
Operationalizing Assurance Cases for Data Scientists: A

Showcase of Concepts and Tooling in the Context of Test

Data Quality for Machine Learning

Lisa Jöckel1, Michael Kläs1, Janek Groß1, Pascal Gerber1, Markus Scholz2, Jonathan

Eberle3, Marc Teschner3, Daniel Seifert1, Richard Hawkins4, John Molloy4, Jens Ott-

nad3

1Fraunhofer Institute for Experimental Software Engineering IESE, Kaiserslautern, Germany
2NovelSense, Karlsruhe, Germany

3TRUMPF Se + Co. KG, Ditzingen, Germany
4University of York, York, UK

1{lisa.joeckel, janek.gross, michael.klaes, pascal.gerber, daniel.seifert}@iese.fraunhofer.de
2scholz@novelsense.com

3{jonathan.eberle, marc.teschner, jens.ottnad}@trumpf.com
4{richard.hawkins, john.molloy}@york.ac.uk

Abstract. Assurance Cases (ACs) are an established approach in safety engineer-

ing to argue quality claims in a structured way. In the context of quality assurance

for Machine Learning (ML)-based software components, ACs are also being dis-

cussed and appear promising. Tools for operationalizing ACs do exist, yet mainly

focus on supporting safety engineers on the system level. However, assuring the

quality of an ML component within the system is commonly the responsibility of

data scientists, who are usually less familiar with these tools. To address this gap,

we propose a framework to support the operationalization of ACs for ML com-

ponents based on technologies that data scientists use on a daily basis: Python

and Jupyter Notebook. Our aim is to make the process of creating ML-related

evidence in ACs more effective. Results from the application of the framework,

documented through notebooks, can be integrated into existing AC tools. We il-

lustrate the application of the framework on an example excerpt concerned with

the quality of the test data.

Keywords: Testing, Dependability, Artificial Intelligence, Python, Data Analy-

sis Notebook, Safety.

1 Introduction

Assurance Cases (ACs) are a systematic approach to ensure quality in safety engineer-

ing. They are defined as “a reasoned and compelling argument, supported by a body of

evidence, that a system, service or organization will operate as intended for a defined

application in a defined environment” [1]. Most commonly, they are implemented in a

tree structure with the quality claim as the root. The claim is iteratively broken down

into subclaims until these are modular enough for evidence supporting the claim to be

generated.

This preprint has not undergone any post-submission improvements or corrections. The Version of Record
of this contribution is published in Lecture Notes in Computer Science, vol 14483, and is available online at
https://doi.org/10.1007/978-3-031-49266-2_10.

International Conference on Product-Focused Software Process Improvement (PROFES2023)

mailto:daniel.seifert%7d@iese.fraunhofer.de

2

Quality assurance for software systems with Machine Learning (ML) components is

currently a significant area of research and the argumentation of safety and dependabil-

ity of ML components via ACs is also being discussed [2] [3] [4].

There already exist several tools and frameworks for operationalizing ACs, mainly

aimed at supporting safety engineers on the system level [5] [6] [7] [8] [9]. These tools

could also be applied for quality assurance of ML components within a software sys-

tem. However, data scientists are seldom familiar with these tools. Data scientists often

use Python and data analysis notebooks like Jupyter Notebook [10], which is a web-

based computing environment for usage in a web browser. One of the distinguishing

features of Jupyter Notebook is the combination of textual elements, executable code

blocks, and computational output, allowing for documents that include textual or visual

explanations as well as interaction via executable code. This makes it easier to create

reproducible and understandable routines since the code is embedded within the docu-

ment itself. Notebooks are portable between different users or operating systems and

support several programming languages, including those popular with data scientists,

such as Python and R.

In this work, we propose the framework pyAC, which is based on Python and Jupyter

Notebook. The framework supports data scientists by enabling them to operationalize

ACs for ML components in their familiar developing environments. This eliminates the

need for them to learn other AC tools in depth. pyAC allows integrating the resulting

evidence into external AC tools. This is possible in two ways: (A) First, the claims for

the ML component are completely refined in the external tool. Then evidence is gener-

ated using pyAC, and finally, the evidence is provided to the external tool. (B) Further

refinement of the claims for the ML component is done in pyAC. The evidence is gen-

erated for all subclaims and then accumulated evidence is provided to the external tool.

There are three main contributions in this work. First, we introduce the tooling

framework pyAC, which is specifically designed for data scientists to support them in

operationalizing ACs for ML components. We present how to integrate this framework

into existing AC tools. Second, we describe how the elements and the structure of an

AC can be implemented in Jupyter Notebook and Python. Third, we illustrate how to

apply the framework on an example AC excerpt where the quality of test data is assured.

The paper is structured as follows: Section 2 provides background and related work

on ACs. Section 3 introduces the concept of the tooling framework pyAC. Section 4

illustrates the application of pyAC on test data quality. Section 5 presents future direc-

tions and concludes the paper.

2 Background and Related Work on Assurance Cases

ACs are an established approach to assure the safety of a software system but are also

discussed to assure other qualities, e.g., fairness [11]. They are predominantly imple-

mented in a graphical form as a tree structure, which starts at a claim about a system

property in its related operating context. Based on the iterative application of suitable

strategies, with their related assumptions and justifications, a (complex) claim is de-

composed into subclaims until evidence can be provided to justify the validity of the

3

subclaims [12]. ACs can be structured based on, e.g., the Claims-Argument-Evidence

(CAE) or the Goal Structuring Notation (GSN) [1] approach, which primarily differ in

the designation of their structuring elements [12] [13]. The concept of ACs also appears

promising for application in systems containing ML-based components [14] [3] [4].

Various tools supporting the creation of ACs exist [15], such as ASCE [5], ISCaDE

[6], Astah GSN [7], from Confiance.ai [8], or safeTbox [9], which are mainly designed

to support safety engineers in assuring system-level safety. With these tools, ACs can

be created from scratch in a flexible manner for a specific system. Some of them are

based on proprietary software platforms, which additionally require a certain amount

of expertise. The AMLAS Tool [16] already gives guidance by providing patterns for

assuring the ML component that need to be instantiated for a use case. However, to the

best of our knowledge, no tools exist that specifically support data scientists in creating

evidence for the quality assurance of ML components in a development environment

that they use on a daily basis.

For the Open Dependability Exchange (ODE) metamodel, which aims at tool-inde-

pendent exchange of safety-related artifacts, extensions for enabling the integration of

ML assurance-related artifacts are intended [17]. Tools that are compatible with the

ODE metamodel, such as safeTbox, could complement pyAC by providing the AC on

the comprehensive system level.

3 Tooling Framework for Operationalizing Assurance

Cases for ML

This section describes the concept of the pyAC framework and how it operationalizes

the AC structure and elements using Python and Jupyter Notebook. The framework

supports three purposes: (A) It provides guidance for data scientists to implement the

AC; (B) it can be applied to a use case to generate evidence for the claimed quality of

the ML component; and (C) it can be used for validation of the AC by an (external)

assessor, thus providing auditability and reproducibility. An overview of the framework

architecture together with the three purposes is shown in Fig. 1.

The framework contains claims, measures, and blueprints as assurance case ele-

ments (AC elements), which are instances of their respective Python class (i.e., Claim,

Measure, or Blueprint). They inherit from AssuranceCaseElement, which

provides basic functionalities like storing/loading/deleting a class instance, versioning,

or providing an HTML-formatted summary of information on this element. AC ele-

ments are created, described, and adjusted in Jupyter Notebook. Notebooks can be

stored as documentation in HTML or PDF format.

Claims are either inner nodes or leaves of the tree-like structure of ACs. As inner

nodes, they contain a strategy for refinement into subclaims, as well as a reference to

their subclaims. As leaves, claims are not further refined by subclaims and get a refer-

ence to the evidence supporting the claim, which are realized blueprints. A conclusion

4

can be added as a justification over the evidence, i.e., if and how the evidence from one

or multiple realized blueprints shows that the claim holds. A claim can contain one or

multiple contexts or assumptions described in textual form. Furthermore, a claim con-

tains a list of references to available measures. A quality measure together with a blue-

print is intended to provide evidence for a claim. A measure can be performed in various

ways. For example, a measure for detecting outliers in the dataset might either apply

one selected outlier detection technique or apply multiple techniques and combine the

outliers found. A blueprint is a concrete way to implement a measure and provides

step-by-step guidance to apply it for a specific use case, which we refer to as a realized

blueprint. Measures contain a list of references to available blueprints that implement

the measure. Blueprints contain a justification that they have the ability to sufficiently

address the corresponding claim. Moreover, the applied blueprint keeps information on

the model and data versions used, which can also be updated to create a new documen-

tation. A conclusion is added to describe the contribution of the generated evidence to

the corresponding claim.

All notebooks contain a summary section loading a previously stored AC element

and providing summarized information on the AC element, an overview of generated

documentation versions (i.e., the exported HTML/PDF versions of the notebook), and

(Realized) Blueprint

[project-name]/notebook/blueprint/detect_label_faults_w_conf_learning.ipynb: Notebook

‘lf_conf’: ID, ‘detect_label_faults_w_conf_learning’: Name
‘Detect potentially incorrect labels with confident learning approach.’: Description

‘m_lf’: Measure

‘Detect incorrect labels and revise them’: Measure Description
‘Confident learning detects potentially incorrect labels, which can be revised. This
contributes to the claim label faults do not correctly model the dependency of expected
outcome to the provided input.‘ : Justification

‘v2023-07’: Reference Version of Data and Model

‘[…] potential label faults were found and checked. […] were indeed incorrect and manually
revised.’: Conclusion

detect_label_faults_w_conf_learning.html: Documentation

Measure

[project-name]/notebook/measure/
m_detect_label_fault.ipynb: Notebook

‘m_lf’: ID, ‘m_detect_label_fault’: Name
‘Detect incorrect labels and revise them’:
Description

[lf_conf: Blueprint, …]: Available Blueprints

A measure can be performed
in various ways. A blueprint
describes one way.

Purpose B: “Apply pyAC to a use case to
provide evidence for the claimed quality”

Purpose A: “Provide guidance to implement
an assurance case”

Technique

confidentlearning.py: Module

Technique

some_other_technique.py: Module

A measure together with a blueprint aim at
providing an evidence for the addressed claim.

A blueprint applies (multiple) techniques. Techniques
are not specific for a certain assurance case.

Claim

[project-name]/notebook/claim/c_data_analysis.ipynb: Notebook

‘da’: ID, ‘c_data_analysis’: Name
‘Quality assurance measures during data analysis to reduce quality deficits in the
data used during testing are as effective as reasonable practicable’: Description
‘Argument over IID for test data’: Decomposition Strategy

[da_iod, …]: Sub-Claims

Claim

[project-name]/notebook/claim/c_da_input_outcome_dependency.ipynb: Notebook

‘da_iod’ : ID, ‘c_da_input_outcome_dependency’: Name
‘Effects of data that do not correctly model the dependency of the intended
outcomes on the provided inputs are considered’: Description

[m_lf: Measure, …]: Available Measures

[lf_conf: Blueprint, …]: Evidences
‘[…] potential label faults were found and checked. […] were indeed incorrect and
manually revised.’: Conclusion

Further Sub-Claims

project-name := assurance

project-name := usecase_project

Purpose C: “Provide a validation basis for an
(external) assessor”

Claims are iteratively refined into Sub-Claims.

project-name := usecase_project

Fig. 1. Framework architecture for operationalizing ACs illustrated on the example of detecting

label faults. AC elements, techniques, and their relations are depicted for the three different

purposes of the framework (indicated by color).

5

the most recently added conclusion (in the case of claims and blueprints). This section

mainly targets the purpose of providing a validation basis for an assessor. The manage-

ment section creates a new AC element, manages its versions, and stores it. Measures

provide an overview of available blueprints, while claims provide an overview of avail-

able measures. Claims further reference their contributing evidence and the justifica-

tions over them. Blueprints contain an additional blueprint section describing the steps

to generate the evidence when applying the blueprint for a specific use case.

Besides AC elements, the framework contains techniques, which are implemented

in Python modules and inherit from the class Technique. They are compliant with

the estimator interface of the Machine Learning package scikit-learn [18]. Techniques

are either based on existing packages like scikit-learn or are implemented as custom

techniques. They can be used in the blueprint Jupyter notebooks; e.g., a technique using

scikit-learn’s isolation forest might be applied as part of a measure to detect outliers.

The framework in its bare form is intended to provide a basic collection of AC ele-

ments and techniques that are not realized and adapted for a specific use case yet. The

process for applying the framework for a use case is depicted in Fig. 2. For a use case,

already available AC elements can be assembled and applied. If further AC elements

or techniques are needed, respective notebooks (or Python modules in the case of tech-

niques) can be added, which will extend the framework over time. Elements and docu-

mentation are only stored when the AC elements are applied for a use case.

4 Quality Assurance of Test Data

In this section, we illustrate the application of the framework (using the process de-

picted in Fig. 2) on an excerpt of the AC that is concerned with the quality assurance

AMLAS Tool

External Safety Tools
for Assurance Cases

 Identify a claim for which ML-related evidence
needs to be provided.

 Check availability of the claim in pyAC, if not, either:
2.1 create a corresponding claim in pyAC
2.2 refine the claim into a set of more specific claims in
the external tool. →

 Refine the claim into a set of more specific claims in
pyAC if required.

(Refined) ML-related
claims in pyAC

 Choose a measure that can provide the required
piece of evidence. Exception: If no measure is referred
to in the claim or available in the pyAC framework,
check related standards and literature overviews.

 Select a blueprint that explains how to realize the
measure. Exception: If no blueprint is referred to by the
measure in the pyAC framework check related work and
white papers.

“Apply statistical means to
identify data points with
high probability of having
an incorrect label”

 Realize the blueprint considering ML model specifics
during adaptation and selection of appropriate
techniques.

Techniques based on existing external
libraries or from scratch.

Executable
Jupyter notebooks

Jupyter notebooks
(templates) in pyAC

Badgers

External Python libraries
for data analysis and

preprocessing

Jupyter notebooks
with results

 Obtain results for the blueprint
realization by executing the analysis in the
Jupyter notebooks.

 Register evidence in the corresponding
claim after analyzing and documenting the
blueprint realization with its results and
conclusion.

 Link cumulated evidence document
that comprises all pieces of evidence
and related claim refinements to the
external AC tooling.

Evidence as version-
controlled document

Cumulated
evidence
document

PDF

Fig. 2. Process for applying the pyAC framework for a specific use case.

6

of the test data. Data is used during the whole lifecycle of the ML component, e.g., for

fitting the model parameters as well as for validating and testing the DDM. Hence, data

quality assurance is an important part of the overall quality assurance of the ML com-

ponent [3]. Compared to traditional software testing, different concepts are used for

ML testing, which are mainly based on determining the performance of the ML com-

ponent on a test dataset using statistical evaluation metrics [19]. Hence, deriving de-

pendable test results strongly depends on the quality of the test data [20]. Three key

quality characteristics for test data were derived from the property of random samples

that they are independent and identically distributed (IID): The test data (1) was unseen

during model development, (2) provides model inputs that are representative of the in-

tended application scope of the ML component, and (3) models the relation between

model inputs and intended outcomes correctly [20].

Each dataset is associated with a data lifecycle starting with the specification of re-

quirements on the data (i.e., data specification). Data construction includes data collec-

tion and data preparation. Data analysis aims at finding weak points in the dataset in

order to improve it. Data testing estimates the amount of remaining weak points to be

considered in the test result of the DDM. Data operation refers to the application of the

data for training, validation, or testing of the DDM. The key characteristics of test data

need to be addressed by various measures during different lifecycle phases of the test

data. E.g., representativity can be addressed by appropriate sampling approaches to col-

lect data combined with approaches to enhance the data with realistically occurring

quality issues (e.g., [21] [22]). A common problem regarding the correctness of the

input-outcome relationship are incorrect labels, i.e., annotated ground truth infor-

mation. In the following, we will illustrate the application of the presented framework

on the example of detecting incorrect labels during data analysis and revising them,

thereby reducing the risk arising from a test result derived from unreliable data. From

Summary Section
ID: lf_conf
Name: detect_label_faults_w_conf_learning
Description: Detect potentially incorrect labels with confident
learning approach.
Realized measure: Detect incorrect labels and revise them
Data/model version: v2023-07
Element version: 1663591378 1690280832
Documentation version:

Conclusion: Three potential stop signs not being labeled as
such were found and checked. The signs were indeed no stop
signs and were not revised.

Management Section
Create AC element:
ac_elem = elem_cls(**elem_param_dict)
Set/Update version:
ac_elem.set_element_version()
Store AC element:
ac_elem.save()

Blueprint Section
Step Initial: Evidence version
ac_elem.set_documentation_timestamp() # Set evidence timestamp

Step1: Load and prepare data
data=DataPreprocessor().get_dataset_df(‘test’) # Load test dataset
ac_elem.update_ref_version(‘v2023-07’) # Set data and model version
Only differentiate between classes ‘stop’ and ‘not_stop’
data.loc[data[‘signtype’] != ‘stop’, ‘signtype’] = ‘not_stop’

Step2: Load DDM and get prediction probabilities per class per data point
ddm = TrafficSignRecognitionCNN.load(path_to_ddm) # Load DDM
prop_pred = ddm.predict_proba(data) # Prediction probabilities

Step3: Use confident learning to compute number of label confusions per class
label_confusion_matrix = compute_confident_joint(data[‘signtype’],

prob_pred)→ see label confusion matrix (left)

Step4: Determine data points with potentially incorrect labels, check them manually
and revise
data_w_label_fault = data.loc[get_noise_indices(data[‘signtype’],

prob_pred)] # Get indices of potentially incorrect labels
stop_sign_w_label_fault = data_w_label_fault.loc[

data_w_label_fault[‘signtype’] == ‘not_stop’] # Label fault
candidates of stop signs → see label fault candidates (left)

Step Conclusion: Describe and add conclusion, create documentation, save realized
blueprint
ac_elem.add_conclusion(‘Three potential stop signs not being labeled

as such were found and checked. The signs were indeed no stop
signs and were not revised.’) # Add conclusion

ac_elem.create_documentation() # Create HTML/PDF documentation
ac_elem.save(overwrite=True) # Save blueprint instance

CL-Label:
‘stop’

CL-Label:
‘not_stop’

3269518Original label:
‘not_stop’

645411Original label:
‘stop’

CL-LabelOriginal labelIndex

StopNo overtaking326246

StopSpeed limit 30 km/h95080

StopNo entry216408

…Data/model versionDate and timeTimestamp

…v2022-082022-09-19 14:43:121663591392

…v2023-072023-07-25 12:27:121690280832

Label confusion matrix (Step 3):
Label fault candidates (Step 4):

Fig. 3. Overview of a realized blueprint notebook for dealing with incorrectly labeled data

points on the example of traffic sign images annotated with their traffic sign type, illustrating

the three sections and example code snippets.

7

a safety perspective, this contributes to the risk acceptance criterion ALARP, which

states that the risk remaining after the application of the quality measures is As Low As

Reasonably Practicable [23].

In Fig. 1, the framework architecture is illustrated on the example of detecting in-

correct labels. The claim regarding quality measures applied during data analysis is

based on the ALARP criterion and is divided into subclaims for each key characteristic

of the test data. The quality measure for detecting and revising incorrect labels is im-

plemented by a blueprint using confident learning [24] to identify potentially incorrect

labels, which are then checked and revised if necessary. An overview of the blueprint

is shown in Fig. 3, showing the summary, management, and blueprint section together

with some code snippets.

5 Conclusion and Future Directions

We have proposed a lightweight Python-based framework named pyAC for operation-

alizing ACs to assure qualities of ML components, focusing on smooth integration into

the daily work of data scientists. We introduced how AC claims can be refined in pyAC

and how evidence supporting the subclaims is implemented by quality measures and

blueprints. By applying pyAC on an example in the context of test data quality, we

illustrated the process of using the framework for a use case. We further presented three

main purposes of pyAC: providing templates for data scientists, instantiating them for

a use case, and providing a validation basis for assessors.

We also outlined the possibilities of integrating pyAC-generated artifacts into exist-

ing AC tools that assure the software system. One possibility is for claims regarding

ML components to be completely refined using the external AC tool and pyAC-gener-

ated evidence addressing the refined subclaims. Another possibility provides a higher-

level claim regarding the quality of the ML component and pyAC further refines this

claim in addition to generating evidence.

In future work, we plan to integrate the pyAC-generated artifacts into existing tools

such as AMLAS, which already provides an argumentation structure for ML compo-

nents, or safeTbox, which focuses on assuring the safety of the overall system. Integra-

tion of pyAC into external AC tools supports combining capabilities concerning data

science and classical software and systems engineering.

pyAC is a step towards the assurance of AI systems, and seems promising in terms

of simplifying the verification and validation of these systems by providing support and

guidance for data scientists. We hope that our contribution will facilitate the develop-

ment of more robust and reliable AI systems, and we look forward to further exploration

and development of our framework and its potential applications.

Acknowledgments. Parts of this work have been funded by the German Federal Min-

istry of Education and Research (BMBF) in the project "DAITA", by the project

"LOPAAS" as part of the internal funding program "ICON" of the Fraunhofer-Gesell-

schaft, by the project "AIControl" as part of the funding program "KMU akut" of the

Fraunhofer-Gesellschaft, and by the German Federal Ministry for Economic Affairs

and Energy in the project "SPELL".

8

References

1. "GSN community standard version 1," 2011, https://scsc.uk/r141:1?t=1. [28.07.2023].

2. M. S. Feather, P. C. Slingerland, S. Guerrini and M. Spolaor, "Assurance Guidance for

Machine Learning in a Safety-Critical System," WAAM 2022.

3. M. Kläs, R. Adler, L. Jöckel, J. Groß and J. Reich, "Using Complementary Risk Acceptance

Criteria to Structure Assurance Cases for Safety-Critical AI Components," AISafety 2021.

4. R. Hawkins, C. Paterson, C. Picardi, Y. Jia, R. Calinescu, et al., "Guidance on the Assurance

of Machine Learning in Autonomous Systems (AMLAS)," arXiv:2102.01564, 2021.

5. "ASCE Software Overview," https://www.adelard.com/asce/. [28.07.2023].

6. "Integrated Safety Case Development Environment," http://www.iscade.co.uk/.

[28.07.2023].

7. "Astah GSN," https://astah.net/products/astah-gsn/. [28.07.2023].

8. M. Adedjouma, C. Alix, L. Cantat, E. Jenn, J. Mattioli, B. Robert, F. Tschirhart and J.-L.

Voirin, "Engineering Dependable AI Systems," SOSE 2022.

9. V. Moncada and V. Santiago, "Towards proper tool support for component-oriented and

model-based development of safety critical systems," Commercial Vehicle Technology,

2016.

10. T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, et al., "Jupyter

Notebooks-a publishing format for reproducible computational workflows," ElPub 2016.

11. M. P. Hauer, R. Adler and K. Zweig, "Assuring Fairness of Algorithmic Decision Making,"

ITEQS 2021.

12. J. M. Rushby, X. Xu, M. Rangarajan and T. L. Weaver, "Understanding and Evaluating

Assurance Cases," NASA Technical Report No. NF1676L-22111, 2015.

13. R. Wei, T. P. Kelly, X. Dai, S. Zhao and R. Hawkins, "Model based system assurance using

the structured assurance case metamodel," Journal of Systems and Software, 2019.

14. BSI, Fraunhofer HHI, Verband der TÜV, "Towards Auditable AI Systems," 2021.

15. M. Maksimov, N. L. S. Fung, S. Kokaly and M. Chechik, "Two Decades of Assurance Case

Tools: A Survey," Developments in Language Theory, 2018.

16. "AMLAS Tool," https://www.york.ac.uk/assuring-autonomy/guidance/amlas/amlas-tool/.

[28.07.2023].

17. M. Zeller, I. Sorokos, J. Reich, R. Adler and D. Schneider, "Open Dependability Exchange

Metamodel: A Format to Exchange Safety Information," RAMS 2023.

18. F. Pedregosa, G. Varoquaux , A. Gramfort, V. Michel, B. Thirion, et al., "Scikit-learn:

Machine learning in Python," Journal of machine Learning research, 2011.

19. L. Jöckel, T. Bauer, M. Kläs and M. Hauer, "Towards a Common Testing Terminology for

Software Engineering and Data Science Experts," PROFES 2021.

20. M. Kläs, L. Jöckel, R. Adler and J. Reich, "Integrating Testing and Operation-related

Quantitative Evidences in Assurance Cases to Argue Safety of Data-Driven AI/ML

Components," arXiv:2202.05313, 2022.

21. L. Jöckel and M. Kläs, "Increasing trust in data-driven model validation – A framework for

probabilistic augmentation of images and meta-data generation using application scope

characteristics," SafeComp 2019.

22. J. Siebert, D. Seifert, P. Kelbert, M. Kläs and A. Trendowicz, "Badgers: generating data

quality deficits with Python," in arXiv:2307.04468, 2023.

23. IEC, IEC 61508-5:2010 – Functional Safety of Electrical/Electronic/Programmable

Electronic Safety-related Systems, 2021.

24. C. G. Northcutt , L. Jiang and I. L. Chuang, "Confident learning: Estimating uncertainty in

dataset labels," Artificial Intelligence Research, 2021.

