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Abstract. Systems that use Machine Learning (ML) have become com- 
monplace for companies that want to improve their products and pro- 
cesses. Literature suggests that Requirements Engineering (RE) can help 
address many problems when engineering ML-enabled systems. However, 
the state of empirical evidence on how RE is applied in practice in the 
context of ML-enabled systems is mainly dominated by isolated case 
studies with limited generalizability. We conducted an international sur- 
vey to gather practitioner insights into the status quo and problems of 
RE in ML-enabled systems. We gathered 188 complete responses from 25 
countries. We conducted quantitative statistical analyses on contempo- 
rary practices using bootstrapping with confidence intervals and qualita- 
tive analyses on the reported problems involving open and axial coding 
procedures. We found significant differences in RE practices within ML 
projects. For instance, (i) RE-related activities are mostly conducted by 
project leaders and data scientists, (ii) the prevalent requirements doc- 
umentation format concerns interactive Notebooks, (iii) the main focus 
of non-functional requirements includes data quality, model reliability, 
and model explainability, and (iv) main challenges include managing 
customer expectations and aligning requirements with data. The quali- 
tative analyses revealed that practitioners face problems related to lack 
of business domain understanding, unclear goals and requirements, low 
customer engagement, and communication issues. These results help to 
provide a better understanding of the adopted practices and of which 
problems exist in practical environments. We put forward the need to 
adapt further and disseminate RE-related practices for engineering ML- 
enabled systems. 
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1 Introduction 

Companies from different sectors are increasingly incorporating Machine Learn- 
ing (ML) components into their software systems. We refer to these software 
systems, where an ML component is part of a larger system, as ML-enabled sys- 
tems. The shift from engineering conventional software systems to ML-enabled 
systems comes with challenges related to the idiosyncrasies of such systems, such 
as addressing additional qualities properties (e.g., fairness and explainability), 
dealing with a high degree of iterative experimentation, and facing unrealistic 
assumptions [21, 25]. Furthermore, the non-deterministic nature of ML-enabled 
systems poses challenges from the viewpoint of software engineering [7]. 

Literature suggests that Requirements Engineering (RE) can help to address 
problems related to engineering ML-enabled systems [1,25,28]. However, research 
on this intersection mainly focuses on using ML techniques to support RE activ- 
ities rather than exploring how RE can improve the development of ML-enabled 
systems [4]. The state of empirical evidence on how RE is applied in practice 
in the context of ML-enabled systems is still weak and dominated by isolated 
studies. 

In order to help addressing these issues, we conducted an international sur- 
vey with the aim to understand the current industrial RE practices and prob- 
lems that practitioners face when developing ML-enabled systems. In total, 188 
practitioners from 25 countries completely answered the survey. Based on prac- 
titioners’ responses, we conducted quantitative and qualitative analyses, provid- 
ing insights into (i) what role is typically in charge of requirements, (ii) how 
requirements are typically elicited and documented, (iii) which non-functional 
requirements typically play a major role, (iv) which RE activities are perceived 
as most difficult, and (v) what RE-related problems do ML practitioners face. 
We share our findings on the state of practice and problems of RE for ML with 
the community to help steer future research on the topic. 

The remainder of this paper is organized as follows. Section II provides the 
background and related work. Section III describes the research method. Section 
IV presents the results. Sections V and VI discuss the results and threats to 
validity. Finally, Section VII presents our concluding remarks. 

 

2 Background and Related Work 

ML involves algorithms that analyze data to create models capable of making 
predictions on new, unseen data [20]. Unlike traditional systems, ML-enabled 
systems learn from data instead of being programmed with predefined rules. 
However, poor-quality data can lead to inaccurate results. This supposes a 
change in the way of designing and developing this type of system. On the other 
hand, RE constitutes approaches to address challenges that are amplified by 
the use of ML, e.g., understanding the problem space, aligning interdisciplinary 
teams, and dealing with stakeholder expectations. 

RE and ML have a special connection. According to Kästner [10], an ML 
model can be seen as a requirements specification based on training data since 
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the data can be seen as a learned description of how the ML model shall behave. 
In this manner, when developing ML models, we need to identify relevant and 
representative data, validate models, and balance model-related user expecta- 
tions (e.g., accuracy versus inference time); just as in RE for traditional systems 
where we need to identify representative stakeholders, validate specifications 
with customers, and address conflicting requirements. 

Current theoretical SE research has identified many challenges with RE for 
ML [3,18,19]. Some studies have proposed new methods or adapted existing ones 
to handle requirements on such systems [9, 26, 27]. While these research contri- 
butions are valuable, gathering empirical evidence from the industry is essential 
to bridge the gap between theory and practice. Collecting practitioners’ insights 
becomes imperative to identify real-world challenges and current practices accu- 
rately. Such studies can provide a better understanding of the practical problems 
that can guide the advancement of new RE for ML techniques and their effec- 
tive implementation in real-world scenarios. In the following, we present studies 
conducted within industry settings involving practitioners to understand RE for 
ML. 

Vogelsang and Borg [28] conducted interviews with four data scientists to 
find out the current practices and what should be done to handle and surpass 
the challenges regarding requirements. They suggest the need for new RE for ML 
solutions or at least the adaptation of existing ones. Habibullah et al. [8] con- 
ducted interviews and a survey to understand how Non-Functional Requirements 
(NFRs) are perceived among ML practitioners. They identified the degree of im- 
portance practitioners place on different NFRs, explored how NFRs are defined 
and measured, and identified associated challenges. 

Recently, Nahar et al. [21] identified challenges in building ML-enabled sys- 
tems through a systematic literature survey aggregating existing studies involv- 
ing interviews or surveys with practitioners of multiple projects. With respect to 
RE, they reported challenges related to unrealistic expectations from stakehold- 
ers, vagueness in ML problem specifications, and additional requirements such 
as regulatory constraints. Scharinger et al. [22] revealed the worries at Siemens 
regarding problems that any ML project is susceptible, listing ML Pitfalls, such 
as lack of decision quality baselines and underestimating costs. They believe that 
RE is the key to avoid this pitfalls and to ripen ML development. 

We complement the valuable research discussed above with additional em- 
pirical evidence on current practices and problems regarding RE for ML-enabled 
systems, obtained from an industrial survey on ML-enabled systems. 

 

3 Research Method 
 

3.1 Goal and Research Questions 
 

The goal of this paper is to characterize the current practices and problems 
experienced by practitioners in the requirements life cycle stage of ML-enabled 
system projects. From this goal, we established the following research questions: 
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– RQ1. What are the contemporary practices of RE for ML-enabled 
systems? This question aims at revealing how practitioners are currently 
approaching RE for ML, identifying trends, prevalent methods, and the ex- 
tent to which the industry aligns with established practices. We refined RQ1 
into more detailed questions as follows: 

• RQ1.1 Who is addressing the requirements of ML-enabled system projects? 

• RQ1.2 How are requirements typically elicited in ML-enabled system 
projects? 

• RQ1.3 How are requirements typically documented in ML-enabled sys- 
tem projects? 

• RQ1.4 Which NFRs do typically play a major role in ML-enabled system 
projects? 

• RQ1.5 Which activities are considered to be most difficult when defining 
requirements for ML-enabled system projects? 

– RQ2. What are the main RE-related problems faced by practi- 
tioners in ML-enabled system projects? Identifying these challenges 
is crucial as it informs the development of strategies to mitigate difficulties, 
helping to steer future research on the topic in a problem-driven manner. 
For this research question, we applied open and axial coding procedures 
to allow the problems to emerge from open-text responses provided by the 
practitioners. 

 
 

3.2 Survey Design 
 

We designed our survey based on best practices of survey research [30], carefully 
conducting the following steps: 

 
– Step 1. Initial Survey Design. We conducted a literature review on RE 

for ML [25] and combined our findings with previous results on RE problems 
[6] and the RE status quo [29] to provide the theoretical foundations for 
questions and answer options. Therefrom, the initial survey was drafted by 
software engineering and machine learning researchers of PUC-Rio (Brazil) 
with experience in R&D projects involving ML-enabled systems. 

– Step 2. Survey Design Review. The survey was reviewed and adjusted 
based on online discussions and annotated feedback from software engineer- 
ing and machine learning researchers of BTH (Sweden). Thereafter, the sur- 
vey was also reviewed by the other co-authors. 

– Step 3. Pilot Face Validity Evaluation. This evaluation involves a 
lightweight review by randomly chosen respondents. It was conducted with 
18 Ph.D. students taking a Survey Research Methods course at UCLM 
(Spain) (taught by the second author). They were asked to provide feed- 
back on the clearness of the questions and to record their response time. 
This phase resulted in minor adjustments related to usability aspects and 
unclear wording. The answers were discarded before launching the survey. 



Status Quo and Problems of RE for ML 5 
 

 

– Step 4. Pilot Content Validity Evaluation. This evaluation involves 
subject experts from the target population. Therefore, we selected five expe- 
rienced data scientists developing ML-enabled systems, asked them to answer 
the survey, and gathered their feedback. The participants had no difficulties 
in answering the survey and it took an average of 20 minutes. After this step, 
the survey was considered ready to be launched. 

 

The final survey started with a consent form describing the purpose of the 
study and stating that it is conducted anonymously. The remainder was divided 
into 15 demographic questions (D1 to D15) followed by three specific parts with 
17 substantive questions (Q1 to Q17): 7 on the ML life cycle and problems, five on 
requirements, and five on deployment and monitoring. This paper focuses on the 
demographics, the ML life cycle problems related to problem understanding and 
requirements, and the specific questions regarding requirements. The excerpts of 
the substantive questions related to this paper are shown in Table 1. The survey 
was implemented using the Unipark Enterprise Feedback Suite. 

 

 
 

 
RQ Survey 

No. 

Table 1: Research questions and survey questions 

Description Type 

 
 

- ... ... ... 

RQ2 Q4 According to your personal experience, please outline the main 
problems or difficulties (up to three) faced during the Problem 
Understanding and Requirements ML life cycle stage. 

Open 

- ... ... ... 

RQ1.1  Q8 Who is actively addressing the requirements of ML-enabled system 
projects in your organization? 

RQ1.2  Q9 How were requirements typically elicited in the ML-enabled system 
projects you participated in? 

RQ1.3  Q10 How were requirements typically documented in the ML-enabled 
system projects you participated in? 

RQ1.4  Q11 Which Non-Functional Requirements (NFRs) typically play a major 
role in terms of criticality in the ML-enabled system projects you 
participated in? 

RQ1.5  Q12 Based on your experience, what activities do you consider most 
difficult when defining requirements for ML-enabled systems? 

Closed 
(MC) 

Closed 
(MC) 

Closed 
(MC) 

Closed 
(MC) 

 

Closed 
(MC) 

- ... ... ... 

 
 

 
3.3 Data Collection 

Our target population concerns professionals involved in building ML-enabled 
systems, including different activities, such as management, design, and devel- 
opment. Therefore, it includes practitioners in positions such as project leaders, 
requirements engineers, data scientists, and developers. We used convenience 
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sampling, sending the survey link to professionals active in our partner compa- 
nies, and also distributed it openly on social media. We excluded participants 
that informed having no experience with ML-enabled system projects. Data col- 
lection was open from January 2022 to April 2022. In total, we received responses 
from 276 professionals, out of which 188 completed all four survey sections. The 
average time to complete the survey was of 20 minutes. We conservatively con- 
sidered only the 188 fully completed survey responses. 

 
3.4 Data Analysis Procedures 

For data analysis purposes, given that all questions were optional, the number 
of responses varies across the survey questions. Therefore, we explicitly indicate 
the number of responses when analyzing each question. 

Research questions RQ1.1 - RQ1.5 concern closed questions, so we decided 
to use inferential statistics to analyze them. Our population has an unknown 
theoretical distribution (i.e., the distribution of ML-enabled system profession- 
als is unknown). In such cases, resampling methods like bootstrapping, have 
been reported to be more reliable and accurate than inference statistics from 
samples [17, 30]. Hence, we use bootstrapping to calculate confidence intervals 
for our results, similar as done in [29]. In short, bootstrapping involves repeat- 
edly taking samples with replacements and then calculating the statistics based 
on these samples. For each question, we take the sample of n responses for that 
question and bootstrap S resamples (with replacements) of the same size n. We 
assume n as the total valid answers of each question [5], and we set 1000 for S, 
which is a value that is reported to allow meaningful statistics [15]. 

For research question RQ2, which seeks to identify the main problems faced 
by practitioners involved in engineering ML-enabled systems related to problem 
understanding and requirements, the corresponding survey question is designed 
to be open text. We conducted a qualitative analysis using open and axial coding 
procedures from grounded theory [24] to allow the problems to emerge from the 
open-text responses reflecting the experience of the practitioners. The qualitative 
coding procedures were conducted by one PhD student and reviewed by her 
advisor at one site (Brazil) and reviewed independently by three researchers 
from two additional sites (two from Sweden and one from Turkey). 

The questionnaire, the collected data, and the quantitative and qualitative 
data analysis artifacts, including Python scripts for the bootstrapping statistics 
and graphs and the peer-reviewed qualitative coding spreadsheets, are available 
in our open science repository9. 

 
4 Results 

4.1 Study Population. 

Figure 1 summarizes demographic information on the survey participants’ coun- 
tries, roles, and experience with ML-enabled system projects in years. It is pos- 

 

9 https://doi.org/10.5281/zenodo.8248332 
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sible to observe that the participants came from different parts of the world, 
representing various roles and experiences. While the figure shows only the ten 
countries with the most responses, we had respondents from 25 countries. As 
expected, our convenience sampling strategy influenced the countries, with most 
responses being from the authors’ countries (Brazil, Turkey, Austria, Germany, 
Italy, and Sweden). 

 
 
 

Brazil 

Turkey 31 

Austria 14 

Germany 10 

Sweden 8 

Italy 7 

Portugal 5 

Canada 4 

Colombia 3 

Spain 2 

United Kingdom 2 

France 2 

United States 2 

72 Data Scientist 58 

Project Lead 30 

Developer 22 

Solution Architect 12 

Business Analyst 10 

Requirements Engineer 2 

0 25 50 75 

Total of Answers 

Test Manager 

Role 

2 

Total of Answers 

(a) Participants' Demographics (N = 175) (b) Participants' Main Role (N = 177) (c) Participants' ML Experience (N = 176) 

 

Fig. 1: Demographics: countries, roles, and years of experience. 
 

 
Regarding employment, 45% of the participants are employed in large com- 

panies (2000+ employees), while 55% work in smaller ones of different sizes. It 
is possible to observe that they are mainly data scientists, followed by project 
leaders, developers, and solution architects. It is noteworthy that only two par- 
ticipants identified themselves as requirements engineers. Regarding their ex- 
perience with ML-enabled systems, most of the participants reported having 1 
to 2 years of experience. Following closely, another substantial group of partic- 
ipants indicated a higher experience bracket of 3 to 6 years. This distribution 
highlights a balanced representation of novice and experienced practitioners. Re- 
garding the participants’ educational background, 81.38% mentioned having a 
bachelor’s degree in computer science, electrical engineering, information sys- 
tems, mathematics, or statistics. Moreover, 53.72% held master’s degrees, and 
22.87% completed Ph.D. programs. 

 
 

4.2 Problem Understanding and Requirements ML Life Cycle Stage 

 
In the survey, based on the nine ML life cycle stages presented by Amershi 
et al. [2] and the CRISP-DM industry-independent process model phases [23], 
we abstracted seven generic life cycle stages and asked about their perceived 
relevance and difficulty. The answers, presented in Figure 2, revealed that ML 
practitioners are extremely worried about requirements. The Problem Under- 
standing and Requirements stage is clearly perceived as the most relevant and 
most complex life cycle stage. 
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Extremely Relevant High Relevance 
Neutral Low Relevance 

Not Relevant at all I don't know 

 
Very Complex Complex 

Neutral Easy 
Very Easy I don't know 

 

Problem Understanding 

 
Data Collection 

Data Pre-Processing 

Model Evaluation 

Model Creation 

Model Deployment 

 

Problem Understanding 

 
Data Collection 

Data Pre-Processing 

Model Deplyment 

Model Evaluation 

Model Creation 

Model Monitoring  
0 25 50 75 100 125 

Model Monitoring  
0 25 50 75 100 125 

(a) Perceived Relevance (N = 171) (b) Perceived Difficulty(N = 169) 

 

Fig. 2: Perceived relevance and complexity of each ML life cycle stage 
 
 

4.3 Contemporary RE practices for ML-enabled Systems 

[RQ1.1] Who is addressing the requirements of ML-enabled system 
projects? The proportion of roles reported to address the requirements of ML- 
enabled system projects within the bootstrapped samples is shown in Figure 3 
together with the 95 % confidence interval. The N in each figure caption is the 
number of participants that answered this question. We report the proportion P 
of the participants that checked the corresponding answer and its 95% confidence 
interval in square brackets. 

It is possible to observe that the project lead and data scientists were most 
associated with requirements in ML-enabled systems with P = 56.439 [56.17, 
56.709] and P = 54.71 [54.484, 54.936], while Business Analysts (P = 
29.518 [29.288, 29.749]) and Requirements Engineers (P = 11.202 [11.061, 
11.342]) had a much lower proportion. Several isolated options were mentioned 
in the “Others” field (e.g., Product Owner, Machine Learning Engineer, and 
Tech Lead), altogether summing up 11% and not significantly influencing the 
overall distribution (P = 11.021 [10.865, 11.177]). 

 
 
 

Project Lead 
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Developer 

Solution Architect 

Requirements Engineer 
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Others 

0 
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Percentage of Answers 

 

Fig. 3: Roles addressing requirements of ML-enabled systems (N = 170) 
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[RQ1.2] How are requirements typically elicited in ML-enabled system 
projects? As presented in Figure 4, respondents reported interviews as the 
most commonly used technique (P = 55.795 [55.567, 56.022]), followed (or 
complemented) by prototyping (P = 43.953 [43.711, 44.195]), scenarios (P 
= 43.065 [42.834, 43.297]), workshops (P = 42.708 [42.483, 42.933]), and 
observation P = 36.838 [36.613, 37.063]. 

 
 

Interviews 

 

 
Prototyping 

 

 
Scenarios 

 

 
Workshops Meetings 

 

 
Observation 

 
 

Others 

0 

 
 

20 40 60 

Percentage of Answers 

 

Fig. 4: Requirements elicitation techniques of ML-enabled systems (N = 171) 
 
 
 
 

[RQ1.3] How are requirements typically documented in the ML-enabled 
system projects? Figure 5 shows Notebooks as the most frequently used docu- 
mentation format with P = 37.357 [37.149, 37.564], followed by User Stories 
(P = 36.115 [35.875, 36.356]), Requirements Lists (P = 29.712 [29.499, 
29.925]), Prototypes (P = 23.957 [23.748, 24.166]), Use Case Models (P = 
21.617 [21.412, 21.822]), and Data Models (P = 19.92 [19.724, 20.117]). 
Surprisingly, almost 17% mentioned that requirements are not documented at all 
with P = 16.955 [16.767, 17.143]. Several isolated options were mentioned in 
the “Others” field(e.g., Wiki tools, Google Docs, Jira) with P = 8.877 [8.744, 
9.011]. 

 
 

[RQ1.4] Which Non-Functional Requirements (NFRs) do typically 
play a major role in terms of criticality in the ML-enabled system 
projects? Regarding NFRs (Figure 6), practitioners show a significant con- 
cern with some ML-related NFRs, such as data quality (P = 69.846 [69.616, 
70.075]), model reliability (P = 42.679 [42.45, 42.907]), and model explain- 
ability (P = 37.722 [37.493, 37.952]). Some NFRs regarding the whole sys- 
tem were also considered important, such as system performance (P = 40.789 
[40.573, 41.006]), and usability (P = 29.589 [29.36, 29.818]). A significant 
amount of participants informed that NFRs were not at all considered within 
their ML-enabled system projects (P = 10.617 [10.465, 10.768]). Further- 
more, in the “Others” field (P = 1.814 [1.745, 1.884]), a few participants also 
mentioned that they did not reflect upon NFRs. 
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Vision Document 
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Goal Models 

ML Canvas 

BDD Scenarios 

Others 

0 10 20 30 40 

Percentage of Answers 

 

Fig. 5: Requirements documentation of ML-enabled systems (N = 171) 
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Fig. 6: Critical non-functional requirements of ML-enabled systems (N = 169) 
 

 
[RQ1.5] Which activities are considered most difficult when defining 
requirements for ML-enabled systems? We provided answer options based 
on the literature on requirements [29] and requirements for machine learning [25], 
leaving the “Other” option to allow new activities to be added. As shown in 
Figure 7, respondents considered that managing customer expectations is the 
most difficult task (P = 66.804 [66.575, 67.032]), followed by aligning re- 
quirements with data (P = 57.306 [57.066, 57.546]), resolving conflicts (P 
= 38.582 [38.341, 38.824]), managing changing requirements (P = 35.62 
[35.395, 35.846]), selecting metrics (P = 33.95 [33.723, 34.176]), and elici- 
tation and analysis (P = 29.036 [28.824, 29.248]). 

 
 

4.4 Main RE-related problems in ML-enabled System Projects 

 
Regarding the main problems faced by the participants during the Problem 
Understanding and Requirements stage, they emerged from open coding applied 
to free text answers. Participants could inform up to three problems related 
to each ML life cycle stage. In total, 262 open-text answers were provided for 
problems related to problem understanding and requirements. 
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Fig. 7: Most difficult RE activities in ML-enabled systems (N = 171) 

 
 

We incorporated axial coding procedures to provide an easily understand- 
able overview, relating the emerging codes to categories. We started with the 
sub-categories Input, Method, Organization, People, and Tools, as suggested for 
problems in previous work on defect causal analysis [11]. Based on the data, 
we merged the Input and People categories, as it was difficult to separate be- 
tween the two, given the concise answers provided by the participants. We also 
renamed the Tools category into Infrastructure and identified the need to add a 
new category related to Data. It is noteworthy that these categories were iden- 
tified considering the overall coding for the seven ML life cycle stages, while in 
this paper, we focus on the problem understanding and requirements stage. 

Figure 8 presents an overview of the frequencies of the resulting codes using 
a probabilistic cause-effect diagram, which was introduced for causal analysis 
purposes in previous work [12, 13]. While this representation provides a compre- 
hensive overview, the percentages are just frequencies of occurrence of the codes 
(i.e., the sum of all code frequencies is 100%). Also, the highest frequencies 
within each category are organized closer to the middle. 

It is possible to observe that most of the reported problems are related to 
the Input category, followed by Method and Organization. Within the Input cat- 
egory, the main problems concern difficulties in understanding the problem and 
the business domain and unclear goals and requirements. In the Method category, 
the prevailing reported problems concern difficulties in managing expectations 
and establishing effective communication. Finally, in the Organization category, 
the lack of customer or domain expert availability and engagement and the lack 
of time dedicated to requirements-related activities were mentioned. While we 
focus our summary on the most frequently mentioned problems, it is notewor- 
thy that the less frequent ones may still be relevant in practice. For instance, 
computational constraints or a lack of data quality (or availability) can directly 
affect ML-related possibilities and requirements. 

 
5 Discussion 

The survey findings reveal an intriguing aspect within ML contexts: the distri- 
bution of roles in RE activities. Contrary to conventional expectations, the role 
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Fig. 8: Main problems faced during problem understanding and requirements 
 

 
of requirements engineers and business analyst appears to be less prominent. 
Instead, a notable shift is observed, with project leaders and data scientists tak- 
ing the lead in RE efforts. As the literature suggests that RE can help address 
problems related to engineering ML-enabled systems, this could point to the 
fact that software engineering practices are not yet well established within this 
domain. Nevertheless, the involvement of project leaders and data scientists as 
key RE contributors could reflect the nature of ML projects, where domain ex- 
pertise and data-driven insights are pivotal. This shift in responsibilities raises 
questions about the evolving dynamics of cross-functional collaborations within 
ML endeavors and prompts further exploration into how such roles influence the 
shaping of ML-enabled systems. 

The survey also revealed that practitioners typically use traditional require- 
ments elicitation techniques (interviews, prototyping, scenarios, workshops, and 
observation). Comparing the results to the elicitation techniques reported for 
traditional RE [29], an observable difference is that requirements workshops are 
slightly less commonly used in ML contexts. This could be related to the ab- 
sence of the requirements engineer, who is typically familiar with conducting 
such workshops, or to the lack of specific adaptations on such workshop formats 
for ML-enabled systems. 

With respect to requirements documentation, notebooks, which are interac- 
tive programming environments that can be used to process data and create ML 
models, appear as the most used tool for documenting requirements. Again, this 
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could be a symptom of the absence of a requirements engineer and the lack of 
awareness of RE specification practices and tools. Furthermore, a proportion of 
almost 17% mentioned that requirements were not documented at all. Given that 
in conventional contexts problems related to requirements are common causes 
of overall software project failure [6], this apparent lack of RE-related maturity 
may also be causing pain in ML contexts. Traditional artifacts, such as user 
stories, requirements lists, prototypes, and use case models, are also used in the 
ML context, but significantly less than in the conventional software context [29]. 
Even specific approaches, such as the ML Canvas, do not relevantly represent a 
current practice for documenting the requirements of ML-enabled systems. 

Regarding NFRs, practitioners express considerable concerns with specific 
ML-related NFRs, such as data quality, model reliability, and model explain- 
ability, while also recognizing the significance of overall system-related NFRs. 
Nevertheless, more than 10% of practitioners do not even consider NFRs in 
their ML-enabled system projects. Again, given the potential negative impacts 
of missing NFRs on software-related projects [6], this can be seen as another in- 
dicator of the lack of overall awareness of the importance of RE in the industrial 
ML-enabled systems engineering context. 

The survey also revealed the most difficult activities perceived by practition- 
ers in defining requirements for ML-enabled systems. The difficulties reported 
by practitioners includes managing customer expectations and aligning require- 
ments with data, highlight the importance of effective communication, a deep 
understanding of customer needs, and domain and technical expertise to bridge 
the gap between aspirations and technological feasibility. 

Finally, we contributed to the RE-related problems faced by practitioners in 
ML-enabled system projects. The main issues relate to difficulties in problem 
and business understanding, managing expectations, and low customer or do- 
main expert availability or engagement. These issues clearly have comparable 
counterparts in the conventional RE problems [6]. As comparable problems may 
have comparable solutions, adopting established RE practices (or adaptations of 
such practices) may help improve ML-enabled system engineering. 

 

6 Threats to Validity 
 

We identified some threats while planning, conducting, and analyzing the survey 
results. Hereafter we list these potential threats, organized by the survey validity 
types presented in [16]. 

Face and Content Validity. Face and content validity threats include bad 
instrumentation and inadequate explanation of constructs. To mitigate these 
threats, we involved several researchers in reviewing and evaluating the ques- 
tionnaire with respect to the format and formulation of the questions, piloting it 
with 18 Ph.D. students for face validity and with five experienced data scientists 
for content validity. 

Criterion Validity. Threats to criterion validity include not surveying the 
target population. We clarified the target population in the consent form (before 
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starting the survey). We also considered only complete answers (i.e., answers of 
participants that answered all four survey sections) and excluded participants 
that informed having no experience with ML-enabled system projects. 

Construct Validity. We ground our survey’s questions and answer options 
on theoretical background from previous studies on RE [6, 29] and a literature 
review on RE for ML [25]. A threat to construct validity is inadequate mea- 
surement procedures and unreliable results. To mitigate this threat we follow 
recommended data collection and analysis procedures [30]. 

Reliability. One aspect of reliability is statistical generalizability. We could 
not construct a random sample systematically covering different types of pro- 
fessionals involved in developing ML-enabled systems, and there is yet no gen- 
eralized knowledge about what such a population looks like. Furthermore, as a 
consequence of convenience sampling, the majority of answers came from Europe 
and South America. Nevertheless, the experience and background profiles of the 
subjects are comparable to the profiles of ML teams as shown in Microsoft’s 
study [14]. To deal with the random sampling limitation, we used bootstrapping 
and only employed confidence intervals, conservatively avoiding null hypothesis 
testing. Another reliability aspect concerns inter-observer reliability, which we 
improved by including independent peer review in all our qualitative analysis 
procedures and making all the data and analyses openly available online. 

 
 

7 Conclusions 

 
Literature suggests that RE can help to tackle challenges in ML-enabled system 
engineering [25]. Recent literature studies (e.g., [1, 21, 25]) and industrial studies 
(e.g., [22, 28]) on RE for ML-enabled systems have been important to help to 
understand the literature focus and industry needs. However, the studies on 
industrial practices and problems are still isolated and not yet representative. 

We complement these studies, aiming at strengthening empirical evidence on 
current RE practices and problems when engineering ML-enabled systems, with 
an industrial survey that collected responses from 188 practitioners involved 
in engineering ML-enabled systems. We applied bootstrapping with confidence 
intervals for quantitative statistical analysis and open and axial coding for qual- 
itative analysis of RE problems. The results confirmed some of the findings 
of previous ML-enabled system studies, such as the relevance NFRs related to 
data quality, model reliability, and explainability [8, 28], and challenges related 
to customer expectation management and vagueness of requirements specifica- 
tions [21, 25]. However, we also shed light on some new and intriguing aspects. 
For instance, the survey revealed that project leaders and data scientists are 
taking the reins in RE activities for the ML-enabled systems and that inter- 
active Notebooks dominate requirements documentation. With respect to the 
problems, the main issues relate to difficulties in problem and business under- 
standing, difficulties in managing expectations, unclear requirements, and lack 
of domain expert availability and engagement. 
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Overall, when comparing RE practices and problems within ML-enabled sys- 
tems with conventional RE practices [29] and problems [6], we identified signifi- 
cant variations in the practices but comparable underlying problems. As compa- 
rable problems may have comparable solutions, we put forward a need to adapt 
and disseminate RE-related practices for engineering ML-enabled systems. 
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