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André Schulz[0000−0002−2134−4852]

FernUniversität in Hagen, Universitätsstraße 47 58097 Hagen, Germany
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Abstract. A polyhedral surface C in R3 with convex polygons as faces is
a side-contact representation of a graph G if there is a bijection between
the vertices of G and the faces of C such that the polygons of adjacent
vertices are exactly the polygons sharing an entire common side in C.
We show that K3,8 has a side-contact representation but K3,250 has not.
The latter result implies that the number of edges of a graph with side-
contact representation and n vertices is bounded by O(n5/3).

Keywords: Contact Representations · Polyhedral Surfaces · 3D.

1 Introduction

Contact representations are a classical approach to visualize graphs. A graph
G has a contact representation if there is a bijection between its vertex set
V and a set of interior-disjoint geometric objects from a given class such that
two objects touch if and only if the corresponding vertices are adjacent. For a
concrete contact representation it has to be specified, which geometric objects
are considered (including their embedding space) and what it means for two
objects to touch. In this paper we consider convex polygons in 3D as geometric
objects. To avoid confusion we call the edges of a polygon its sides and the
vertices its corners. Two polygons touch with a side-contact if and only if they
have a full side in common. It is not allowed that a side is contained in more than
two polygons. Notice that we do not require that all polygon sides are incident to
two polygons. For brevity, we call representations of convex polygons in 3D with
such side-contacts simply side-contact representations throughout the paper and
every polygon will be considered as convex.

It is an open question to characterize the graphs that have a side-contact
representation. First results were given by Arseneva et al. [2], who introduced this
kind of contact representation. We list some of the results from Arseneva et al.:
Exactly the planar graphs have a side-contact representation in the plane. The
graph K5 has no side-contact representation in 3D, but K3,5 and K4,4 have one.
Another graph that has no side-contact representation is K5,81, which implies by
the Kővari–Sós–Turán theorem [5] that graphs with side-contact representation
have at most O(n9/5) edges, for n being the number of vertices. On the other

ar
X

iv
:2

30
8.

00
38

0v
1 

 [
cs

.C
G

] 
 1

 A
ug

 2
02

3
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hand all graphs of hypercubes have a side-contact representation and thus there
are n-vertex graphs with Θ(n log n) edges with side-contact representation.

There exists a large body of literature for other types of contact represen-
tations. For a few selected results in 2D we redirect the reader to Arseneva et
al. [2]. For 3D we list some selected results here: Due to Tietze [8] every graph
has a contact representation with interior-disjoint convex polytopes in R3 where
contacts are given by shared 2-dimensional facets. Evans et al. showed that every
graph has a contact representation in 3D where two convex polygons touch if they
share a single corner [3]. Every planar graph has a contact representation with
axis-parallel cubes in R3 as shown by Felsner and Francis [4] (two cubes touch
if their boundaries intersect), a similar result for boxes was discovered earlier
by Thomassen [7]. Kleist and Rahman [6] studied a similar model but required
that the intersection has nonzero area. They proved that every subgraph of an
Archimedean grid can be represented with unit cubes. Alam et al. [1] showed
in the same model with axis-aligned boxes that every 3-connected planar graph
and its dual can be represented simultaneously.

Our contribution. We extend the results of Arseneva et al. [2] for complete bipar-
tite graphs. We construct a side-contact representation of K3,8, where previously
only a construction for K3,5 was known. On the other hand, we prove that K3,250

has no side-contact representation. As a consequence the number of edges of an
n-vertex graph with a side-contact representation is bounded by O(n5/3).

2 A side-contact representation for K3,8

In this section we explain how to construct a side-contact representation of K3,8.
As an intermediate step we construct a corner-contact representation. In contrast
to side-contact representations, two polygons touch with corner-contact if they
share a single corner. For a polygon p its supporting plane p= defines two open
half-spaces which we label arbitrarily as p+ and p−. We say that a representation
(either corner-contact or side-contact) is one-sided, if for every polygon p its
touching polygons lie either all in the closure of p+, or they lie all in the closure
of p−. Note that the definition of one-sided is slightly stronger than the definition
of one-sided with respect to a set as used by by Arseneva et al. [2].

Lemma 1. Every one-sided corner-contact representation of K3,8 can be trans-
formed into a side-contact representation of K3,8.

Proof. We call the polygons from the partition class with eight elements the
blue polygons. Every blue polygon b can be trimmed to a triangle touching the
(red) polygons r1, r2, r3. We can assume for every b that the red polygons lie in
b+ ∪ b=. Consider the plane b= and the line arrangement A given by b= ∩ r=i for
i ∈ {1, 2, 3}. Since the representation is one-sided, A contains a triangular cell
∆ such that every edge of ∆ contains exactly one corner of b. Let h be a plane
parallel to b= (inside b+, very close to b=) such that the line arrangement given
by h∩r=i for i ∈ {1, 2, 3} is combinatorially equivalent to A and furthermore the
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cell corresponding to ∆ contains on every edge exactly one line segment from
S = {si := h ∩ ri | i ∈ {1, 2, 3}}. We can now replace b by the convex hull of S
and then restrict the red polygons to b= ∪ b+, w.r.t. the modified b. Since the
three segments of S lie on the boundary of ∆, they all appear on its convex hull.
Thus we keep all incidences without introducing new ones (see Figure 1). Also,
the one-sidedness property is maintained. Repeating this for every blue polygon
yields a side-contact representation of K3,8.

b=

r1

r2
r3

∆

r=3 ∩ b=

r=2 ∩ b=

r=1 ∩ b=

b

h

s2
s3

s1

b

Fig. 1. Offsetting the supporting planes of the blue polygons can transform a one-sided
corner-contact representation into a side-contact representation.

It remains to construct a one-sided corner-contact representation for K3,8.
We start with a hexagonal prism of height 1. Its base is parallel to the xy-plane
and given by a hexagon with alternating side lengths 2 and 14 and interior angles
of 2π/3. We name the corners of the bottom base (in cyclic order) x0, . . . , x5, and
the corners at the top x′

0, . . . , x
′
5, such that xi and x′

i are adjacent. All indices of
these points are considered modulo 6. Let ℓi be the segment between x2i+1 and
x′
2i+4 for i ∈ {1, 2, 3}. For any ℓi we define ℓ′i to be a copy of ℓi that is vertically

shifted up by 0.2. Now, we subdivide all six segments in the middle and move
the subdivision point vertically up by 1.08 in case of the ℓ′is and vertically down
by 1.08 in case of the ℓis. We define for all i ∈ {1, 2, 3} the (red) polygon ri as
the convex hull of ℓi and ℓ′i (including the translated subdivision point). Notice
that the polygons are disjoint (see appendix). The convex hull of these polygons
defines a convex polyhedron P. We observe that P has eight triangular faces that
are incident to all red polygons. These define the blue polygons (see Figure 2).
Note that at the subdivision points we have one red polygon adjacent to two
blue polygons. To resolve this issue we replace all subdivision points by an ε-
small side such that the red polygons remain convex and all blue polygons still
appear on the convex hull of {r1, r2, r3} (details are given in the appendix). We
then move the corners of the adjacent blue polygons to two distinct endpoints
of the new sides. It can be checked (see also appendix) that the constructed
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representation is one-sided (in particular, the red polygons are contained in P)
and therefore, by Lemma 1 it can be transformed into a (one-sided) side-contact
representation. We summarize our result.

Theorem 1. The graph K3,8 has a side-contact representation with convex poly-
gons in 3D.

Fig. 2. The configuration of the red polygons and the prism (left). The full configura-
tion (right).

We remark that the side-contact representation of K3,8 is one-sided. As a
consequence of a result by Arseneva et al. [2, Lemma 11] no K3,t with t > 8 has
a one-sided representation with side-contacts.

3 K3,250 has no side-contact representation

In this section we prove the following result:

Theorem 2. The graph K3,250 has no side-contact representation with convex
polygons in 3D.

To prove Theorem 2 we present first some lemmas for configurations of
(straight-line) segments in 2D. Thus, until mentioned otherwise, all configu-
rations are considered in 2D from now on. We say that a set of segments S is
convex if every s ∈ S lies on the convex hull of S and no two segments have
the same slope. We allow that in a convex set of segments two segments share
an endpoint. Assume that the elements of S are named such that the sequence
s1, s2 . . . , sm lists the segments according to their clockwise appearance on the
convex hull. The intersection of the supporting lines of two segments si and sj
is called support intersection point (si-point for shorthand notation) of si and
sj . If j = i+ 1, or i = 1 and j = m, we call the si-point of si and sj a consecu-
tive support intersection point (csi-point for shorthand notation). Let si = aibi
and sj = ajbj such that aibj is a proper segment on the convex hull of S. The
csi-point cij of si and sj is called flopped if the line through aibj defines a closed
half-space that contains cij and S. See Figure 3 for an illustration.
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H1

H2

s1

s2

s3

s4

c12

c23 c34

c14

a1

b4

c13

c24

Fig. 3. Four segments in convex position. Csi-points are shown as squares. The only
flopped csi-point c14 is filled. All other si-points are drawn as (empty) disks.

Lemma 2. For any set S of segments in convex positions there is at most one
csi-point that is flopped.

Proof. Let si and sj be two segments with csi-point cij . We can assume that
j = i + 1. The point cij can only be flopped if the clockwise radial sweep of
the tangent lines from si to sj requires an angle larger than π, since we need
to transition a state in which the tangent line is parallel to si. Since in a total
angular sweep we rotate by 2π, this can happen only once.

Lemma 3. Let S be a set of at least four segments in convex position. Consider
any two closed half-spaces H1 and H2 that (i) both contain S, and (ii) no s ∈ S
is completely part of the boundary of H1 or H2. Then at least one csi-point of S
lies in the interior of H1 ∩H2.

Proof. Assume first that S contains no flopped csi-point. Then the set of csi-
points forms a convex set C. Furthermore, every edge of the convex hull of C
contains exactly one segment of S completely. Consider now a closed half-space
H that contains S. If the interior of H misses two points from C, then an edge
of the convex hull of C (and therefore a segment of S) lies in the complement of
the interior of H. Clearly H violates condition (i) or (ii) from the statement of
the lemma in this case.

Now assume that we have a flopped csi-point c. We can augment S by adding
a new segment such that the new set is convex and has no flopped csi-point. All
csi-points other than c will remain. Thus, also in this situation, at most one
nonflopped csi-point is not in the interior of H if the boundary of H contains no
segment from S completely.
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The interior of the intersection of any two closed half-spaces H1 and H2

fulfilling (i) and (ii) can therefore miss no more than one nonflopped csi-point
per half-space, and possibly a flopped csi-point if it exists. By Lemma 2 there
can only be one flopped csi-point. The statement of the lemma follows.

We remark that the statement of Lemma 3 is “tight” as shown by the con-
figuration in Figure 3.

Lemma 4. Let S = {s1, . . . , sm} be a set of segments in convex position indexed
in cyclic order. Assume that s1 = aa′ and sm = bb′ define a flopped csi-point c
such that the segment ab lies on the convex hull of S. Then all si-points of S lie
inside the triangle ∆ spanned by a, b and c.

Proof. Let ℓi be the supporting line of si. We denote the intersection of ℓi with ℓj
by xij . Notice that on ℓ1 the following points appear in order: a, x12, x13, . . . , x1m, c.
On ℓm however, we have the order: b, xm(m−1), . . . , xm2, xm1, c. Both facts can
be observed by radially sweeping a tangent line around the convex hull of S.

Now consider any two segments si, sj ∈ S, with 1 < i < j < m. Their si-point
is denoted as xij . Since on ac the order of points is a, x1i, x1j , c and on bc the
order of points is b, xmj , xmi, c the segments x1ixmi and x1jxmj have to cross
inside ∆ and hence the si-point defined by si and sj lies in ∆ (see also Figure 4).
We have already observed that all other relevant si-points (defined by either s1
or sm) lie on the boundary of ∆.

c

a
b

si sj

x1j

x1i

xmi

xmj

xij

Fig. 4. Illustration of the proof of Lemma 3. The triangle ∆ is shaded blue and the
si-point induced by si and sj is drawn as empty disk.

We now prove Theorem 2 and go back to 3D.

Proof. (Theorem 2).Assume that we have a side-contact representation ofK3,250.
We call the polygons r1, r2, r3 of the first partition class the red polygons. The
polygons of the other partition class are called the blue polygons. The supporting
plane of a polygon ri is named r=i . Let A be the arrangement given by r=1 , r

=
2 , r

=
3 .

We can assume that the three planes intersect in a single point r∗, and that no
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two sides of a polygon are parallel. Otherwise we apply suitable (small) projec-
tive transformations to prevent parallel planes and lines without disconnecting
the polygons. We call the eight (closed) cells of A octants. Note that every blue
polygon has to lie in a single octant, since it has a side-contact with each of the
red polygons. A red polygon can only be part of all octants if it contains r∗.
Thus, at least two red polygons need to avoid r∗ and “miss” at least two octants
each, and only one of these octants can be the same. As a consequence there are
at most 5 octants that have a piece of every red polygon on the boundary. One
of them contains at least 50 = 250/5 blue polygons. We denote this octant by C.

Let fi be the bounding face of C that contains ri and denote the interior
of fi by f̃i. Further let ρij be fi ∩ fj . Both r1 and r2, can have at most one
side fully contained in ρ12 and no side from r3 can be completely in ρ12 since
ρ12 ∩ r=3 = {r∗}. Thus, ρ := ρ12 ∪ ρ23 ∪ ρ13 contains at most six complete sides
from blue polygons in C. We ignore any blue polygon with a full side in ρ and
remain with a set B of at least 44 blue polygons.

First, we consider the polygon r1 and select a set S1 of 44 of its sides that are
incident to some polygon in B. As usual, we label the segments s1, s2, . . . , s44
cyclically and set S ′

1 = {s1, s12, s23, s34}. The face f1 can be obtained by inter-
secting r=1 with two closed half-spaces. No segments of S ′

1 lies completely on the
boundary of f1 and thus, by Lemma 3 at least one csi-point, say c, of S ′

1 lies
in f̃1. Take the two segments aa′ and bb′ (with a′b′ on the convex hull on S ′

1)
defining c and all of the ten segments of S in between them in the cyclic order.
We call this set S ′′

1 . Note that this set has a flopped csi-point, which is c. Since
a, b, c lie in f̃1 we have by Lemma 4 that all si-points of S ′′

1 lie in f̃1.

We now deal with polygon r2. Let S2 be the set of sides of r2 that share a side
with a blue polygon that has a side in S ′′

1 . We get that |S2| = 12. We sort the
segments in S2 again by a radial sweep (notice that the order might be different
than in S ′′

1 ). This time we select the first, fourth, seventh and tenth segment in
this order and we denote this subset by S ′

2. Again, we apply Lemma 3 to find a
csi-point in f̃2 and then Lemma 4 to obtain a set S ′′

2 of (this time 4) segments,
whose si-points are all in f̃2.

Finally, we consider r3. Let S3 be the set of sides of r3 that share a side
with a blue polygon that has a side in S ′′

2 (and therefore in S ′′
1 as well). Since

|S2| = 4 we get by Lemma 3 that one csi-point of S3 lies in f̃3. Two segments of
S3 define this point. Call the adjacent blue polygons b1 and b2, with supporting
planes b=1 and b=2 . We denote the restriction of b=1 /b

=
2 to the boundary of C by

t1/t2. By our construction, t1 and t2 intersect on f̃3 in a csi-point. But both
blue polygons have also a common side with each of the sets S ′′

2 and S ′′
1 . As a

consequence, t1 and t2 intersect in an si-point of S ′′
1 inside f̃1 and in an si-point

of S ′′
2 inside f̃2. The three si-points are distinct and define a plane. We get that

b=1 = b=2 . However, if two blue polygons lie in the same plane, all red polygons
and therefore all blue polygons have to lie in this plane as well. Since K3,250

is nonplanar, it has no side-contact representation in the plane, and we have
obtained the desired contradiction.



8 A. Schulz

The following is now a simple consequence from the Kővari–Sós–Turán theo-
rem [5], which states that an n-vertex graph that has no Ks,t as a subgraph can
have at most O(n2−1/s) edges.

Corollary 1. Let G be an n-vertex graph with a side-contact representation of
convex polygons in 3D. Then the number of edges in G is bounded by O(n5/3).
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In Frank Dehne, Jörg-Rüdiger Sack, and Ulrike Stege, editors, Proc. Algorithms and
Data Structures Symposium (WADS’15), volume 9214 of LNCS, pages 14–27, 2015.

2. Elena Arseneva, Linda Kleist, Boris Klemz, Maarten Löffler, André Schulz, Bir-
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A Omitted Details for the Construction in Section 2

We give here the full details how to obtain the one-sided corner-contact repre-
sentation of K3,8. We start with the precise definitions of the coordinates. Let
q1, . . . , q8 be the points of the first red polygon r1. For a point q ∈ R3 we denote
its coordinates by (qx, qy, qz). The coordinates for r1 are chosen as follows

i 1 2 3 4 5 6 7 8

qxi 8 8 0.08 0 −8 −8 −0.08 0

qyi 2
√
3 2

√
3 2

√
3 2

√
3 2

√
3 2

√
3 2

√
3 2

√
3

qzi −0.6 −0.4 1.1815 1.1814 0.6 0.4 −1.1815−1.1814

https://arxiv.org/abs/2103.09803v2
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q1
q2

q3q4

q5
q6

q7 q8

Fig. 5. The shape of a red polygon.

The red polygon r2 is obtained by rotating a copy r1 around the z-axis by
2π/3. Similarly, r3 is given by a copy of r1 rotated by −2π/3 around the z-axis.
We denote the vertices of r2 by s1, . . . , s8 and the vertices of r3 by t1, . . . , t8, such
that si/ti are copies of qi. We need to assure that the three polygons are disjoint.
When looking at the top view (Figure 6) we see that there can be at most three
possible intersections, marked with a cross in the figure. Due to symmetry we
only need to check one of these locations. Thus, it suffices to assure that segment
q2q3 lies below segment t6t7 at the line v parallel to the z-axis through the point
x, where x = (6, 2

√
3, 0) is the intersection of r1 and r3 when projected into

the xy-plane. Computing the distances shows that the z-coordinate of q2q3 ∩ v
is −0.000631313 and therefore negative. By symmetry t6t7 ∩ v has a positive
z-coordinate and hence the two red polygons are disjoint.

r1
r2

r3

x

b7

b1

b3 b5

Fig. 6. Top view of the representation.
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To specify a blue polygon b, we write b = (qi, sj , tk) if the corners of b are
qi, sj , tk. The blue polygons are then given as follows:

b1 = (q4, s5, t2) b2 = (q8, s6, t1) b3 = (q2, s4, t5) b4 = (q1, s8, t6)
b5 = (q5, s2, t4) b6 = (q6, s1, t8) b7 = (q3, s3, t3) b7 = (q7, s7, t7)

It remains to check if the configuration of red and blue polygons is one-sided.
To decide for a polygon p on which side of the supporting plane p= a point q lies
we can use the signed volume of the tetrahedron spanned by q, q1, q2, q3, where
q1, q2, q3 are three arbitrary corners of p. This volume can be computed with the
following expression:

[q, q1, q2, q3] := det


qx qx1 qx2 qx3
qy qy1 qy2 qy3
qz qz1 qz2 qz3
1 1 1 1


Thus, for every polygon p′ adjacent to p we have to check if the nonzero entries of
{[q′, q1, q2, q3] | q′ is corner of p′} have all the same sign. We finish with a small
python-3 script that will carry out the necessary computations. Running the
script verifies that the configuration is a one-sided corner-contact representation
of K3,8.

import numpy as np

import math

def check_side(pa,polygonlist):

""" Processes all polygons in polygonlist

Prints "true" if all polygons in polygonlist are on

one side of polygon pa.

"""

for pb in polygonlist:

orientation = []

for point in pb:

m1 = np.array([pa[0],pa[1],pa[2],point])

m2 = np.insert(m1,3,[1,1,1,1],1)

orientation.append(np.linalg.det(m2))

a = np.array(orientation)

print(np.any((a <= 0)|(a >= 0 )))

red2d = np.array([[8,-.6],[8,-.4],[.08,1.1815],[0,1.1814],[-8,.6],

[-8,.4],[-.08,-1.1815],[0,-1.1814]],)

red1 = np.insert(red2d,1,np.full((1,8),2*math.sqrt(3)),1)

rot_matrix = np.array([[-1/2,-math.sqrt(3)/2,0],

[math.sqrt(3)/2,-1/2,0],[0,0,1]])
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red2 = np.matmul(red1,rot_matrix)

red3 = np.matmul(red2,rot_matrix)

blue1 = np.array([red1[3],red2[4],red3[1]])

blue2 = np.array([red1[7],red2[5],red3[0]])

blue3 = np.array([red2[3],red3[4],red1[1]])

blue4 = np.array([red2[7],red3[5],red1[0]])

blue5 = np.array([red3[3],red1[4],red2[1]])

blue6 = np.array([red3[7],red1[5],red2[0]])

blue7 = np.array([red1[2],red2[2],red3[2]])

blue8 = np.array([red1[6],red2[6],red3[6]])

reds = [red1,red2,red3]

blues = [blue1,blue2,blue3,blue4,blue5,blue6,blue7,blue8]

for red in reds:

check_side(red,blues)

for blue in blues:

check_side(blue,reds)
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