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Abstract. As set systems, hypergraphs are omnipresent and have vari-
ous representations ranging from Euler and Venn diagrams to contact
representations. In a geometric representation of a hypergraph H =
(V,E), each vertex v ∈ V is associated with a point pv ∈ Rd and each
hyperedge e ∈ E is associated with a connected set se ⊂ Rd such that
{pv | v ∈ V } ∩ se = {pv | v ∈ e} for all e ∈ E. We say that a given
hypergraph H is representable by some (infinite) family F of sets in Rd,
if there exist P ⊂ Rd and S ⊆ F such that (P, S) is a geometric rep-
resentation of H. For a family F , we define Recognition(F) as the
problem to determine if a given hypergraph is representable by F . It is
known that the Recognition problem is ∃R-hard for halfspaces in Rd.
We study the families of translates of balls and ellipsoids in Rd, as well
as of other convex sets, and show that their Recognition problems are
also ∃R-complete. This means that these recognition problems are equiv-
alent to deciding whether a multivariate system of polynomial equations
with integer coefficients has a real solution.

Keywords: Hypergraph · geometric hypergraph · recognition · compu-
tational complexity · convex · ball · ellipsoid · halfplane · halfspace.

1 Introduction

As set systems, hypergraphs appear in various contexts, such as databases, clus-
tering, and machine learning. They are also known as range spaces (in compu-
tational geometry) or voting games (in social choice theory). A hypergraph can
be represented in various ways, e.g., by a bipartite incidence graph, a simplicial
representation (if the set system is closed under taking subsets), Euler or Venn
diagrams etc. Similar to classical graph drawing, one can represent vertices by
points and hyperedges by connected sets in Rd such that each set contains ex-
actly the points of a hyperedge. For the purposes of legibility, uniformity, or also
for aesthetic reasons, it is desirable that these sets satisfy additional properties,
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e.g., being convex or having similar appearance such as being homothetic copies
or even translates of each other.

For an introductory example, suppose we are organizing a conference and
have a list of accepted talks. Clearly, each participant wants to quickly iden-
tify talks of their specific interest. In order to create a good overview, we want
to find a good representation. To this end, we label each talk by several tags,
e.g., hypergraphs, complexity theory, planar graphs, beyond planarity,
straight-line drawing, crossing numbers, etc. Then, we create a represen-
tation, where each tag is represented by a unit disk (or another nice geometric
object of our choice) containing points representing the talks that have this tag,
see Figure 1 for an example. In other words, we are interested in a geometric
representation of the hypergraph where the vertex set is given by the talks and
tags define the hyperedges.
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Fig. 1: A geometric representation with unit disks of the abstract hyper-
graph H = (V,E) with V = [8] and E = {{1, 2, 3}, {3, 4, 5, 6}, {5, 6, 7}, {6, 7, 8}}.

In this work, we investigate the complexity of deciding whether a given hy-
pergraph has such a geometric representation. We start with a formal definition.

Problem Definition. In a geometric representation of a hypergraph H = (V,E),
each vertex v ∈ V is associated with a point pv ∈ Rd and each hyperedge e ∈ E is
associated with a connected set se ⊂ Rd such that {pv | v ∈ V }∩se = {pv | v ∈ e}
for all e ∈ E. We say that a given hypergraph H is representable by some
(possibly infinite) family F of sets in Rd, if there exist P ⊂ Rd and S ⊆ F
such that (P, S) is a geometric representation of H. For a family F of geometric
objects in Rd, we define Recognition(F) as the problem to determine whether a
given hypergraph is representable by F . Next, we give some definitions describing
the geometric families studied in this work.

Bi-curved, Difference-separable, and Computable Convex Sets. We study convex
sets that are bi-curved, difference-separable and computable. While the first
two properties are needed for ∃R-hardness, the last one is used to show ∃R-
membership.



Let C ⊂ Rd be a convex set. We call C computable if for any point p ∈ Rd

we can decide in polynomial time on a real RAM whether p is contained in C.
We say that C is bi-curved if there exists a unit vector v ∈ Rd, such that there
are two distinct tangent hyperplanes on C with normal vector v; with each of
these hyperplanes intersecting C in a single point, and C being smooth at both
of these intersection points. Informally, a convex set is bi-curved, if its boundary
has two smoothly curved parts in which the tangent hyperplanes are parallel.
Note that a convex, bi-curved set is necessarily bounded. As a matter of fact,
any strictly convex bounded set in any dimension is bi-curved. For such sets, any
unit vector v fulfills the conditions. As can be seen in Figure 2a, being strictly
convex is not necessary for being bi-curved.

(a) This burger-like set is
bi-curved as shown by the
two tangent hyperplanes.

(b) A hyperplane separating
the symmetric difference of
two translates of the burger-
like set.

(c) Two cubes in R3 whose
symmetric difference can-
not be separated by a plane.

Fig. 2: Illustration for the notions bi-curved and difference-separable.

We call C difference-separable if for any two translates C1, C2 of C, there
exists a hyperplane which strictly separates C1 \ C2 from C2 \ C1. Being differ-
ence-separable is fulfilled by any convex set in R2, see Figure 2b for an example.
For a proof of this fact we refer to [32, Corollary 2.1.2.2]. However, in higher
dimensions this is not the case: for a counterexample, consider two 3-cubes as in
Figure 2c. In higher dimensions, the bi-curved and difference-separable families
include the balls and ellipsoids. We are not aware of other natural geometric
families with those two properties. Note that balls and ellipsoids are naturally
computable.

We are now ready to state our results.

1.1 Results

We study the recognition problem of geometric hypergraphs. We first consider
the maybe simplest type of geometric hypergraphs, namely those that stem from
halfspaces. It is known due to Tanenbaum, Goodrich, and Scheinerman [56]
that the Recognition problem for geometric hypergraphs of halfspaces is NP-
hard, but their proof actually implies ∃R-hardness as well. We present a slightly
different proof of this fact due to two reasons. Firstly, their proof lacks details



about extensions to higher dimensions. Secondly, it is a good stepping stone
towards our proof of Theorem 2.

Theorem 1 (Tanenbaum, Goodrich, Scheinerman [56]). For every d ≥ 2,
Recognition(F) is ∃R-complete for the family F of halfspaces in Rd.

Next we consider families of objects that are translates of a given object.

Theorem 2. For d ≥ 2, let C ⊆ Rd be a convex, bi-curved, difference-sepa-
rable and computable set, and let F be the family of all translates of C. Then
Recognition(F) is ∃R-complete.

We note that for d = 1, the Recognition problems of halfspaces and trans-
lates of convex sets can be solved by sorting. Consequently, they can be decided
in polynomial time.

One might be under the impression that the Recognition problem is ∃R-
complete for every reasonable family of geometric objects of dimension at least
two. However, we show that the problem is contained in NP for translates of
polygons and thus, if NP ⊊ ∃R as widely believed, not ∃R-complete.

Theorem 3. Let P be a simple polygon with integer coordinates in R2, and F
the family of all translates of P . Then Recognition(F) is contained in NP.

Organization. We give an overview over our proof techniques in Section 1.3. Full
proofs of Theorem 3 as well as the membership parts of Theorems 1 and 2 are
found in Section 2. We introduce the version of pseudohyperplane stretchability
used in our hardness reductions in Section 3. Full proofs of the hardness parts
of Theorems 1 and 2 can be found in Sections 4 and 5, respectively.

1.2 Related work

In this section we give a concise overview over related work on the complexity
class ∃R, geometric intersection graphs, and on other set systems related to
hypergraphs.

The Existential Theory of the Reals. The complexity class ∃R (pronounced as
‘ER’ or ‘exists R’) is defined via its canonical complete problem ETR (short for
Existential Theory of the Reals) and contains all problems that polynomial-time
many-one reduce to it. In an ETR instance, we are given a sentence of the form

∃x1, . . . , xn ∈ R : φ(x1, . . . , xn),

where φ is a well-formed and quantifier-free formula consisting of polynomial
equations and inequalities in the variables and the logical connectives {∧,∨,¬}.
The goal is to decide whether this sentence is true.

The complexity class ∃R gains its importance from its numerous influential
complete problems. Important ∃R-completeness results include the realizability



of abstract order types [39,51], geometric linkages [44], and the recognition of
geometric intersection graphs, as further discussed below.

More results concern graph drawing [20,21,31,45], the Hausdorff distance [27],
polytopes [19,42], Nash-equilibria [8,10,11,24,47], training neural networks [3,9],
matrix factorization [17,48,49,50,57], continuous constraint satisfaction prob-
lems [38], geometric packing [5], the art gallery problem [2,55], and covering
polygons with convex polygons [1].

Geometric Hypergraphs. Many aspects of hypergraphs with geometric represen-
tations have been studied. Hypergraphs represented by touching polygons in R3

have been studied by Evans et al. [23]. Bounds on the number of hyperedges
in hypergraphs representable by homothets of a fixed convex set S have been
established by Axenovich and Ueckerdt [7]. Smorodinsky studied the chromatic
number and the complexity of coloring of hypergraphs represented by various
types of sets in the plane [53]. Dey and Pach [18] generalize many extremal
properties of geometric graphs to hypergraphs where the hyperedges are in-
duced simplices of some point set in Rd. Haussler and Welzl [25] defined ϵ-nets,
subsets of vertices of hypergraphs called range spaces with nice properties. Such
ϵ-nets of geometric hypergraphs have been studied quite intensely [6,35,40,41].

While there are many structural results, we are not aware of any research into
the complexity of recognizing hypergraphs given by geometric representations,
other than the recognition of embeddability of simplicial complexes, as we will
discuss in the next paragraph.

Other Representations of Hypergraphs. Hypergraphs are in close relation with
abstract simplicial complexes. In particular, an abstract simplicial complex (com-
plex for short) is a set system that is closed under taking subsets. A k-complex is
a complex in which the maximum size of a set is k. In a geometric representation
of an abstract simplicial complex H = (V,E) each ℓ-set of E is represented by a
ℓ-simplex such that two simplices of any two sets intersect exactly in the simplex
defined by their intersection (and are disjoint in case of an empty intersection).
Note that 1-complexes are graphs and hence deciding the representability in the
plane corresponds to graph planarity (which is in P). In stark contrast, Abra-
hamsen, Kleist and Miltzow recently showed that deciding whether a 2-complex
has a geometric embedding in R3 is ∃R-complete [4]; they also prove hardness for
other dimensions. Similarly, piecewise linear embeddings of simplicial complexes
have been studied [13,14,15,33,34,37,52].

Recognizing Geometric Intersection Graphs. Given a set of geometric objects,
its intersection graph has a vertex for each object, and an edge between any two
intersecting objects. The complexity of recognizing geometric intersection graphs
has been studied for various geometric objects. We summarize these results in
Figure 3.

While intersection graphs of circle chords (Spinnrad [54]), unit intervals
(Looges and Olariu [30]) and intervals (Booth and Lueker [12]) can be recog-
nized in polynomial time, recognizing string graphs (Schaefer and Sedgwick [46])
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Fig. 3: Containment relations of geometric intersection graphs. Recognition of a
green class is in P, of a grey class is NP-complete, of a blue class is ∃R-complete,
and of a white class is unknown.

is NP-complete. In contrast, ∃R-completeness of recognizing intersection graphs
has been proved for (unit) disks by McDiarmid and Müller [36], convex sets by
Schaefer [43], downward rays by Cardinal et al. [16], outer segments by Cardinal
et al. [16], unit segments by Hoffmann et al. [26], segments by Kratochvíl and
Matoušek [29], k-polylines by Hoffmann et al. [26], and unit balls by Kang and
Müller [28].

The existing research landscape indicates that recognition problems of inter-
section graphs are ∃R-complete in case that the family of objects satisfy two
conditions: Firstly, they need to be “geometrically solid”, i.e., not strings. Sec-
ondly, some non-linearity must be present by either allowing rotations, or by the
objects having some curvature. Our results indicate that this general intuition
might translate to the recognition of geometric hypergraphs.

1.3 Overview of Proof Techniques

We prove containment in ∃R and NP using standard arguments, providing wit-
nesses and verification algorithms.

We prove the hardness parts of Theorems 1 and 2 by reduction from stretch-
ability of pseudohyperplane arrangements. The hypergraph we build from the
given arrangement differs from the one built in the proof of Theorem 1 given
in [56], since we wish to use a single construction which works nicely for both



theorems. Given a simple pseudohyperplane arrangement A, we construct a hy-
pergraph H as follows: We double each pseudohyperplane by giving it a parallel
twin. In this arrangement, we place a point in every d-dimensional cell. These
points represent the vertices of H. Every pseudohyperplane ℓ then defines a
hyperedge, which contains all of the points on the same side of ℓ as its twin
pseudohyperplane. See Figure 5 for an illustration of this construction.

Because this construction can also be performed on a hyperplane arrange-
ment, it is straightforward to prove that if A is stretchable, H can be represented
by halfspaces. Conversely, we show that the hyperplanes bounding the halfspaces
in a representation of H must be a stretching of A.

For Theorem 2, bi-curvedness of a set C implies that locally, C can approxi-
mate any halfspace with normal vector close to v as in the definition of bi-curved.
This allows us to prove that stretchability of A implies representability of H by
translates of C. The set C being difference-separable is used when reconstructing
a hyperplane arrangement from a representation of H.

2 Membership

In this section we show ∃R- and NP-membership.

2.1 Halfspaces

For a given hypergraph H, it is not difficult to formulate an ETR formula describ-
ing all needed properties for a geometric representation by halfspaces. Therefore,
we get the ∃R-membership part of Theorem 1.

Lemma 1. Fix d ≥ 1 and let F denote the family of halfspaces in Rd. Then
Recognition(F) is contained in ∃R.

The ∃R-membership part of Theorem 2 is obtained by providing a simple
verification algorithm [22] (similar to how NP-membership can be shown), based
on the fact that our considered set C is computable.

Lemma 2. For some d ≥ 1, let C ⊆ Rd be a computable set and let F be the
family of all translates of C. Then, Recognition(F) is contained in ∃R.

The full proofs of Lemmas 1 and 2 have been omitted due to space constraints
and can be found in Appendix A.

2.2 Translates of Polygons – Proof of Theorem 3

Here, we show Theorem 3, i.e., NP-membership of Recognition of translates
of some simple polygon P .

Theorem 3. Let P be a simple polygon with integer coordinates in R2, and F
the family of all translates of P . Then Recognition(F) is contained in NP.



Proof. The proof uses a similar argument to the one used to show that the
problem of packing translates of polygons inside a polygon is in NP [5]. For an
illustration, consider Figure 4. We first triangulate the convex hull of P , such
that each edge of P appears in the triangulation. Then, a representation of a
hypergraph H by translates of P gives rise to a certificate as follows: For each
pair of a point p and a translate P ′ of P , we specify whether p lies in the convex
hull of P ′. If it does, we specify in which triangle p lies. Otherwise, we specify
an edge of the convex hull for which p and P ′ lie on opposite sides of the line
through the edge.

p

Fig. 4: The polygon P ′, a triangulation of its convex hull, and the triangle that
contains p.

Such a certificate can be tested in polynomial time: we create a linear program
whose variables describe the locations of the points p and the translation vectors
of each translate of P , and whose constraints enforce the points to lie in the areas
described by the certificate. This linear program has a number of constraints and
variables polynomial in the size of H, and can be thus solved in polynomial time.

The solution of this linear program gives the location of the points and the
translation vectors of the polygons. This implies that these coordinates are all
polynomial and could be used as a certificate directly. ⊓⊔

3 Pseudohyperplane Stretchability

A pseudohyperplane arrangement in Rd is an arrangement of pseudohyperplanes,
where a pseudohyperplane is a set homeomorphic to a hyperplane, and each in-
tersection of pseudohyperplanes is homeomorphic to a plane of some dimension.
In the classical definition, every set of d pseudohyperplanes has a non-empty in-
tersection. Here, we consider partial pseudohyperplane arrangements (PPHAs),
where not necessarily every set of ≤ d pseudohyperplanes has a common inter-
section.

A PPHA is simple if no more than k pseudohyperplanes intersect in a space
of dimension d−k, in particular, no d+1 pseudohyperplanes have a common in-
tersection. We call the 0-dimensional intersection points of d pseudohyperplanes
the vertices of the arrangement. A simple PPHA A is called stretchable if there
exists a hyperplane arrangement A′ such that each vertex in A also exists in
A′ and each (pseudo-)hyperplane splits this set of vertices the same way in A



and A′. In other words, each vertex of A lies on the correct side of each hyper-
plane in A’. We then call the hyperplane arrangement A′ a stretching of A.

The problem d-Stretchability is the problem of deciding whether a simple
PPHA in Rd is stretchable. For d = 2, d-Stretchability contains the stretch-
ability of simple pseudoline arrangements which is known to be ∃R-hard [39,51].
It is straightforward to prove ∃R-hardness for all d ≥ 2; the proof can be found
in Appendix B.

Theorem 4. d-Stretchability is ∃R-hard for all d ≥ 2.

Similar extensions of pseudoline stretchability to higher dimensions have been
studied in the literature. For example, Mnëv’s universality theorem [39] extends
to higher dimensions, however we are not aware of any existing proofs that it
also implies ∃R-hardness in d > 2. Kang and Müller [28] also studied a similar
version of stretchability of partial arrangements of pseudohyperplanes.

4 Hardness for Halfspaces – Proof of Theorem 1

We now present the hardness part of Theorem 1.

Theorem 1 (Tanenbaum, Goodrich, Scheinerman [56]). For every d ≥ 2,
Recognition(F) is ∃R-complete for the family F of halfspaces in Rd.

Proof (of Theorem 1). We reduce from d-Stretchability. Let A be a simple
PPHA. For an example consider Figure 5a. In a first step, we insert a parallel
twin ℓ′ for each pseudohyperplane ℓ. The twin is close enough to ℓ such that ℓ
and ℓ′ have the same intersection pattern. Since ℓ and ℓ′ are parallel, they do
not intersect each other. This yields an arrangement A′, see Figure 5b.

In a second step, we introduce a point in each d-dimensional cell of A′; each
point represents a vertex in our hypergraph H. Lastly, we define a hyperedge for
each pseudohyperplane ℓ of A′: The hyperedge contains all of the points that lie
on the side of ℓ that the twin pseudohyperplane ℓ′ lies in, see Figure 5c. Note that

(a) (b) (c)

Fig. 5: Construction of the hypergraph H. (a) A simple PPHA A. (b) The ar-
rangement A′ obtained by inserting twins. (c) The vertices of H are the points in
the cells, hyperedges of H are defined by the pseudohalfspaces; the gray region
shows one of the hyperedges.



we define such a hyperedge for every pseudohyperplane of A′. Thus, for every
pseudohyperplane ℓ of the original arrangement A we define two hyperedges,
whose union contains all vertices of H.

It remains to show that H is representable by halfspaces if and only if A
is stretchable. If A is stretchable, the construction of a representation of H is
straightforward: Consider a hyperplane arrangement B which is a stretching of A.
Then, for each hyperplane, we add a parallel hyperplane very close, so that their
intersection patterns coincide. This results in a hyperplane arrangement B′. We
now prove that every d-dimensional cell of A′ must also exist in B′. First, note
that each such cell corresponds to a cell of A, which has at least one vertex on its
boundary. All vertices of A exist in B by definition of a stretching. Furthermore,
the subarrangement of the d hyperplanes in B intersecting in this vertex must
be simple, since their intersection could not be 0-dimensional otherwise. In the
twinned hyperplane arrangement B′, all 3d of the d-dimensional cells incident to
this vertex (a cell is given by the following choice for each of the hyperplane pairs:
above both hyperplanes, between the hyperplanes, or below both hyperplanes)
must exist. This proves that all d-dimensional cells of A′ also exist in B′. Inserting
a point in each such d-dimensional cell and considering the (correct) halfspaces
bounded by the hyperplanes of B′ yields a representation of H.

We now consider the reverse direction. Let (P,H) be a tuple of points and
halfspaces representing H. Let hi,1 and hi,2 be the two halfspaces associated with
a pseudohyperplane ℓi of A. Let pi denote the (d − 1)-dimensional hyperplane
bounding hi,1. We show that the family {pi}i of these hyperplanes is a stretching
of A.

For each intersection point q of d pseudohyperplanes ℓ1, . . . ℓd in A, we con-
sider the corresponding 2d pseudohyperplanes in A′. The PPHA A′ contains 3d

d-dimensional cells incident to their 2d intersections; each of which contains a
point. We first show that the associated halfspaces must induce at least 3d cells,
one of which is bounded and represents the intersection point, see also Figure 6a:
These 3d points have pairwise distinct patterns of whether or not they are con-
tained in each of the 2d halfspaces. Thus, these points need to lie in distinct cells
of the arrangement of halfspaces, which proves the claim. Moreover, every point
in P belongs to exactly one of these 3d cells. In particular, the central bounded
cell, denoted by c(q), contains exactly one point of P , see Figure 6b.

Now, we argue that the complete cell c(q) (and thus in particular the inter-
section point of the hyperplanes representing q) lies on the correct side of each
hyperplane p in {pi}i. Note that, by construction of the hypergraph H, the 3d

points of q lie on the same side of p. Suppose for a contradiction that p intersects
c(q), see Figure 6c. Then there exist two unbounded cells incident to c(q) which
lie on different sides of p; these cells can be identified by translating p until it
intersects c(q) only in the boundary. This yields a contradiction to the fact that
the 3d points of q lie on the same side of p.

We conclude that each intersection point of d pseudohyperplanes in A also
exists in the arrangement {pi}i and lies on the correct side of all hyperplanes.
Thus, {pi}i is a stretching of A and A is stretchable. ⊓⊔



(a) (b) (c)

Fig. 6: Illustration for the proof of Theorem 1 for d = 2 showing that repre-
sentability of H implies stretchability of A. (a) Any two pseudolines ℓi, ℓj in A
have four corresponding lines bounding the respective halfplanes in H; these four
lines induce 9 cells, each of which contains a point. (b) Each point in P belongs
to exactly one of these 9 cells; the central bounded cell contains a unique point
representing the intersection of ℓi and ℓj . (c) The central bounded cell cannot
be intersected by a line pk with k ̸= i, j.

5 Hardness for Convex, Bi-curved, and Difference-sepa-
rable Sets – Proof of Theorem 2

We are now going to prove the hardness part of Theorem 2.

Theorem 2. For d ≥ 2, let C ⊆ Rd be a convex, bi-curved, difference-sepa-
rable and computable set, and let F be the family of all translates of C. Then
Recognition(F) is ∃R-complete.

To this end, consider any fixed convex, bi-curved, and difference-separable
set C in Rd. Note that we can assume C to be fully-dimensional, since otherwise
each connected component would live in some lower-dimensional affine subspace,
with no interaction between such components. We use the same reduction from
the problem d-Stretchability as in the proof for halfspaces in the previous
section and show that the constructed hypergraph H is representable by trans-
lates of C if and only if the given PPHA A is stretchable.

Lemma 3. If A is stretchable, H is representable by translates of C.

The full proof of this lemma can be found in Appendix C. The idea behind
the proof is that a stretching A’ of A can be scaled and stretched in such a way
that every hyperplane has a normal vector close to the vector v witnessing that C
is bi-curved, and such that all the vertices lie within some sufficiently small box.
Then, for every halfspace h± bounded by some hyperplane h in A’, there exists
a translate of C which approximates h± within the small box. This intuition
is shown in Figure 7. Since the hyperplane arrangement is simple, and there is
some slack between the hyperplanes bounding the two twin halfspaces (as we
argued above in the proof of Theorem 1), such an approximation is sufficient.

Lemma 4. If the hypergraph H is representable by translates of C, then A is
stretchable.



h

C

v + ε

Fig. 7: Illustration for the proof of lemma 3. Within the small box (dark grey),
the translate of C (green) approximates the halfspace (light grey) bounded by h.

Proof. Assume H is representable. By construction, the two translates Ci,r, Ci,l

of C corresponding to the two hyperedges of each pseudohyperplane ℓi must
intersect as they contain at least one common point. We call their convex inter-
section the lens of this pseudohyperplane. For each pseudohyperplane ℓi of A,
we consider some hyperplane pi which separates Ci,r \Ci,l from Ci,l \Ci,r. Such
a hyperplane exists since C is difference-separable. Let P := {pi}i be the hyper-
plane arrangement consisting of all these separators. We aim to show that P is
a stretching of A.

To this end, consider d pseudohyperplanes ℓ1, . . . , ℓd which intersect in A.
Figure 8 displays the case d = 2. Furthermore, consider one more pseudohyper-
plane ℓ′, and let p′, C ′

r, C ′
l denote the separator hyperplane and translates of C

corresponding to ℓ′. We show that the intersection Ip := p1 ∩ . . . ∩ pd is a single
point which lies on the same side of p′ as the point Iℓ := ℓ1 ∩ . . . ∩ ℓd lies of ℓ′.

ℓ1

ℓ2

ℓ′

Iℓ

(a) Pseudohyperplanes ℓ1, ℓ2, ℓ
′ in A

p1

p2 p′

Ip

hl

C ′
l C ′

r

hr

(b) Hyperplanes p1, p2, p
′ in P.

Fig. 8: Illustration for the proof of Lemma 4 for d = 2. Some pseudohyperplanes
in A and their corresponding hyperplanes in P.



The hyperplane p′ divides the space into two halfspaces hr and hl such that
C ′

r\C ′
l ⊆ hr and C ′

l\C ′
r ⊆ hl. By construction, the two hyperedges defined for ℓ′

cover all vertices of H and the vertices in the cells around Iℓ belong to only one
hyperedge. Suppose without loss of generality that these vertices only belong to
the hyperedge represented by C ′

l . We will show that the intersection Ip must
then be a point in hl.

We first show that the intersection Ip is a point, i.e., 0-dimensional. Consider
all 2d d-dimensional cells of A around Iℓ. The construction of H implies that each
such cells contains a distinct point, and these points must all lie in distinct cells
of the sub-arrangement of the involved hyperplanes p1, . . . , pd. Assuming that
Ip is not a single point, this sub-arrangement is not simple, and the hyperplanes
divide space into strictly fewer than 2d cells, which results in a contradiction.

Next we prove that Ip is in hl. Assume towards a contradiction that Ip ∈ hr,
see also Figure 9. Consider the d lines that are formed by the intersections of
subsets of d − 1 hyperplanes among p1, ..., pd. Each of these lines is the union
of two rays beginning at Ip. Observe that the hyperplane p′ can only intersect
one of the two rays forming each line. Let S be the convex cone centered at Ip
defined by the d non-intersected rays. Observe that S does not intersect p′, so S
must be fully contained in hr, i.e., S∩hl = ∅. Note, however, by the construction
of the hypergraph, there must be a point that lies in S ∩ (C ′

l \ C ′
r) ⊆ S ∩ hl,

which is a contradiction.

p1

p2 p′

Ip

hl hr

S

Fig. 9: Illustration for the proof of Lemma 4 for d = 2. The cone S must intersect
C ′

l \ C ′
r, which contradicts Ip lying in hr.

We conclude that P is a stretching of A, and thus A is stretchable. ⊓⊔

Lemmas 3 and 4 combined now prove hardness of Recognition(F) for the
family F of translates of C. This completes the proof of Theorem 2.

6 Future directions

We conclude with a list of interesting open problems: As mentioned above, we
are not aware of interesting families of bi-curved and difference-separable sets
in higher dimensions beyond balls and ellipsoids. The families of translates of a



given polygon show the need for some curvature in order to show ∃R-hardness.
We wonder if it is sufficient for ∃R-hardness to assume curvature at only one
boundary part instead of two opposite ones. Another open question is to consider
families that include rotated copies or homothetic copies of a fixed geometric
object. Allowing for rotation, it is conceivable that ∃R-hardness even holds for
polygons. Allowing for homothetic copies, the next natural question would be to
study the family of all balls, not just balls of the same size.
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A Details of membership, Lemmas 1 and 2

Lemma 1. Fix d ≥ 1 and let F denote the family of halfspaces in Rd. Then
Recognition(F) is contained in ∃R.

Proof. For a given hypergraph H, we formulate an ETR formula as follows. For
each vertex/point, we create variables p = (p1, . . . , pd) to represent the point.
Similarly, for each hyperedge/halfspace, we create variables h = (h1, . . . , hd+1) to
represent the coefficients of the halfspace. Then for each point p that is supposed
to be in some halfspace h, we create the constraint:

h1p1 + . . . hdpd ≤ hd+1.

Similarly, if p is not contained in a halfspace h, we create the constraint:

h1p1 + . . . hdpd > hd+1.

This is a valid ETR sentence that is equivalent to the representability of H. Note
that for any fixed dimension d the ETR sentence is of polynomial size. ⊓⊔

Recall that the class NP is usually described by the existence of a witness
and a verification algorithm. The same characterization exists for ∃R using a
real verification algorithm. Instead of the witness consisting of binary words of
polynomial length, in addition a polynomial number of real-valued numbers are
allowed as a witness. Furthermore, in order to be able to use those real numbers,
the verification algorithm is allowed to work on the so-called real RAM model
of computation. The real RAM allows arithmetic operations with real numbers
in constant time [22].

Lemma 2. For some d ≥ 1, let C ⊆ Rd be a computable set and let F be the
family of all translates of C. Then, Recognition(F) is contained in ∃R.

Proof. We describe a real verification algorithm as mentioned above. The wit-
ness consists of the (real) coordinates of the points representing the vertices and
the coefficients of the translation vectors representing the hyperedges. By defi-
nition of computable, a verification algorithm can efficiently check if each point
is contained in the correct sets. ⊓⊔

B Details of Theorem 4

Theorem 4. d-Stretchability is ∃R-hard for all d ≥ 2.

Proof. We reduce from stretchability of simple pseudoline arrangements, which
is ∃R-hard as shown in [39,51].

Consider a simple pseudoline arrangement L in the x1x2-plane. We consider
d− 2 pairwise orthogonal hyperplanes h1, . . . , hd−2 whose common intersection
is the x1x2-plane; e.g., the hyperplanes defined xi = 0 for i = 3, . . . , d. The



Fig. 10: Extending a simple pseudoline arrangement (dashed) to a partial pseu-
dohyperplane arrangement in R3. The grey hyperplane serves as the “canvas”.

intersection of these hyperplanes serves as a canvas in which we aim to embed
L. We extend each pseudoline of ℓ to a pseudohyperplane hℓ by extending it
orthogonally to all h1, . . . , hd−2, see Figure 10.

Clearly, the resulting pseudohyperplane arrangement A can be built in poly-
nomial time. Note that all intersection points of d pseudohyperplanes in A cor-
respond to intersection points of L.

If L is stretchable, A is clearly stretchable, as the above construction can be
applied to the stretched line arrangement of L.

If A is stretchable, L is stretchable, since restricting each hyperplane hℓ to
the intersection of the hyperplanes h1, . . . , hd−2 yields a line arrangement which
is equivalent to L.

As we have thus reduced stretchability of simple pseudoline arrangements to
d-Stretchability, this concludes the proof. ⊓⊔

C Details of Lemma 3

Lemma 3. If A is stretchable, H is representable by translates of C.

Proof. We assume that A is stretchable. We already proved in the previous
section that thus there exists an arrangement of hyperplanes, in which we can
create a twin of each hyperplane (with a tiny distance α between the twins),
and in which we can place all the vertices of H in the appropriate d-dimensional
cells. If a vertex is placed between two twin hyperplanes, we assume it to be
equidistant to them. As before, we denote this arrangement of hyperplanes and
points by B′.

Let v be the unit vector certifying that C is bi-curved; recall the definition in
Section 1. Because C is smooth at the touching points of the tangent hyperplanes
with normal vector v, there exists ϵ > 0, such that any unit vector w with
∥w − v∥2 ≤ ε also fulfills the conditions to certify that C is bi-curved.

We now assume that B′ fulfills the following properties:

1. the normal vectors of all hyperplanes have distance at most ε to v or to −v



2. every intersection point of d hyperplanes as well as every point representing
a vertex of H, is contained in [−1, 1]d.

Both properties can be achieved by applying some affine transformation with
positive determinant, thus preserving the combinatorial structure of B′.

To represent the hyperedges of H, we will now use very large copies of C.
Note that technically we are not allowed to scale C, but scaling C by a factor
f is equivalent to scaling the arrangement by a factor 1/f . Let Cf be the set C
scaled by factor f .

In order to determine the necessary scaling factor f , we consider the curvature
of Cf in all the points where the tangent hyperplanes of Cf with normal vector w
for ∥w − v∥2 ≤ ε intersect Cf . In each such tangent hyperplane h with (unit)
normal vector w, we draw a (d− 1)-ball B of radius 10

√
d around the touching

point h ∩ Cf . Note that 10
√
d is larger than the length of any line segment

contained in the box [−1, 1]d. Now, f has to be large enough such that Cf

contains every point p + w · λ, for p ∈ B and α/10 ≤ λ ≤ 10
√
d. This ensures

that the boundary of Cf does not curve away from the tangent hyperplane
too quickly, and that Cf is “thick”. In other words, Cf locally behaves like
an only very slightly curved halfspace. See Figure 11 for an illustration of this
requirement on Cf .

h

r = 10
√
d

Cf

w

Fig. 11: An illustration of the requirement on the scaling factor f . The set Cf

must contain the grey region.

We now replace each hyperplane h of the arrangement B′ by a translate Cf
h

of Cf , placed such that h is a tangent hyperplane of Cf
h , the single point h∩Cf

h



lies within the box [−1, 1]d, and Cf
h lies completely to the side of h containing its

twin hyperplane. It remains to prove that Cf
h contains exactly those points of B′

which are on this side of h. Firstly, Cf
h cannot contain more points, since Cf

h is
a subset of the halfspace delimited by h containing its twin hyperplane. Second,
we claim that Cf

h contains all these points. To see this, note that within the box
[−1, 1]d containing all points, the boundary of Cf

h is close enough to h that it
must contain all points between h and its twin, since these points are located
equidistant to the two hyperplanes. Furthermore, all points on the other side of
the twin hyperplane are also contained in Cf

h since within the box [−1, 1]d, the
boundary δ(Cf

h ) lies completely between h and its twin hyperplane. ⊓⊔
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