to the memory leak caused by huge sizes of MAX-2SAT

problems we considered.

A.2.2 experiment on weighted MAX-3SAT problems. We test Al-

gorithm 2 on weighted MAX-3SAT benchmark problems in 2009

MAX-SAT competition. These 3-CNF formulae are in 70 variables

with 400 clauses. We remark that neither TSSOS nor CS-TSSOS is

able to deal with these problems since their characteristic functions

are of degree 3, forcing the relaxation order to be at least 2. This

again causes a memory leak.

We apply Algorithm 2 to characteristic functions of these MAX-

3SAT problems with the following two sets of parameters:

𝑑 = 1, 𝑘 = |supp(𝑓) | , 𝑙 = 0, 𝑚 = sum of weights.

𝑑 = 2, 𝑘 = 1.5 |supp(𝑓) | , 𝑙 = 0, 𝑚 = sum of weights.

The goal of this experiment is to exhibit the flexibility of Algo-

rithm 2. Namely, the trade-off between the quality of the lower

bound and the time cost can be controlled freely by parameters 𝑑

and 𝑘 . As a comparison, such a trade-off in other SOS-based algo-

rithms such as TSSOS and CS-TSSOS is controlled by the order of

relaxations, which may easily result in a memory leak (cf. A.2.1).

Experimental results can be found in Table 4, where the meaning

of labels are the same as those in Table 3.

A.3 rounding for MAX-2SAT problems
Let 𝑆𝑘 be the support selected by Algorithm 1 with input 𝑙 = 0,

𝑑 = 2,𝑚 being the number of clauses, and 𝑘 being selected such

that the cardinality of 𝑆 = 𝑆𝑘 ∪𝑀1 is |𝑀𝑝 |, where𝑀1 is the set of

monomials with degree at most 1, and 𝑀𝑝 is the monomial basis

containing𝑀1 and monomials 𝑧𝑖𝑧 𝑗 whenever logic variables 𝑥𝑖 and

𝑥 𝑗 appear in the same clause, see [46, Definition 1]. We compare

the rounding techniques presented in Section 4.2 with the rounding

techniques with scaling factors 𝜌𝑁
𝑖

and 2
−(𝑖−1)

in [46] on randomly

generated MAX-2SAT problems. For the rounding method based on

the Gram matrix, the maximum number of iterations of SDPNAL+

is set to be |𝑆 |. For the rounding method based on the moment

matrix, the maximum number of iterations of SDPNAL+ is set to

be max(300, |𝑆 |).

A.3.1 experiment on random problems. In this experiment, we con-

duct the experiment in [46, Table 7]. For 𝑛 = 25, 30, 35, 40 and

𝑚 = 3𝑛, 5𝑛, 7𝑛, we randomly generate 100 MAX-2SAT instances

with 𝑛 variables and𝑚 clauses, compare our rounding techniques

with those given in [46], and record the frequencies of finding the

optimum by each method. Results are presented in Table 5, in which

http://www.maxsat.udl.cat/09/index.php
http://www.maxsat.udl.cat/16/index.html

Lower Bounds of Functions on Finite Abelian Groups Conference’17, July 2017, Washington, DC, USA

No clause min

Algorithm 2 TSSOS CS-TSSOS

bound time bound time bound time

1 1200 161 159.5 370 146.7 45 146.7 52

2 1200 159 156.7 327 143.1 49 143.1 55

3 1200 160 159.0 362 146.8 46 146.8 64

4 1300 180 177.5 450 162.4 52 162.4 73

5 1300 172 170.6 417 156.2 47 156.2 65

6 1300 173 171.6 432 158.8 44 158.8 58

7 1400 197 194.8 506 179.8 46 179.8 75

8 1400 191 189.3 499 174.3 51 174.3 87

9 1400 189 187.2 504 172.1 58 172.1 78

10 1500 211 209.9 589 194.5 53 194.5 93

11 1500 213 210.1 573 194.4 50 194.4 88

12 1500 207 205.7 531 191.3 50 191.3 87

13 1600 233 231.2 668 215.6 50 215.6 90

14 1600 239 235.0 668 218.7 48 218.7 85

15 1600 233 230.5 617 215.2 52 215.2 68

16 1700 257 255.1 745 238.3 48 238.3 91

17 1700 248 245.7 749 229.2 53 229.2 105

18 1700 239 238.9 738 225.3 50 225.3 86

19 1800 291 285.8 788 268.4 56 268.4 87

20 1800 262 261.3 896 244.2 53 244.2 99

21 1800 279 277.5 836 259.8 50 259.8 99

22 1900 293 292.1 1002 275.3 67 275.3 119

23 1900 296 294.3 987 275.8 53 275.8 132

24 1900 294 291.8 994 273.0 53 273.0 113

25 2000 307 306.4 1103 288.8 57 288.8 149

26 2000 321 318.1 1131 299.8 55 299.8 140

27 2000 307 306.0 1240 288.3 58 288.3 139

28 2100 336 335.5 1202 317.7 68 317.7 141

29 2100 336 332.2 1215 313.4 57 313.4 141

30 2100 332 330.3 1224 311.3 57 311.3 104

31 2200 358 355.6 1467 334.6 54 334.6 163

32 2200 371 365.8 1351 345.2 52 345.2 114

33 2200 359 358.1 1381 338.3 59 338.3 130

34 2300 380 377.6 1412 356.8 58 356.8 127

35 2300 383 381.5 1535 359.2 61 359.2 136

36 2300 365 364.7 1510 345.4 53 345.4 146

37 2400 389 387.9 1686 368.7 56 368.7 151

38 2400 402 400.0 1757 378.1 56 378.1 125

39 2400 380 380.0 1951 363.0 69 363.0 153

40 2500 418 416.4 1963 395.5 60 395.5 133

41 2500 435 432.4 1876 411.5 55 411.5 143

42 2500 425 424.2 1934 402.4 68 402.4 186

43 2600 439 436.7 2004 414.0 57 414.0 148

44 2600 458 455.8 2010 434.2 57 434.2 221

45 2600 440 439.1 1983 418.7 59 418.7 154

Table 3: Unweighted MAX-2SAT problems

No min

𝑑 = 1, 𝑘 = |supp(𝑓) | 𝑑 = 2, 𝑘 = 3 |supp(𝑓) | /2
bound time bound time

1 12 6.2853 615 8.8433 2265

2 19 10.7006 582 13.6655 2126

3 5 4.2047 601 4.8462 2176

4 20 12.1123 584 15.1769 2098

5 14 7.4614 605 9.7210 2183

6 12 8.0066 595 10.0030 2131

7 17 10.1713 605 12.7487 2157

8 7 5.4025 635 6.4714 2325

9 17 10.6177 597 13.6209 2121

10 12 8.2999 573 10.6198 2108

Table 4: Weighted MAX-3SAT problems

"Vars" denotes the number of variables, "clause" denotes the num-

ber of clauses, "Gram" and "Moment" are the the frequencies of

finding the optimum by methods based on the Gram matrix and

the moment matrix repectively, 𝜌𝑁
𝑖

and 2
−(𝑖−1)

are the frequencies

by recommended methods presented in [46]. Table 5 shows that

the rounding method based on lower rank moment approximations

has the highest frequency to find the optimum.

Vars Clauses Gram Moment 𝜌𝑁
𝑖

2
−(𝑖−1)

25 75 63 96 70 76

25 125 75 93 67 81

25 175 80 91 64 87

30 90 71 95 67 68

30 150 70 91 58 70

30 210 68 87 63 73

35 105 74 93 56 65

35 175 77 91 55 78

35 245 68 87 52 72

40 120 79 92 51 56

40 200 72 87 44 59

40 280 67 83 54 76

Table 5: rounding for random MAX-2SAT problems

A.3.2 experiment on benchmark problems. We test the rounding

techniques respectively presented in Subsection 4.2 and [46] on ran-

domly generated unweighted MAX-2SAT problems in 2016 MAX-

SAT competition. Table 6 indicates that both of our rounding meth-

ods outperform the method presented in [46].

Furthermore, we remark that since the interior point method

is used in [46] to solve SDP problems, their rounding techniques

usually take at least 6000 seconds. In comparison, our methods take

less than 1000 seconds, as our methods allow one to use SDPNAL+

to solve SDP problems.

REFERENCES
[1] MOSEK ApS. 2019. The MOSEK optimization toolbox for MATLAB manual. Version

9.3.11. https://docs.mosek.com/9.3/toolbox/index.html

[2] Sanjeev Arora and Boaz Barak. 2009. Computational complexity: a modern ap-
proach. Cambridge University Press.

https://docs.mosek.com/9.3/toolbox/index.html

Conference’17, July 2017, Washington, DC, USA Jiangting Yang, Ke Ye, and Lihong Zhi

No clause min Gram Moment 𝜌𝑁
𝑖

2
−(𝑖−1)

1 1200 161 162 162 225 227

2 1200 159 159 164 215 194

3 1200 160 160 160 162 160
4 1300 180 180 185 226 243

5 1300 172 173 178 225 230

6 1300 173 173 174 245 253

7 1400 197 198 202 234 270

8 1400 191 192 199 255 246

9 1400 189 189 189 227 231

Table 6: rounding on MAX-2SAT benchmarks

[3] Per Austrin. 2007. Balanced max 2-sat might not be the hardest. In Proceedings of
the thirty-ninth annual ACM symposium on Theory of computing. 189–197.

[4] Per Austrin. 2010. Towards sharp inapproximability for any 2-CSP. SIAM J.
Comput. 39, 6 (2010), 2430–2463.

[5] Nicos Christofides. 1976. Worst-case analysis of a new heuristic for the travel-
ling salesman problem. Technical Report. Carnegie-Mellon Univ Pittsburgh Pa

Management Sciences Research Group.

[6] Stephen A Cook. 1971. The complexity of theorem-proving procedures. In

Proceedings of the third annual ACM symposium on Theory of computing. 151–
158.

[7] R. Corless, P. Gianni, and B. Trager. A reordered Schur factorization method for

zero-dimensional polynomial systems with multiple roots. In Proc. 1997 ISSAC’97.
133–140.

[8] R. Corless, P. Gianni, B. Trager, and S. Watt. The singular value decomposition

for polynomial systems. In Proc. 1995 ISSAC’95. 96–103.
[9] George B Dantzig and John H Ramser. 1959. The truck dispatching problem.

Management science 6, 1 (1959), 80–91.
[10] Martin Davis, Ron Sigal, and Elaine J Weyuker. 1994. Computability, complexity,

and languages: fundamentals of theoretical computer science. Elsevier.
[11] Irit Dinur and David Steurer. 2014. Analytical approach to parallel repetition.

In STOC’14—Proceedings of the 2014 ACM Symposium on Theory of Computing.
ACM, New York, 624–633.

[12] Hamza Fawzi, James Saunderson, and Pablo A Parrilo. 2016. Sparse sums of

squares on finite abelian groups and improved semidefinite lifts. Mathematical
Programming 160, 1-2 (2016), 149–191.

[13] U. Feige and M. Goemans. 1995. Approximating the value of two power proof

systems, with applications to MAX 2SAT and MAX DICUT. In Proceedings Third
Israel Symposium on the Theory of Computing and Systems. 182–189.

[14] William Fulton and Joe Harris. 2013. Representation theory: a first course. Vol. 129.
Springer Science & Business Media.

[15] Michel X Goemans and David P Williamson. 1995. Improved approximation

algorithms for maximum cut and satisfiability problems using semidefinite pro-

gramming. Journal of the ACM (JACM) 42, 6 (1995), 1115–1145.
[16] Michel X. Goemans and David P. Williamson. 1995. Improved approximation

algorithms for maximum cut and satisfiability problems using semidefinite pro-

gramming. J. Assoc. Comput. Mach. 42, 6 (1995), 1115–1145.
[17] Didier Henrion and Jean-Bernard Lasserre. 2005. Detecting Global Optimality and

Extracting Solutions in GloptiPoly. Springer Berlin Heidelberg, Berlin, Heidelberg,

293–310.

[18] Wenxuan Huang, Daniil A. Kitchaev, Stephen T. Dacek, Ziqin Rong, Alexander

Urban, Shan Cao, Chuan Luo, and Gerbrand Ceder. 2016. Finding and proving

the exact ground state of a generalized Ising model by convex optimization and

MAX-SAT. Phys. Rev. B 94 (Oct 2016), 134424. Issue 13.

[19] Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. [2021] ©2021. A

(slightly) improved approximation algorithm for metric TSP. In STOC’21-
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing.
ACM, New York, 32–45.

[20] H. Karloff and U. Zwick. 1997. A 7/8-approximation algorithm for MAX 3SAT?. In

Proceedings 38th Annual Symposium on Foundations of Computer Science. 406–415.
[21] Richard M Karp. 1972. Reducibility among combinatorial problems. In Complexity

of computer computations. Springer, 85–103.
[22] Subhash Khot, Guy Kindler, ElchananMossel, and Ryan O’Donnell. 2007. Optimal

inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM J.
Comput. 37, 1 (2007), 319–357.

[23] Bernhard H Korte, Jens Vygen, B Korte, and J Vygen. 2011. Combinatorial opti-
mization. Vol. 1. Springer.

[24] Mark W Krentel. 1988. The complexity of optimization problems. Journal of
computer and system sciences 36, 3 (1988), 490–509.

[25] Adam Kurpisz, Samuli Leppänen, and Monaldo Mastrolilli. 2016. Tight Sum-Of-

Squares Lower Bounds for Binary Polynomial Optimization Problems. In 43rd
International Colloquium on Automata, Languages, and Programming (ICALP 2016)
(Leibniz International Proceedings in Informatics (LIPIcs)), Ioannis Chatzigiannakis,
Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi (Eds.), Vol. 55. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 78:1–78:14.

[26] Jean B. Lasserre. 2001. Global Optimization with Polynomials and the Problem

of Moments. SIAM Journal on Optimization 11, 3 (2001), 796–817.

[27] Jean B Lasserre. 2016. A MAX-CUT formulation of 0/1 programs. Operations
Research Letters 44, 2 (2016), 158–164.

[28] Monique Laurent. 2003. A comparison of the Sherali-Adams, Lovász-Schrijver,

and Lasserre relaxations for 0–1 programming. Mathematics of Operations Re-
search 28, 3 (2003), 470–496.

[29] Michael Lewin, Dror Livnat, and Uri Zwick. 2002. Improved Rounding Tech-

niques for the MAX 2-SAT and MAX DI-CUT Problems. In Integer Programming
and Combinatorial Optimization, William J. Cook and Andreas S. Schulz (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 67–82.

[30] Silvano Martello and Paolo Toth. 1990. Knapsack problems: algorithms and com-
puter implementations. John Wiley & Sons, Inc.

[31] George B Mathews. 1896. On the partition of numbers. Proceedings of the London
Mathematical Society 1, 1 (1896), 486–490.

[32] H. Möller and H. Stetter. 1995. Multivariate Polynomial Equations with Multiple

Zeros Solved by Matrix Eigenproblems. Numer. Math. 70 (1995), 311–329.
[33] Ryan O’Donnell. 2014. Analysis of Boolean functions. Cambridge University Press,

New York. xx+423 pages.

[34] Christos H. Papadimitriou. 1977. The Euclidean traveling salesman problem is

𝑁𝑃 -complete. Theoret. Comput. Sci. 4, 3 (1977), 237–244.
[35] Christos H. Papadimitriou. 1994. Computational complexity. Addison-Wesley

Publishing Company, Reading, MA. xvi+523 pages.

[36] Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. 2021. A proof builder for

Max-SAT. In International Conference on Theory and Applications of Satisfiability
Testing. Springer, 488–498.

[37] Prasad Raghavendra. 2008. Optimal algorithms and inapproximability results for

every CSP? [extended abstract]. In STOC’08. ACM, New York, 245–254.

[38] Greg Reid and Lihong Zhi. 2009. Solving polynomial systems via symbolic-

numeric reduction to geometric involutive form. Journal of Symbolic Computation
44, 3 (2009), 280–291. Polynomial System Solving in honor of Daniel Lazard.

[39] Julia Robinson. 1949. On the Hamiltonian game (a traveling salesman problem).
Technical Report. Rand project air force arlington va.

[40] Walter Rudin. 1962. Fourier analysis on groups. Vol. 121967. Wiley Online Library.

[41] Shinsaku Sakaue, Akiko Takeda, Sunyoung Kim, and Naoki Ito. 2017. Exact

semidefinite programming relaxations with truncated moment matrix for binary

polynomial optimization problems. SIAM Journal on Optimization 27, 1 (2017),

565–582.

[42] Petr Slavík. 1996. A tight analysis of the greedy algorithm for set cover. In Proceed-
ings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing
(Philadelphia, PA, 1996). ACM, New York, 435–441.

[43] Lucas Slot and Monique Laurent. 2022. Sum-of-squares hierarchies for binary

polynomial optimization. Mathematical Programming (2022), 1–40.

[44] Defeng Sun, Kim-Chuan Toh, Yancheng Yuan, and Xin-Yuan Zhao. 2020. SDP-

NAL+: A Matlab software for semidefinite programming with bound constraints

(version 1.0). Optimization Methods and Software 35, 1 (2020), 87–115.
[45] Paolo Toth and Daniele Vigo. 2002. The vehicle routing problem. SIAM.

[46] H. van Maaren, L. van Norden, and M.J.H. Heule. 2008. Sums of squares based

approximation algorithms for MAX-SAT. Discrete Applied Mathematics 156, 10
(2008), 1754–1779.

[47] Vijay V Vazirani. 2001. Approximation algorithms. Vol. 1. Springer.
[48] Hayato Waki, Sunyoung Kim, Masakazu Kojima, and Masakazu Muramatsu.

2006. Sums of squares and semidefinite program relaxations for polynomial

optimization problems with structured sparsity. SIAM Journal on Optimization
17, 1 (2006), 218–242.

[49] Jie Wang, Victor Magron, and Jean-Bernard Lasserre. 2021. TSSOS: A Moment-

SOS hierarchy that exploits term sparsity. SIAM Journal on Optimization 31, 1

(2021), 30–58.

[50] Jie Wang, Victor Magron, J. B. Lasserre, and Ngoc Hoang Anh Mai. 2022. CS-

TSSOS: Correlative and Term Sparsity for Large-Scale Polynomial Optimization.

ACM Trans. Math. Softw. 48, 4 (2022), 1–26.
[51] Po-Wei Wang and J Zico Kolter. 2019. Low-rank semidefinite programming

for the MAX2SAT problem. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33. 1641–1649.

[52] Jianting Yang, Ke Ye, and Lihong Zhi. 2022. Computing sparse Fourier

sum of squares on finite abelian groups in quasi-linear time. arXiv preprint
arXiv:2201.03912 (2022).

[53] Jianting Yang, Ke Ye, and Lihong Zhi. 2022. Short certificates for MAX-SAT via

Fourier sum of squares. arXiv preprint arXiv:2207.08076 (2022).
[54] Richard Y Zhang and Javad Lavaei. 2021. Sparse semidefinite programs with

guaranteed near-linear time complexity via dualized clique tree conversion.

Mathematical programming 188, 1 (2021), 351–393.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Fourier analysis on groups
	2.2 Fourier sum of squares on finite abelian groups
	2.3

	3 Lower bounds by FSOS
	3.1 support selection
	3.2 FSOS with error

	4 Computation of lower bounds
	4.1 our algorithm
	4.2 rounding

	A Numerical experiments
	A.1 lower bounds of random functions
	A.2 upper bounds of MAX-SAT problems
	A.3 rounding for MAX-2SAT problems

	References

