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Abstract. Assurance Cases (ACs) are an established approach in safety engineer-

ing to argue quality claims in a structured way. In the context of quality assurance 

for Machine Learning (ML)-based software components, ACs are also being dis-

cussed and appear promising. Tools for operationalizing ACs do exist, yet mainly 

focus on supporting safety engineers on the system level. However, assuring the 

quality of an ML component within the system is commonly the responsibility of 

data scientists, who are usually less familiar with these tools. To address this gap, 

we propose a framework to support the operationalization of ACs for ML com-

ponents based on technologies that data scientists use on a daily basis: Python 

and Jupyter Notebook. Our aim is to make the process of creating ML-related 

evidence in ACs more effective. Results from the application of the framework, 

documented through notebooks, can be integrated into existing AC tools. We il-

lustrate the application of the framework on an example excerpt concerned with 

the quality of the test data. 

Keywords: Testing, Dependability, Artificial Intelligence, Python, Data Analy-

sis Notebook, Safety. 

1 Introduction 

Assurance Cases (ACs) are a systematic approach to ensure quality in safety engineer-

ing. They are defined as “a reasoned and compelling argument, supported by a body of 

evidence, that a system, service or organization will operate as intended for a defined 

application in a defined environment” [1]. Most commonly, they are implemented in a 

tree structure with the quality claim as the root. The claim is iteratively broken down 

into subclaims until these are modular enough for evidence supporting the claim to be 

generated. 
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Quality assurance for software systems with Machine Learning (ML) components is 

currently a significant area of research and the argumentation of safety and dependabil-

ity of ML components via ACs is also being discussed [2] [3] [4]. 

There already exist several tools and frameworks for operationalizing ACs, mainly 

aimed at supporting safety engineers on the system level [5] [6] [7] [8] [9]. These tools 

could also be applied for quality assurance of ML components within a software sys-

tem. However, data scientists are seldom familiar with these tools. Data scientists often 

use Python and data analysis notebooks like Jupyter Notebook [10], which is a web-

based computing environment for usage in a web browser. One of the distinguishing 

features of Jupyter Notebook is the combination of textual elements, executable code 

blocks, and computational output, allowing for documents that include textual or visual 

explanations as well as interaction via executable code. This makes it easier to create 

reproducible and understandable routines since the code is embedded within the docu-

ment itself. Notebooks are portable between different users or operating systems and 

support several programming languages, including those popular with data scientists, 

such as Python and R. 

In this work, we propose the framework pyAC, which is based on Python and Jupyter 

Notebook. The framework supports data scientists by enabling them to operationalize 

ACs for ML components in their familiar developing environments. This eliminates the 

need for them to learn other AC tools in depth. pyAC allows integrating the resulting 

evidence into external AC tools. This is possible in two ways: (A) First, the claims for 

the ML component are completely refined in the external tool. Then evidence is gener-

ated using pyAC, and finally, the evidence is provided to the external tool. (B) Further 

refinement of the claims for the ML component is done in pyAC. The evidence is gen-

erated for all subclaims and then accumulated evidence is provided to the external tool.  

There are three main contributions in this work. First, we introduce the tooling 

framework pyAC, which is specifically designed for data scientists to support them in 

operationalizing ACs for ML components. We present how to integrate this framework 

into existing AC tools. Second, we describe how the elements and the structure of an 

AC can be implemented in Jupyter Notebook and Python. Third, we illustrate how to 

apply the framework on an example AC excerpt where the quality of test data is assured. 

The paper is structured as follows: Section 2 provides background and related work 

on ACs. Section 3 introduces the concept of the tooling framework pyAC. Section 4 

illustrates the application of pyAC on test data quality. Section 5 presents future direc-

tions and concludes the paper. 

2 Background and Related Work on Assurance Cases 

ACs are an established approach to assure the safety of a software system but are also 

discussed to assure other qualities, e.g., fairness [11]. They are predominantly imple-

mented in a graphical form as a tree structure, which starts at a claim about a system 

property in its related operating context. Based on the iterative application of suitable 

strategies, with their related assumptions and justifications, a (complex) claim is de-

composed into subclaims until evidence can be provided to justify the validity of the 
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subclaims [12]. ACs can be structured based on, e.g., the Claims-Argument-Evidence 

(CAE) or the Goal Structuring Notation (GSN) [1] approach, which primarily differ in 

the designation of their structuring elements [12] [13]. The concept of ACs also appears 

promising for application in systems containing ML-based components [14] [3] [4]. 

Various tools supporting the creation of ACs exist [15], such as ASCE [5], ISCaDE 

[6], Astah GSN [7], from Confiance.ai [8], or safeTbox [9], which are mainly designed 

to support safety engineers in assuring system-level safety. With these tools, ACs can 

be created from scratch in a flexible manner for a specific system. Some of them are 

based on proprietary software platforms, which additionally require a certain amount 

of expertise. The AMLAS Tool  [16] already gives guidance by providing patterns for 

assuring the ML component that need to be instantiated for a use case. However, to the 

best of our knowledge, no tools exist that specifically support data scientists in creating 

evidence for the quality assurance of ML components in a development environment 

that they use on a daily basis. 

For the Open Dependability Exchange (ODE) metamodel, which aims at tool-inde-

pendent exchange of safety-related artifacts, extensions for enabling the integration of 

ML assurance-related artifacts are intended [17]. Tools that are compatible with the 

ODE metamodel, such as safeTbox, could complement pyAC by providing the AC on 

the comprehensive system level. 

3 Tooling Framework for Operationalizing Assurance 

Cases for ML 

This section describes the concept of the pyAC framework and how it operationalizes 

the AC structure and elements using Python and Jupyter Notebook. The framework 

supports three purposes: (A) It provides guidance for data scientists to implement the 

AC; (B) it can be applied to a use case to generate evidence for the claimed quality of 

the ML component; and (C) it can be used for validation of the AC by an (external) 

assessor, thus providing auditability and reproducibility. An overview of the framework 

architecture together with the three purposes is shown in Fig. 1.  

The framework contains claims, measures, and blueprints as assurance case ele-

ments (AC elements), which are instances of their respective Python class (i.e., Claim, 

Measure, or Blueprint). They inherit from AssuranceCaseElement, which 

provides basic functionalities like storing/loading/deleting a class instance, versioning, 

or providing an HTML-formatted summary of information on this element. AC ele-

ments are created, described, and adjusted in Jupyter Notebook. Notebooks can be 

stored as documentation in HTML or PDF format.  

Claims are either inner nodes or leaves of the tree-like structure of ACs. As inner 

nodes, they contain a strategy for refinement into subclaims, as well as a reference to 

their subclaims. As leaves, claims are not further refined by subclaims and get a refer-

ence to the evidence supporting the claim, which are realized blueprints. A conclusion 
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can be added as a justification over the evidence, i.e., if and how the evidence from one 

or multiple realized blueprints shows that the claim holds. A claim can contain one or 

multiple contexts or assumptions described in textual form. Furthermore, a claim con-

tains a list of references to available measures. A quality measure together with a blue-

print is intended to provide evidence for a claim. A measure can be performed in various 

ways. For example, a measure for detecting outliers in the dataset might either apply 

one selected outlier detection technique or apply multiple techniques and combine the 

outliers found. A blueprint is a concrete way to implement a measure and provides 

step-by-step guidance to apply it for a specific use case, which we refer to as a realized 

blueprint. Measures contain a list of references to available blueprints that implement 

the measure. Blueprints contain a justification that they have the ability to sufficiently 

address the corresponding claim. Moreover, the applied blueprint keeps information on 

the model and data versions used, which can also be updated to create a new documen-

tation. A conclusion is added to describe the contribution of the generated evidence to 

the corresponding claim. 

All notebooks contain a summary section loading a previously stored AC element 

and providing summarized information on the AC element, an overview of generated 

documentation versions (i.e., the exported HTML/PDF versions of the notebook), and 

(Realized) Blueprint

[project-name]/notebook/blueprint/detect_label_faults_w_conf_learning.ipynb: Notebook

‘lf_conf’: ID, ‘detect_label_faults_w_conf_learning’: Name
‘Detect potentially incorrect labels with confident learning approach.’: Description

‘m_lf’: Measure

‘Detect incorrect labels and revise them’: Measure Description
‘Confident learning detects potentially incorrect labels, which can be revised. This 
contributes to the claim label faults do not correctly model the dependency of expected 
outcome to the provided input.‘ : Justification

‘v2023-07’: Reference Version of Data and Model

‘[…] potential label faults were found and checked. […] were indeed incorrect and manually  
revised.’: Conclusion

detect_label_faults_w_conf_learning.html: Documentation

Measure

[project-name]/notebook/measure/
m_detect_label_fault.ipynb: Notebook

‘m_lf’: ID, ‘m_detect_label_fault’: Name
‘Detect incorrect labels and revise them’: 
Description

[lf_conf: Blueprint, …]: Available Blueprints

A measure can be performed 
in various ways. A blueprint 
describes one way.

Purpose B: “Apply pyAC to a use case to 
provide evidence for the claimed quality”

Purpose A: “Provide guidance to implement 
an assurance case”

Technique

confidentlearning.py: Module

Technique

some_other_technique.py: Module

A measure together with a blueprint aim at 
providing an evidence for the addressed claim.

A blueprint applies (multiple) techniques. Techniques 
are not specific for a certain assurance case.

Claim

[project-name]/notebook/claim/c_data_analysis.ipynb: Notebook

‘da’: ID, ‘c_data_analysis’: Name
‘Quality assurance measures during data analysis to reduce quality deficits in the 
data used during testing are as effective as reasonable practicable’: Description
‘Argument over IID for test data’: Decomposition Strategy

[da_iod, …]: Sub-Claims

Claim

[project-name]/notebook/claim/c_da_input_outcome_dependency.ipynb: Notebook

‘da_iod’ : ID, ‘c_da_input_outcome_dependency’: Name
‘Effects of data that do not correctly model the dependency of the intended 
outcomes on the provided inputs are considered’: Description

[m_lf: Measure, …]: Available Measures

[lf_conf: Blueprint, …]: Evidences
‘[…] potential label faults were found and checked. […] were indeed incorrect and 
manually  revised.’: Conclusion

Further Sub-Claims

project-name := assurance

project-name := usecase_project

Purpose C: “Provide a validation basis for an 
(external) assessor”

Claims are iteratively refined into Sub-Claims.

project-name := usecase_project

Fig. 1. Framework architecture for operationalizing ACs illustrated on the example of detecting 

label faults. AC elements, techniques, and their relations are depicted for the three different 

purposes of the framework (indicated by color). 
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the most recently added conclusion (in the case of claims and blueprints). This section 

mainly targets the purpose of providing a validation basis for an assessor. The manage-

ment section creates a new AC element, manages its versions, and stores it. Measures 

provide an overview of available blueprints, while claims provide an overview of avail-

able measures. Claims further reference their contributing evidence and the justifica-

tions over them. Blueprints contain an additional blueprint section describing the steps 

to generate the evidence when applying the blueprint for a specific use case. 

Besides AC elements, the framework contains techniques, which are implemented 

in Python modules and inherit from the class Technique. They are compliant with 

the estimator interface of the Machine Learning package scikit-learn [18]. Techniques 

are either based on existing packages like scikit-learn or are implemented as custom 

techniques. They can be used in the blueprint Jupyter notebooks; e.g., a technique using 

scikit-learn’s isolation forest might be applied as part of a measure to detect outliers. 

The framework in its bare form is intended to provide a basic collection of AC ele-

ments and techniques that are not realized and adapted for a specific use case yet. The 

process for applying the framework for a use case is depicted in Fig. 2. For a use case, 

already available AC elements can be assembled and applied. If further AC elements 

or techniques are needed, respective notebooks (or Python modules in the case of tech-

niques) can be added, which will extend the framework over time. Elements and docu-

mentation are only stored when the AC elements are applied for a use case. 

4 Quality Assurance of Test Data 

In this section, we illustrate the application of the framework (using the process de-

picted in Fig. 2) on an excerpt of the AC that is concerned with the quality assurance 

AMLAS Tool

External Safety Tools 
for Assurance Cases

 Identify a claim for which ML-related evidence 
needs to be provided.

 Check availability of the claim in pyAC, if not, either: 
2.1 create a corresponding claim in pyAC
2.2 refine the claim into a set of more specific claims in 
the external tool. →

 Refine the claim into a set of more specific claims in 
pyAC if required.

(Refined) ML-related 
claims in pyAC 

 Choose a measure that can provide the required 
piece of evidence. Exception: If no measure is referred 
to in the claim or available in the pyAC framework, 
check related standards and literature overviews.

 Select a blueprint that explains how to realize the 
measure. Exception: If no blueprint is referred to by the 
measure in the pyAC framework check related work and 
white papers.

“Apply statistical means to 
identify data points with 
high probability of having 
an incorrect label”   

 Realize the blueprint considering ML model specifics 
during adaptation and selection of appropriate 
techniques.

Techniques based on existing external 
libraries or from scratch.

Executable 
Jupyter notebooks 

Jupyter notebooks 
(templates) in pyAC 

Badgers

External Python libraries 
for data analysis and 

preprocessing

Jupyter notebooks 
with results

 Obtain results for the blueprint 
realization by executing the analysis in the 
Jupyter notebooks. 

 Register evidence in the corresponding 
claim after analyzing and documenting the 
blueprint realization with its results and 
conclusion.

 Link cumulated evidence document 
that comprises all pieces of evidence 
and related claim refinements to the 
external AC tooling.

Evidence as version-
controlled document

Cumulated 
evidence 
document 

PDF

Fig. 2. Process for applying the pyAC framework for a specific use case. 
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of the test data. Data is used during the whole lifecycle of the ML component, e.g., for 

fitting the model parameters as well as for validating and testing the DDM. Hence, data 

quality assurance is an important part of the overall quality assurance of the ML com-

ponent [3]. Compared to traditional software testing, different concepts are used for 

ML testing, which are mainly based on determining the performance of the ML com-

ponent on a test dataset using statistical evaluation metrics [19]. Hence, deriving de-

pendable test results strongly depends on the quality of the test data [20]. Three key 

quality characteristics for test data were derived from the property of random samples 

that they are independent and identically distributed (IID): The test data (1) was unseen 

during model development, (2) provides model inputs that are representative of the in-

tended application scope of the ML component, and (3) models the relation between 

model inputs and intended outcomes correctly [20]. 

Each dataset is associated with a data lifecycle starting with the specification of re-

quirements on the data (i.e., data specification). Data construction includes data collec-

tion and data preparation. Data analysis aims at finding weak points in the dataset in 

order to improve it. Data testing estimates the amount of remaining weak points to be 

considered in the test result of the DDM. Data operation refers to the application of the 

data for training, validation, or testing of the DDM. The key characteristics of test data 

need to be addressed by various measures during different lifecycle phases of the test 

data. E.g., representativity can be addressed by appropriate sampling approaches to col-

lect data combined with approaches to enhance the data with realistically occurring 

quality issues (e.g., [21] [22]). A common problem regarding the correctness of the 

input-outcome relationship are incorrect labels, i.e., annotated ground truth infor-

mation. In the following, we will illustrate the application of the presented framework 

on the example of detecting incorrect labels during data analysis and revising them, 

thereby reducing the risk arising from a test result derived from unreliable data. From 

Summary Section
ID: lf_conf
Name: detect_label_faults_w_conf_learning
Description: Detect potentially incorrect labels with confident 
learning approach.
Realized measure: Detect incorrect labels and revise them
Data/model version: v2023-07
Element version: 1663591378 1690280832 
Documentation version:

Conclusion: Three potential stop signs not being labeled as 
such were found and checked. The signs were indeed no stop 
signs and were not revised.

Management Section
Create AC element: 
ac_elem = elem_cls(**elem_param_dict)
Set/Update version:
ac_elem.set_element_version() 
Store AC element:
ac_elem.save()

Blueprint Section
Step Initial:  Evidence version
ac_elem.set_documentation_timestamp() # Set evidence timestamp

Step1: Load and prepare data
data=DataPreprocessor().get_dataset_df(‘test’)  # Load test dataset
ac_elem.update_ref_version(‘v2023-07’)  # Set data and model version
# Only differentiate between classes ‘stop’ and ‘not_stop’
data.loc[data[‘signtype’] != ‘stop’, ‘signtype’] = ‘not_stop’ 

Step2: Load DDM and get prediction probabilities per class per data point
ddm = TrafficSignRecognitionCNN.load(path_to_ddm) # Load DDM
prop_pred = ddm.predict_proba(data) # Prediction probabilities

Step3: Use confident learning to compute number of label confusions per class 
label_confusion_matrix = compute_confident_joint(data[‘signtype’],

prob_pred)→ see label confusion matrix (left)

Step4: Determine data points with potentially incorrect labels, check them manually 
and revise
data_w_label_fault = data.loc[get_noise_indices(data[‘signtype’],

prob_pred)] # Get indices of potentially incorrect labels
stop_sign_w_label_fault = data_w_label_fault.loc[

data_w_label_fault[‘signtype’] == ‘not_stop’] # Label fault 
candidates of stop signs → see label fault candidates (left)

Step Conclusion: Describe and add conclusion, create documentation, save realized 
blueprint
ac_elem.add_conclusion(‘Three potential stop signs not being labeled

as such were found and checked. The signs were indeed no stop 
signs and were not revised.’) # Add conclusion

ac_elem.create_documentation() # Create HTML/PDF documentation
ac_elem.save(overwrite=True) # Save blueprint instance

CL-Label: 
‘stop’

CL-Label: 
‘not_stop’ 

3269518Original label: 
‘not_stop’ 

645411Original label: 
‘stop’

CL-LabelOriginal labelIndex

StopNo overtaking326246

StopSpeed limit 30 km/h95080

StopNo entry216408

…Data/model versionDate and timeTimestamp

…v2022-082022-09-19 14:43:121663591392

…v2023-072023-07-25 12:27:121690280832

Label confusion matrix (Step 3):
Label fault candidates (Step 4):

Fig. 3. Overview of a realized blueprint notebook for dealing with incorrectly labeled data 

points on the example of traffic sign images annotated with their traffic sign type, illustrating 

the three sections and example code snippets.  
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a safety perspective, this contributes to the risk acceptance criterion ALARP, which 

states that the risk remaining after the application of the quality measures is As Low As 

Reasonably Practicable [23]. 

In Fig. 1, the framework architecture is illustrated on the example of detecting in-

correct labels. The claim regarding quality measures applied during data analysis is 

based on the ALARP criterion and is divided into subclaims for each key characteristic 

of the test data. The quality measure for detecting and revising incorrect labels is im-

plemented by a blueprint using confident learning [24] to identify potentially incorrect 

labels, which are then checked and revised if necessary. An overview of the blueprint 

is shown in Fig. 3, showing the summary, management, and blueprint section together 

with some code snippets. 

5 Conclusion and Future Directions 

We have proposed a lightweight Python-based framework named pyAC for operation-

alizing ACs to assure qualities of ML components, focusing on smooth integration into 

the daily work of data scientists. We introduced how AC claims can be refined in pyAC 

and how evidence supporting the subclaims is implemented by quality measures and 

blueprints. By applying pyAC on an example in the context of test data quality, we 

illustrated the process of using the framework for a use case. We further presented three 

main purposes of pyAC: providing templates for data scientists, instantiating them for 

a use case, and providing a validation basis for assessors. 

We also outlined the possibilities of integrating pyAC-generated artifacts into exist-

ing AC tools that assure the software system. One possibility is for claims regarding 

ML components to be completely refined using the external AC tool and pyAC-gener-

ated evidence addressing the refined subclaims. Another possibility provides a higher-

level claim regarding the quality of the ML component and pyAC further refines this 

claim in addition to generating evidence. 

In future work, we plan to integrate the pyAC-generated artifacts into existing tools 

such as AMLAS, which already provides an argumentation structure for ML compo-

nents, or safeTbox, which focuses on assuring the safety of the overall system. Integra-

tion of pyAC into external AC tools supports combining capabilities concerning data 

science and classical software and systems engineering. 

pyAC is a step towards the assurance of AI systems, and seems promising in terms 

of simplifying the verification and validation of these systems by providing support and 

guidance for data scientists. We hope that our contribution will facilitate the develop-

ment of more robust and reliable AI systems, and we look forward to further exploration 

and development of our framework and its potential applications. 
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