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Abstract. A pair ⟨G0, G1⟩ of graphs admits a mutual witness proximity
drawing ⟨Γ0, Γ1⟩ when: (i) Γi represents Gi, and (ii) there is an edge (u, v)
in Γi if and only if there is no vertex w in Γ1−i that is “too close” to both
u and v (i = 0, 1). In this paper, we consider infinitely many definitions
of closeness by adopting the β-proximity rule for any β ∈ [1,∞] and
study pairs of isomorphic trees that admit a mutual witness β-proximity
drawing. Specifically, we show that every two isomorphic trees admit a
mutual witness β-proximity drawing for any β ∈ [1,∞]. The constructive
technique can be made “robust”: For some tree pairs we can suitably
prune linearly many leaves from one of the two trees and still retain their
mutual witness β-proximity drawability. Notably, in the special case of
isomorphic caterpillars and β = 1, we construct linearly separable mutual
witness Gabriel drawings.
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1 Introduction

Proximity drawings are geometric graphs (i.e., straight-line drawings) such that
any two vertices are connected by an edge if and only if they are deemed to be
close according to some definition of closeness. Therefore, proximity drawings
are such that pairs of non-adjacent vertices are relatively far apart while highly
connected subgraphs correspond to groups of vertices that can be naturally
clustered together in a visual inspection.

In this paper, we investigate mutual witness proximity drawings, which employ
the concept of closeness to simultaneously represent pairs of graphs. Specifically,
consider a pair of graphs, denoted as ⟨G0, G1⟩. The pair admits a mutual witness
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G0

G1

(a) Gabriel drawing

G0

G1

(b) Mutual witness relative neighborhood drawing

Fig. 1: Two mutual witness drawings on the same point set.

proximity drawing, denoted as ⟨Γ0, Γ1⟩, under the following conditions: (i) Γi

represents Gi, and (ii) an edge (u, v) exists in Γi if and only if there is no vertex
w in Γ1−i that is “too close” to both u and v (where i = 0, 1). Vertex w is called
a witness and its proximity to u and v impedes the presence of the edge. Clearly,
by changing the definition of proximity a pair of graphs may or may not admit a
mutual witness proximity drawing.

There is general consensus in the literature to define the closeness of w to
both u and v by means of a proximity region of u and v, which is a convex region
in the plane whose area increases when the distance between u and v increases.
For example, the Gabriel region [8] of u and v is the disk whose diameter is the
line segment uv; the witness w is close to u and v if it is a point of their Gabriel
disk. A mutual witness Gabriel drawing of a pair ⟨G0, G1⟩ is therefore a pair of
drawings Γ0 of G0 and Γ1 of G1 such that for any two non-adjacent vertices in
one drawing their Gabriel disk contains a witness from the other drawing, while
for any two adjacent vertices their Gabriel region does not contain any witnesses.
Figure 1a shows a mutual witness Gabriel drawing of two caterpillars. As another
example, the relative neighborhood region [19] of u and v is the intersection of the
two disks of radius d(u, v) centered at u and v, respectively. Figure 1b depicts
a mutual proximity drawing that adopts the relative neighborhood region: The
drawing has the same vertex set but fewer edges than the drawing in Figure 1a.

We want to understand what families of graph pairs admit a mutual witness
proximity drawing for a given definition of proximity. Intuitively, the denser the
two graphs are, the more likely they admit such a representation: If the graphs are
complete, we can draw them sufficiently far apart so that the proximity regions of
their edges do not contain any witnesses. On the other hand, when the graphs are
sparse there are many non-adjacent vertices requiring the presence of witnesses in
their proximity regions, which makes the geometry of the two drawings strongly
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depend on one another. We specifically study very sparse graphs, namely trees.
An outline of our contribution is as follows.

In Section 4, we prove that any pair ⟨G0, G1⟩ of isomorphic caterpillars
admits a mutual witness Gabriel drawing ⟨Γ0, Γ1⟩ such that Γ0 and Γ1 are
linearly separable. This is somewhat surprising as caterpillars are very sparse
graphs and the linear separability of mutual witness Gabriel drawings was known
only for graphs of small diameter, namely at most two [13].

In Section 5, we extend the previous result in two different directions: We
consider pairs of general isomorphic trees and we study their drawability for an
infinite family of proximity regions called β-regions [12], whose shape depends on
a parameter β ∈ R. We show that any pair ⟨G0, G1⟩ of isomorphic trees admits
a mutual witness proximity drawing for any β-region such that β ∈ [1,∞]. While
the two drawings are no longer linearly separable, they have the property that
the coordinates of their vertex sets remain the same for any possible value of β.
It is worth recalling that the Gabriel disk is the β-region for β = 1 and that the
relative neighborhood region corresponds to the β-region for β = 2.

In Section 6, we investigate the “robustness” of the construction of Section 5:
We show that for some tree pairs, this construction can be modified so that the
drawing remains valid even after pruning a suitable set of leaves. While it is
known that any two star trees admit a mutual witness Gabriel drawing if and
only if the cardinalities of their vertex sets differ by at most two [13], we show
that there exist tree pairs which can differ by linearly many leaves and still admit
a mutual witness proximity drawing for any β-region such that β ∈ [1,∞].

Results marked with a (clickable) “⋆” are proved in the appendix.

2 Related Work

Proximity drawings are a classical research topic in graph drawing; they find
application in several areas, including pattern recognition, data mining, machine
learning, computational biology, and computational morphology. Proximity draw-
ings have also been used to determine the faithfulness of large graph visualizations.
A limited list of references includes [7,10,14,15,16,20].

In the context of designing trained classifiers, mutual witness proximity
drawings were first introduced by Ichino and Slansky [9] under the name of
interclass rectangle of influence graphs. In [9] the proximity region of a pair of
vertices, called the rectangle of influence, is the smallest axis-aligned rectangle
containing the two vertices. This study was then extended to other families
of proximity regions, including the Gabriel region, in a sequence of papers by
Aronov et al. [1,2,3,4]. Notably, in [4] it is said that once the combinatorial
properties of those pairs of graphs that admit a mutual witness Gabriel drawing
are understood, “we would have useful tools for the description of the interaction
between two point sets”. Aronov et al. prove in [3] that any pair of complete
graphs admits a mutual witness Gabriel drawing where the two drawings are
linearly separable. The linear separability property of mutual witness Gabriel
drawings is extended to diameter-2 graphs by Lenhart and Liotta, who also give
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p

q

R[p, q, 1]R[p, q, 2]

R[p, q, 4]R[p, q,∞]

Fig. 2: Examples of β-proximity regions for β ≥ 1.

a complete characterization of those complete bipartite graphs that admit a
mutual witness Gabriel drawing [13]. Another related contribution of Aronov et
al. [1,2,3,4] is to introduce and study witness proximity drawings, which can be
shortly described as a relaxation of mutual proximity drawings where one of the
two drawings has no edges, independently of whether the proximity regions of its
vertices do or do not contain any witnesses.

3 Preliminaries

We assume familiarity with basic graph drawing concepts; see e.g. [5,11,17,18].
Let p and q be two distinct points in the plane. We denote by pq the straight-

line segment having p and q as its extreme points. We define β-regions adopting
the notation in [6]. A region in the plane is open if it is an open set, that is the
points on its boundary are not part of the region, and closed if all of the points of
the boundary are part of the region. Given a pair p, q of points in the plane and
a real number β ∈ [1,∞], the open β-region of p and q, denoted by R(p, q, β), is
defined as follows. For 1 ≤ β < ∞, R(p, q, β) is the intersection of the two open
disks of radius βd(p, q)/2 and centered at the points (1 − β/2)p + (β/2)q and
(β/2)p+(1−β/2)q. R(p, q,∞) is the open infinite strip perpendicular to the line
segment pq and for β ∈ [1,∞], the closed β-region R[p, q, β] is simply the open
region R(p, q, β) along with its boundary; see Figure 2.

Note that R[p, q, 1] is the Gabriel region of p, q and that R(p, q, 2) is the
relative neighborhood region of p, q. We shall denote as a MW-[β] drawing a
mutual witness proximity drawing such that for any two vertices p and q the
proximity region is R[p, q, β]. In particular, an MW-[1] drawing is a mutual witness
Gabriel drawing. Similarly, a MW-(β) drawing is a mutual witness proximity
drawing that uses the open β-region.

As we shall see, some of our constructive arguments produce drawings that
are simultaneously MW-(β) and MW-[β] drawings; in this case we refer to them
simply as MW-β drawings. Note that for any pair p, q of vertices in an MW-β
drawing, R(p, q, β) contains a witness if p and q are not adjacent, while R[p, q, β]
contains no witnesses if p and q are adjacent.
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a0

a1

b0

b1

q0

q1

ρ0

ρ′0

ρ′1

ρ1

W0

W1

p0

p1

Fig. 3: A winged parallelogram with anchors q0, q1, safe wedges W0,W1, and ports p0, p1.

Let ⟨Γ0, Γ1⟩ be an MW-β drawing of graphs ⟨G0, G1⟩ for some value of β. We
say that the drawing is linearly separable if there exists a line ℓ such that Γ0 and
Γ1 lie in opposite half-planes with respect to ℓ. The following property rephrases
an observation of [13] and will be used in the proof of Theorem 1.

Property 1. Let ⟨Γ0, Γ1⟩ be a linearly separable MW-[1] drawing and let u and v
be any two non-adjacent vertices of Γi, for i = 0, 1. Then any witness in R[u, v, 1]
is also a point in R[u, v,∞]

4 MW-[1] Drawings of Isomorphic Caterpillars

A caterpillar is a tree T such that, when removing the leaves of T one is left with
a non-empty path called spine of T . We call the graph K1,n with n ≥ 1 a star; if
n > 1 the non-leaf vertex of a star is the center of the star, otherwise (i.e., when
the star is an edge) either vertex can be chosen as the center.

In this section, we prove that any two isomorphic caterpillars admit a linearly
separable MW-[1] drawing, that is they admit a linearly separable mutual witness
Gabriel drawing. As pointed out both in [3] and in [9], the linear separability of
mutual witness proximity drawings is a desirable property because it gives useful
information about the inter-class structure of two sets of points.

Let P = ⟨a0, b0, a1, b1⟩ be a parallelogram such that y(a0) > y(b0) > y(b1) >
y(a1) and x(a0) = x(b0) < x(a1) = x(b1). Let q0 and q1 be two points in
the interior of P satisfying y(bi) = y(qi), x(q1) < x(q0), and x(q0) − x(b0) =
x(b1) − x(q1). Let Wi be the wedge with apex bi not containing any vertex of
P other than bi and defined by two rays ρi, ρ

′
i such that ρi is perpendicular to

aib1−i and ρ′i is perpendicular to qib1−i. We call Wi safe wedges of P and the
qi anchors. We assume Wi to be an open set. Finally, we identify two ports,
the points pi, where pi is the point along ρi such that y(pi) = y(ai). The
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a0

a1

b0

b1

q0

ρ0

ρ′1

ρ1

W0

W1

p0

s0

R(a0, t0, 1)

t0

R(s0, t0, 1)

ρ′0

q1

R[a0, z0, 1]

z0

Fig. 4: Illustration for Property 2. (P1) Neither a1 nor any points of q1b1 are points of
R[a0, z0, 1]; (P2) b1 ∈ R(s0, t0, 1); (P3) b1 ∈ R(a0, t0, 1).

parallelogram P together with its anchors, safe wedges, and ports is called a
winged parallelogram WP (P, q0, q1,W0,W1, p0, p1). Figure 3 shows an example
of a winged parallelogram. The following property is an immediate consequence
of the definition of winged parallelogram; see also Figure 4.

Property 2. Let WP (P, q0, q1,W0,W1, p0, p1) be a winged parallelogram such
that the interior angles at points ai (i = 0, 1) are at most π

4 . Let si, ti, zi (i = 0, 1)
be any three points such that si ∈ biqi, ti /∈ Wi with x(t0) ≥ x(p0), x(t1) ≤ x(p1),
and zi ∈ Wi with y(zi) = y(ai). Then: (P1) neither s1−i nor a1−i are points
of R[ai, zi, 1]; (P2) b1−i ∈ R(si, ti, 1); (P3) b1−i ∈ R[ai, ti, 1] if ti on ρi and
b1−i ∈ R(ai, ti, 1) if ti is not on ρi.

We first show how to draw pairs of isomorphic stars into a winged parallelo-
gram and then generalize the construction to pairs of isomorphic caterpillars.

Lemma 1 (⋆). Let ⟨T0, T1⟩ be a pair of isomorphic stars such that, for i = 0, 1,
Ti has root ri and leaves vi,0, . . . , vi,k. Then ⟨T0, T1⟩ admits an MW-[1] drawing
⟨Γ0, Γ1⟩ contained in a winged parallelogram WP (P, q0, q1,W0,W1, p0, p1) such
that: (i) ri is drawn at ai and the the internal angle of WP (P, q0, q1,W0,W1, p0, p1)
at ai is at most π

4 ; (ii) vi,0 is drawn at bi; and (iii) for 0 < j ≤ k, vi,j is drawn
at an interior point of the segment biqi.
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p0

p1

q0

q1

a0

b0

a1

b1

W0
W1

(a) Drawing for k = 0

v0,0 v0,k

v1,kv1,0

1

2

(0, 0)

2k + 1

(b) Placement of the leaves

α

β

v0,0 v0,k

v1,k

2k

p

r0

α

β

q

2k2+1

1

(c) Placement of the root
(distorted for readability)

(d) Drawing for k=3

Fig. 5: Illustration for the Proof of Lemma 1.

Proof sketch. For i = 0, 1, if Ti has only one leaf, the construction is trivial;
see Figure 5a. Otherwise, we draw the leaves of Ti uniformly spaced along a
horizontal segment σi and then place σ0 and σ1 relative to each other so that for
every pair of consecutive leaves of Ti, there is a witness for that pair among the
leaves of T1−i; see Figure 5b.

The horizontal line midway between σ0 and σ1 will form a separating line for
⟨Γ0, Γ1⟩ once the centers ri of Ti are placed. The center r0 of T0 is then placed
vertically above the leftmost leaf of T0 and the center r1 of T1 is placed vertically
below the rightmost leaf of T1, each center far enough from the separating line
so that for i = 0, 1 and 0 ≤ j ≤ k, no proximity region R[ri, vi,j , 1] contains any
witness from T1−i; see Figure 5c. ⊓⊔

In the following we call an MW-[1] drawing ⟨Γ0, Γ1⟩ of two isomorphic stars
computed as in the proof of Lemma 1 a WP-drawing on P and say that the winged
parallelogram supports the drawing; see Figure 6. Note that, by construction,
the horizontal line L having y(L) = (y(b0) + y(b1))/2 is a separating line for the
WP-drawing of two isomorphic stars.

Lemma 2. Let ⟨Γ0, Γ1⟩ be a WP-drawing of two isomorphic stars ⟨T0, T1⟩ and
let P be the winged parallelogram that supports ⟨Γ0, Γ1⟩. Then, any pair ⟨T ′

0, T
′
1⟩

of isomorphic stars with at least one leaf and T ′
i ⊂ Ti has a WP-drawing on P .

Proof. Let ri be the root of Ti and vi,0, . . . , vi,k be the leaves of Ti. Consider
the drawing ⟨Γ0, Γ1⟩ computed in Lemma 1; see Figure 5. We use the same
notation as in the proof of Lemma 1. Remove all leaves vi,j that are not in T ′

i and
reposition the remaining leaves uniformly along σi as in the proof of Lemma 1.

By construction, the Gabriel region R[v0,i, v0,j , 1] for every v0,i, v0,j ∈ Ti, 1 ≤
i < j ≤ k still contains the vertex v1,i, while the Gabriel region R[v1,i, v1,j , 1]
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r0

r1

b0

b1

ρ0

ρ′0

ρ′1

ρ1

v1 v0
q2

q1

p0

p1

W0

W1

Fig. 6: A WP-drawing of two isomorphic stars on a parallelogram P

for every v1,i, v1,j ∈ Ti, 1 ≤ i < j ≤ k still contains the vertex v1,j . Otherwise,
if vi,0 /∈ T ′

i , then take any leaf vi,j ∈ T ′
i , switch its position with vi,0 in Γi, and

then proceed as above. ⊓⊔

Theorem 1. Any pair ⟨T0, T1⟩ of isomorphic caterpillars admits a linearly sep-
arable MW-[1] drawing.

Proof. For i = 0, 1, if each Ti is a path, the pair can easily be realized by two
horizontal paths, such that corresponding vertices of T0 and T1 have the same
x-coordinates, all edges have the same length and the y-distance between T0 and
T1 is at most the edge length. So we can assume that the spine of Ti is a path
such that at least one spine vertex has degree greater than two.

Let ri,0, . . . , ri,k be the spine vertices of Ti in the order that they appear along
the spine. Decompose Ti into subtrees Ti,0, . . . Ti,k, having roots ri,0, . . . , ri,k
respectively. Note that each ⟨T0,j , T1,j⟩ is either an isomorphic pair of stars with
centers r0,j and r1,j , respectively, or it is a pair of isolated vertices.

Let h be an index such that ri,h is a vertex of highest degree in Ti. Com-
pute a WP-drawing ⟨Γ0,h, Γ1,h⟩ of ⟨T0,h, T1,h⟩ by means of Lemma 1 and let
WPh = WP (Ph, q0,h, q1,h,W0,h,W1,h, p0,h, p1,h) be the winged parallelogram
that supports the drawing. Let N = y(r0,h) and S = y(r1,h) and let L0 and L1

be the two horizontal lines at heights N and S, respectively. We will construct a
MW-[1] drawing of the two caterpillars such that all spine vertices of Ti lie on Li

and such that the horizontal line L at height (N + S)/2 separates T0 from T1.
For any 0 ≤ j ≤ k, j ̸= h such that ri,j has at least one leaf, we use Lemma 2

to compute a WP-drawing ⟨Γ0,j , Γ1,j⟩ of ⟨T0,j , T1,j⟩ in a winged parallelogram
WPj congruent to WPh that will be placed so that ri,j lies on Li. For any
0 ≤ j ≤ k, j ̸= h such that ri,j has no children, we will place ri,j on Li so that
the line through r0,j , r1,j is perpendicular to the line through r1,h, p0,h.

We now describe how to place each pair ⟨Γ0,j , Γ1,j⟩; note that placing r0,j com-
pletely determines the placement of ⟨Γ0,j , Γ1,j⟩. Vertex r0,0 can be placed arbitrar-
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r0,j p0,j = r0,j+1

r1,j+1 r1,j+1r1,j

b0,j+1
b1,j

L0

L1

L

(a) Case (1)

r0,j+1

r1,j+1

L0

L1

L

p1,j+1 = r1,j

r0,j

r1,j+1p1,j+1 = r1,j

b0,j+1

(b) Cases (2) and (3)

Fig. 7: Illustration for the Proof of Theorem 1.

ily along L0. Assume now that, for some j ≥ 0, the pairs {r0,0, r1,0}, . . . {r0,j , r1,j}
have been placed along L0 and L1. We describe how to place r0,j+1. There are
three cases; see Figure 7: (1) If r0,j has at least one leaf, place r0,j+1 at port
p0,j . (2) If r0,j has no leaves and r0,j+1 has at least one leaf, place r0,j+1 so that
r1,j is at port p1,j+1. (3) If both r0,j and r0,j+1 have no leaves, place r0,j+1 at
the intersection of L0 with the line through r1,j that is perpendicular to r0,jr1,j .

This construction is almost an MW-[1] drawing of ⟨T0, T1⟩. Consider the
mutual witness Gabriel drawing Γ induced by the placement of the vertices of
⟨T0, T1⟩ described above. Note that in our constructed drawing: (i) The pairs
⟨T0,j , T1,j⟩ are drawn in vertically disjoint strips and by Property 1 form MW-[1]
drawings of those pairs. (ii) For any non-spine vertex u0,j ∈ T0,j , and any vertex
u0,t ∈ T0,t (0 ≤ j < t ≤ k), by Property 2 (P2), b1,j ∈ R(u0,j , u0,t, 1) and so the
pair {u0,j , u0,t} is not an edge in Γ . (iii) For any spine vertex r0,j ∈ T0,j , and
non-spine vertex u0,t ∈ T0,t (0 ≤ j < t ≤ k), either r0,j has a leaf, and so by Prop-
erty 2 (P3), b1,j ∈ R(r0,j , u0,t, 1) or r0,j has no leaves and r1,j ∈ R[r0,j , u0,t, 1]
by the construction described above. Similar statements hold for pairs of vertices
in T1 by the symmetry of the construction.

The drawing Γ is not yet an MW-[1] drawing of ⟨T0, T1⟩ because there are no
edges in Γ between any pair of consecutive spine vertices of Ti. This problem
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can be easily rectified, however. Note that in Γ there are only two types of
non-adjacent vertex pairs that only have witnesses on the boundaries of their
Gabriel regions (that is, that only have witnesses forming right angles), namely,
consecutive leaves in an individual subtree Ti,j , and consecutive spine vertices in
Ti. Let ri,j and ri,j+1 be any two consecutive spine vertices of Ti. We can always
perturb Γ so that by very slightly moving to the left all vertices of ⟨T0,j+1, T1,j+1⟩,
we have, by Property 2 (P1), that R[ri,j , ri,j+1, 1] contains no witnesses while
for every other pair of non-adjacent vertices their Gabriel regions still contain
a witness. Once all spine vertices have been properly connected, the resulting
drawing is a linearly separable MW-[1] drawing of ⟨T0, T1⟩. ⊓⊔

5 MW-β Drawings of Isomorphic Trees

In this section we show that, at the expense of losing linear separability, the result
of Theorem 1 can be extended to any two isomorphic trees and to any mutual
witness proximity drawing that adopts either the open or the closed β-region
for all values of β ∈ [1,∞]. A nice property of our algorithm is that it does not
depend on the exact choice of β, i.e., it produces a single drawing that is an
MW-β proximity drawing for every β ≥ 1.

Similar to the previous section, we show a construction to recursively draw
subtrees inside suitable parallelograms, which are however not winged parallelo-
grams. We start by defining these parallelograms. In the remainder of the section,
we shall sometimes assume that our trees are rooted, in which case we denote as
(T, r) a tree T with root r.

Let P = ⟨a0, b0, a1, b1⟩ be a parallelogram where a0a1 is the longer diagonal
and no angle is equal to π

2 . We say that P is nicely oriented if y(a0) > y(b1) >
y(b0) > y(a1) and x(a0) < x(b0) < x(b1) < x(a1); see Figure 8a.

Let ⟨(T0, r0), (T1, r1)⟩ be a pair of isomorphic rooted trees with n vertices
each. An MW-β parallelogram drawing of ⟨(T0, r0), (T1, r1)⟩ is an MW-β proximity
drawing ⟨Γ0, Γ1⟩ contained in a nicely oriented parallelogram P = ⟨a0, b0, a1, b1⟩
such that, for i = 0, 1, the following holds: (i) point ai represents the root ri of
Ti; (ii) if n > 0, point bi represents a vertex of Ti adjacent to ri; (iii) for every
other vertex vi ∈ Γi such that vi is neither the root of Ti nor the vertex at bi, we
have y(b1) > y(vi) > y(b0); (iv) no edge of Γi is a vertical segment. Figure 8b
shows an example of an MW-1 parallelogram drawing.

Theorem 2. Any two isomorphic trees ⟨T0, T1⟩ admit a parallelogram drawing
that is an MW-β-drawing for all β ∈ [1,∞].

Proof. Let r0 be any vertex of T0 and let r1 ∈ T1 be the isomorphic image of
r0. We will show by induction on the depth δ of (T0, r0) that ⟨(T0, r0), (T1, r1)⟩
admits an MW-β parallelogram drawing of ⟨T0, T1⟩ for any β ≥ 1.

If δ = 0 each Ti consists of only its root ri. Choosing any nicely oriented
parallelogram with r0r1 as its long diagonal will result in a valid MW-β drawing.
Assume the claim holds for δ ≤ k and suppose δ = k + 1.
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a0

a1

b0

b1

(a)

a0=r0

a1=r1

b0

b1

(b)

Fig. 8: (a) A nicely oriented parallelogram; (b) an MW-1 parallelogram drawing.

Let ⟨(T0,0, r0,1), (T1,0, r1,0)⟩, . . . , ⟨(T0,m, r0,m), (T1,m, r1,m)⟩ be the pairs of iso-
morphic rooted trees resulting from deleting ri from Ti. By induction, each
⟨(T0,j , r0,j), (T1,j , r1,j)⟩ with 0 ≤ j ≤ m admits a parallelogram drawing which is
an MW-β drawing. Let H be any horizontal strip defined by two parallel lines
y = s and y = t such that s < t. We uniformly scale and translate the parallelo-
gram drawings of ⟨(T0,j , r0,j), (T1,j , r1,j)⟩ such that y(r0,j) = t and y(r1,j) = s.
Note that this operation does not change any of the β-proximity properties of
any of the tree pairs.

Let Pj = (a0,j , b0,j , a1,j , b1,j) be the parallelogram that supports the MW-β
drawing ⟨(Γ0,j), (Γ1,j)⟩ of ⟨(T0,j , r0,j), (T1,j , r1,j)⟩. Let ℓj and ℓ′j be two half-lines
such that ℓj starts at r0,j , is orthogonal to r0,j , b0,j , and crosses H, and ℓ′j starts at
r1,j , is orthogonal to r1,j , b1,j , and crosses H; see Figure 9. We position Pj+1 such
that (i) ℓj+1 is to the right of ℓ′j ; (ii) for any edge e1,j = (u1,j , v1,j) in T1,j , r0,j+1

is to the right of the rightmost intersection point between H and R[u1,j , v1,j ,∞]
(since by inductive hypothesis no edge of Γ1,j is vertical, the coordinates of such
points are finite); and (iii) for any edge e0,j+1 = (u0,j+1, v0,j+1) ∈ T0,j+1, r1,j is
to the left of the leftmost intersection point between H and R[u0,j+1, v0,j+1,∞]
(by inductive hypothesis, the coordinates of such points are finite).

Condition (i) guarantees that for any vertices v1,j+1 ∈ Γ1,j+1 and v1,j ∈
Γ1,j , we have ∠(v1,j+1, r0,j+1, v1,j) >

π
2 and thus r0,j+1 ∈ R(v1,j+1, v1,j , 1) and

r0,j+1 ∈ R(v1,j+1, v1,j , β) for any β ≥ 1. Similarly, for any vertices v0,j+1 ∈ Γ0,j+1

and v0,j ∈ Γ0,j , we have r1,j ∈ R(v0,j+1, v0,j , β) for any β ≥ 1. Conditions (ii)
and (iii) guarantee that for any pair of adjacent vi,j , ui,j in Γi,j , there is no witness
in R[vi,j , ui,j ,∞] and thus no witness in R[vi,j , ui,j , β] for any finite β ≥ 1. We
now show how to place the roots r0 ∈ T0 and r1 ∈ T1 to produce an MW-β
parallelogram drawing of ⟨(T0, r0), (T1, r1)⟩ for any β ∈ [1,∞].

Let L0 be the vertical line through r0,0 and let L1 be the vertical line through
r1,m; see Figure 10a. We show how to place ri on Li such that the closed β-region
R[ri, ri,j ,∞] does not contain any witness, while for any other vertex v ∈ Ti, the
open β-region R(ri, v, 1) contains a witness. This implies that R[ri, ri,j , β] does
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r0,j

b0,j
b1,j

ℓ′j

ℓj+1

ℓj

r0,j+1

b1,j+1

b0,j+1

r1,j+1

ℓ′j+1
H

r1,j

Fig. 9: Parallelograms Pj and Pj+1 placed inside H.

r0,0

b0,0
b1,0

r0,m

b1,m

b0,m

r1,m

. . . α1
q0

h0

h1

L0

r1,0

...

L1f0

(a) Construction of L0, L1, h0, h1, α1, f0

z′0

z′′′0

z′′0

I ′0

I ′′′0

I ′′0

...

L0

(b) Construction of I ′0, I ′′0 , I ′′′0

Fig. 10: Placing r0 in the proof of Theorem 2.

not contain any witnesses for all finite values of β and that R(ri, v, β) contains
some witnesses for every β ≥ 1.

We proceed in three steps. In the first step, we identify an interval I ′i of Li

such that for any point p′ ∈ I ′i and for any ri,j , R[p′, ri,j , β] contains no witnesses
(i = 0, 1, 0 ≤ j ≤ m). In the second step, we identify an interval I ′′i of Li such
that for each vertex v ̸= ri,j (i = 0, 1, 0 ≤ j ≤ m) in Γi and for each point
p′′ ∈ I ′′i , R(p′′, v, β) contains a witness. In the third step, we identify an interval
I ′′′i of Li such that for any point p0 ∈ I ′′′0 the segment p0b1,m does not intersect
any parallelogram Pj with 0 ≤ j ≤ m. Similarly, for any point p1 ∈ I ′′′1 , the
segment p1, b0,0 does not intersect Pj for 0 ≤ j ≤ m. As we will see, I ′i ∩ I ′′i ∩ I ′′′i

is a half-infinite strip for i = 0, 1; see Figure 10b. We will describe how to obtain
the intervals I ′0, I

′′
0 , I

′′′
0 ; the intervals I ′1, I

′′
1 , I

′′′
1 can be constructed symmetrically.

We start by defining I ′0. By construction of the MW-β drawing of the forests
T0,0, . . . T0,m and T1,0 . . . T1,m, there exist horizontal lines h0, h1 in the interior
of H such that hi separates ri,0, . . . ri,m from every other vertex in the forest;
see Figure 10a. Let q0 be the intersection point of h0 and L0. Let z′0 be the
intersection point of L0 with the line through r0,m perpendicular to r0,mq0.
Let I ′0 = {z ∈ L0 : y(z) ≥ y(z′0)}. Observe that for any p0 ∈ I ′0 and any r0,j ,
R[p0, r0,j ,∞] contains no witnesses.
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γ1
r0,0

r1,m

. . .

r1

r0

γ0

f̂0

f̂1

(a) Definition of γ0, γ1, f̂0, f̂1

r0,0

r1,m

r1

r0

f̂0

f̂1

. .
.

(b) After rotation

Fig. 11: Rotating the drawing to obtain an MW-β parallelogram drawing.

We now define I ′′0 . For any parallelogram Pj and any vertex v0,j ∈ T0,j \{r0,j},
let z0,j be the intersection of L0 with the line through b1,j perpendicular to
b1,jv0,j . Let z′′0 be the z0,j of maximum y-value over all z0,j (0 ≤ j ≤ m). Let
I ′′0 = {z ∈ L0 : y(z) ≥ y(z′′0 )}. Observe that for any point p0 ∈ I ′′0 and for any
v0,j ∈ T0,j \ {r0,j}, we have that ∠(v0,j , b1,j , p0) ≥ π

2 and thus b1,j ∈ R[p0, v0,j , 1].

We now define I ′′′0 . Let α0 be the acute angle formed by L0 and the segment
r0,0b0,0. Let α1 be the acute angle formed by L1 and the segment r1,mb1,m and
let α = min{α0, α1}. Let f0 be a half-line starting at r1,m, having negative
slope, and forming an acute angle of α/2 with L1. Let z′′′0 be f0 ∩ L0 and let
I ′′′0 = {z ∈ L0 : y(z) ≥ y(z′′′0 )}.

Let Ii = I ′i ∩ I ′′i ∩ I ′′′i and let pi ∈ Ii be such that p0r1,m is parallel to p1r0,0.
We draw ri at pi, which produces an MW-β drawing of ⟨T0, T1⟩ in a parallelogram
P = ⟨a0, b0, a1, b1⟩ = ⟨r0, b1,m, r1, b0,0⟩. This is however not yet a parallelogram
drawing, as y(b0) = y(b0,0) > y(b1,m) = y(b1) and some edges are vertical.

To complete the proof, we thus show how to rotate P to produce an MW-β
parallelogram drawing. Refer to Figure 11a. Let γ0 be the angle between r0,0r1 and
r0,0b0,0 and let γ1 be the angle between r1,mr0 and r1,mb1,m; Let γ = min{γ0, γ1}.
Let f̂0 be the ray originating at r0,0, forming an angle γ′ < γ with, and lying above,
segment r0,0r1, so that no edge of the drawing is perpendicular to f̂0. Let f̂1 be the
ray originating at r1,m having opposite direction to f̂0. Observe that f̂0 and f̂1 are
parallel and that any vertex of Ti except ri is in the strip between f̂0 and f̂1. We
now rotate P counterclockwise until f̂0 and f̂1 become horizontal; see Figure 11b.
This produces a parallelogram drawing of ⟨T0, T1⟩, since no edge is vertical,
y(r0) > y(r1,m) > y(r0,0) > y(r1), and x(r0) < x(r0,0) < x(r1,m) < x(r1). ⊓⊔
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6 Pruning Leaves from MW-β Drawings of Isomorphic
Trees

In this section, we explore the question of how far from isomorphic two trees
might be while still allowing an MW-β drawing. We consider the MW-β drawing
⟨Γ0, Γ1⟩ constructed in the proof of Theorem 2 and ask whether it is possible
to prune some leaves from Γ1 and still have an MW-β drawing of the resulting
trees. Precisely, we show that there are cases when we can remove linearly many
leaves from Γ1 and still obtain an MW-β drawing of the resulting tree for any
β ∈ [1,∞]. It may be worth recalling that Lenhart and Liotta proved that two
stars admit an MW-1 drawing if and only if the cardinalities of their vertex sets
differ by at most two [13].

Let (T, r) be a rooted tree and let L be a set of leaves of T . The vertex v is
a cousin of a vertex v′ if v and v′ have a common grandparent but no common
parent, i.e., there is a vertex w such that a length-2 directed path w, p, v and a
length-2 directed path w, p′, v′ with p ̸= p′ exist. We say that L ̸= ∅ is sparse if,
for every v ∈ L, (i) v has at least one sibling, (ii) every sibling v′ of v is a leaf
with v′ /∈ L, and (iii) v has a cousin w such that w /∈ L and, for all siblings w′ of
w, w′ /∈ L. Note that the existence of a sparse set implies that (T, r) has height
at least 2, otherwise there is no vertex that has a cousin.

Theorem 3 (⋆). Let (T, r) be a rooted tree and let L be a sparse set of leaves of
T . Then the pair ⟨T, T \ L⟩ of trees admits an MW-β drawing for all β ∈ [1,∞].

Corollary 1 (⋆). For any m ≥ 1 and n = 7m+1, there exist tree pairs ⟨T0, T1⟩
with |V (T1)| ≤ 1+ 5

6 (|V (T0)|−1) that admit an MW-β drawing for all β ∈ [1,∞].

7 Concluding Remarks

In this paper, we studied the mutual witness proximity drawability of pairs of
isomorphic trees. We adopted the well-known concept of open/closed β-proximity
regions and considered any value of the parameter β such that β ≥ 1. For the
special case of β = 1, the definition of closed β-proximity region coincides with
the definition of Gabriel proximity region. We showed in Theorem 1 that any
pair of isomorphic caterpillars admits a linearly separable mutual witness Gabriel
drawing. We then extended this result in Theorem 2 to any value of β ≥ 1 and
to any pair of isomorphic trees, but at the cost of losing linear separability.

It would be interesting to establish whether any two isomorphic trees admit
a linearly separable MW-β drawing for β ≥ 1. Also, even for the special case of
caterpillars, extending the result of Theorem 1 to values of β > 1 does not seem
immediate. Finally, a characterization of those non-isomorphic pairs of trees that
admit a mutual witness β-drawing continues to be elusive. Theorem 3 shows that
the trees in the pair may differ by linearly many vertices.
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A Omitted Proofs from Section 4

Lemma 1 (⋆). Let ⟨T0, T1⟩ be a pair of isomorphic stars such that, for i = 0, 1,
Ti has root ri and leaves vi,0, . . . , vi,k. Then ⟨T0, T1⟩ admits an MW-[1] drawing
⟨Γ0, Γ1⟩ contained in a winged parallelogram WP (P, q0, q1,W0,W1, p0, p1) such
that: (i) ri is drawn at ai and the the internal angle of WP (P, q0, q1,W0,W1, p0, p1)
at ai is at most π

4 ; (ii) vi,0 is drawn at bi; and (iii) for 0 < j ≤ k, vi,j is drawn
at an interior point of the segment biqi.

Proof. We first consider the case k = 0; see Figure 12a. We place r0 at position
a0 = (0, 5), v0,0 at position b0 = (0, 3), r1 at position a1 = (2, 0), and v1,0 at
position b1 = (2, 2). This way, the angle inside P = (a0, b0, a1, b1) at a0 is smaller
than π/4. We place the anchor q0 at (1.1, 3) and q1 at (0.9, 2) and compute the
safe wedges W0,W1 and ports p0, p1 as above to obtain an MW-[1]-drawing inside
a winged parallelogram WP (P, q0, q1,W0,W1, p0, p1) with the desired properties.

Consider now the case that k > 0. We will create an MW-[1] drawing ⟨Γ0, Γ1⟩
that is point symmetric in the origin, i.e., a drawing with x(r1) = −x(r0),
y(r1) = −y(r0), and x(v1,i) = −x(v0,k−i+1), y(v1,i) = −y(v0,k−i+1) for 1 ≤ 0 ≤ k.
By symmetry, we only have to argue that the edges of T0 are realized correctly.

We first place the leaves v0,i, 0 ≤ i ≤ k, at y-coordinate 0.5 and x-coordinate
2i−k+0.5, such that any pair v0,i, v0,i+1 has distance 2 and ∠(v0,i, v1,i, v0,i+1) =
π/2; see Figure 12b. Thus, v1,i lies in R[v0,i, v0,j , 1] for any two vertices with
0 ≤ i < j ≤ k, so no two leaves are adjacent.

Now we place r0 with x(r0) = x(v0,0); see Figure 12c. We have to make
sure that the regions R[r0, v0,i, 1] contains no witness. Observe that, by def-
inition, any Gabriel region R[u, v, 1] is contained in the disk around u with
radius d(u, v). Hence, no point w with d(u,w) > d(u, v) can lie in R[u, v, 1].
Consider the point p = (x(v0,0), y(v1,0)) = (2i− k + 0.5,−0.5). By construction,
we have d(r0, v1,i) < d(r0, p) = y(r0) + 0.5 and we want to make sure that
d(r0, v0,i) ≤ d(r0, v0,k) < d(r0, p) for each 0 ≤ i ≤ k. Consider now the triangle
△(r0, p, v0,k). If ∠(p, v0,k, r0) = π/2, then by Pythagoras d(r0, p) > d(r0, v0,k).
Let α = ∠(v0,k, r0, p) and β = ∠(r0, p, v0,k) with α + β = π/2. Consider the
point q = (x(v0,k), y(v1,k) = (k−0.5,−0.5) and consider the triangle △(p, q, v0,k).
We have ∠(r0, p, q) = π/2 and ∠(r0, p, v0,k) = β, so ∠(v0,k, p, q) = α. Since
∠(p, q, v0,k), we also have ∠(q, v0,k, p) = β. Hence, the triangles △(r0, p, v0,k) and
△(p, q, v0,k) are congruent, so we have d(r0,p)

d(p,v0,k)
=

d(p,v0,k)
d(v0,k,q)

. Since d(v0,k, q) = 1

by choice of q, we thus have d(r0, p) = d(p, v0,k)
2. By Pythagoras’ Theorem,

d(p, v0,k)
2 = d(p, q)2+d(v0,k, q)

2 = 2k2+1. Thus, y(r0) = d(r0, p)−0.5 = 2k2+0.5
ensures that no edges of T0 has a witness in Γ1. Furthermore, note that, by con-
struction, β is larger than π/4 since 1 = d(v0,0, p) < d(v0,0, v0,k) as long as k > 0,
so α is smaller than π/4.

We choose the winged parallelogram WP ((a0, b0, a1, b1), q0, q1,W0,W1, p0, p1)
as follows. For (a0, b0, a1, b1), we choose the positions of r0, v0,0, r1, v1,k, respec-
tively. We place the point q0 slightly to the right of v0,k at (x(v0,k) + ε, 0.5),
and the point q1 slightly to the left of v1,0 at (x(v1,0 − ε,−0.5) for some small
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(c) Placement of the root
(distorted for readability)

(d) Drawing for k=3

Fig. 12: Illustration for the Proof of Lemma 1.

enough ε. The interior angle at points a0, a1 is smaller than π/4 as long as
2k2 + 1 > 2k+ 1, which is true for k > 0, and all leaves are placed on the desired
positions. We choose the safe wedges W0,W1 and ports p0, p1 as in the definition.
For an illustration, see Figure 12d. ⊓⊔

B Omitted Proofs from Section 6

Theorem 3 (⋆). Let (T, r) be a rooted tree and let L be a sparse set of leaves of
T . Then the pair ⟨T, T \ L⟩ of trees admits an MW-β drawing for all β ∈ [1,∞].

We start by a definition and a technical lemma. Let ⟨Γ0, Γ1⟩ be a MW-β
parallelogram drawing of two trees in a parallelogram P = ⟨a0, b0, a1, b1⟩; see
Figure 13a. The strip ratio σ(Γ0, Γ1) of ⟨Γ0, Γ1⟩ is defined as

σ(Γ0, Γ1) =
|y(b1)− y(b0)|
|y(a0)− y(a1)|

.

Lemma 3. Let ⟨T0, T1⟩ be two isomorphic trees and let ε > 0 be an arbitrarily
small real number. There exists a parallelogram drawing of ⟨T0, T1⟩ whose strip
ratio is σ < ε.

Proof. We construct a MW-β parallelogram drawing ⟨Γ0, Γ1⟩ for ⟨T0, T1⟩. If
σ(Γ0, Γ1) < ε, then we are done. Otherwise, we simultaneously move a0 (and thus
r0) along the ray b0a0 upwards and a1 (and thus r1) along the ray b1a1 downwards
until σ(Γ0, Γ1) < ε; see Figure 13. Note that this movement corresponds to
moving a0 (r0) vertically upwards and a1 (r1) vertically downwards before the
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a0=r0

a1=r1

b0

b1
|y(b1)− y(b0)||y(a0)− y(a1)|

(a) The strip ratio

b0

b1
|y(b1)− y(b0)|

a0=r0

a1=r1

|y(a0)− y(a1)|

(b) Lowering the strip ratio

Fig. 13: Illustration of the strip ratio and the proof of Lemma 3.

H
v1,j∈L

w1

type (A) type (B) type (C)

Fig. 14: The three types of subtrees in the base case of Theorem 3.

final rotation step in the proof of Theorem 2. Since, for the proof of correctness,
it was only important that these two points are far enough above/below the other
vertices, the drawing remains an MW-β drawing. ⊓⊔

Proof (of Theorem 3). First, note that, for any subtree (T ′, r′) of (T, r) rooted
in r′ of height at least 2, L ∩ V (T ′) is sparse for ⟨T ′, r′⟩.

We show by induction on the height δ ≥ 2 of (T, r) that an MW-β drawing
can always be produced.

Consider first the base case δ = 2. By definition of sparse sets, the children
of r cannot be in L, as they have no cousins. Let (T0, r0) = (T, r) and let
(T0,0, r0,0), . . . , (T0,m, r0,m) be the subtrees of (T0, r0) resulting from deleting r0
from T0. Then each tree (T0,j , r0,j) is of one of three types; see Figure 14:

(A) r0,j is a leaf not in L,
(B) (T0,j , r0,j) has height 1 with exactly one of its leaves v0,j ∈ L,
(C) (T0,j , r0,j) has height 1 with no leaf in L.

Note that there must be at least one subtree of type (C), but there may be no
subtrees of type (A) or (B). We now reorder the children of r0 such that, from
left to right, we first have all subtrees of type (A), then all subtrees of type (B),
and then all subtrees of type (C). Within each subtree of (T0,j , r0,j) type (B), we
order the leaves such v0,j is the rightmost leaf; see Figure 14.

Let (T1, r1) be isomorphic to (T0, r0). We first compute a MW-β parallelogram
drawing of ⟨(T0, r0), (T1, r1)⟩ in a parallelogram P = (a0, b0, a1, b0) according to
the proof of Theorem 2, but with some small adjustments. Using Lemma 3, we
ensure that the rightmost subtree (Ti,m, ri,m), 0 ≤ i ≤ 1, which is of type (C),
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r0

r1

w1

u0,i

w1 ∈ R[r0, u0,i, β]

r0,0

u0,j

R[r0, r0,0, β]

r1,i r1,i ∈ R[u0,i, u0,j , β]

Fig. 15: The drawing in the base case of Theorem 3 after removing the leaves of
L. There is not witness in R[r0, r0,0, β] (green disk); w1 ∈ R[r0, u0,i, β] (red disk);
r1,i ∈ R[u0,i, u0,j , β] (blue disk)

has the largest strip ratio among all subtrees (Ti,j , ri,j). Let w1 be the rightmost
leaf of (T1,m, r1,m). Then, placing the subtrees (Ti,j , ri,j) in the horizontal strip
H as in the proof of Theorem 2, w1 will be the rightmost and topmost vertex of
T1 in the interior of H.

We place r0 and r1 as in the proof of Theorem 2, but with the additional
constraint that for every vertex u0 of (T0, r0) in the interior of H, ∠(u0, w1, r0) ≥
π/2, so that w1 lies in the β-region R[r0, u0, β]. Similar to the proof of Lemma 3,
this can be achieved by moving r0 upwards along the ray b0r0. Since w1 belongs
to a subtree of type (C), w1 /∈ L. Hence, after removing the leaves of L, all edges
between r0 and any non-adjacent vertex u0 of T0 (which lies in the interior of H)
still have w1 as a witness; see Figure 15.

Note that r1,m is placed at point b1 of the parallelogram, and since (T1,m, r1,m)
is of type (C), r1,m is not a leaf and thus r1,m /∈ L, so removing the leaves of L
from Γ1 does not destroy the MW-β parallelogram drawing properties.

Furthermore, for any two vertices u0,i in (T0,i, r0,i) and u0,j in (T0,j , r0,j) with
0 ≤ i < j ≤ m where (T0,i, r0,i) is of type (B), we have that r1,i lies in the β-
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H
v1,j∈L

type (A) type (B) type (C)

w1

type (D)

Fig. 16: The four types of subtrees in the induction step of Theorem 3.

region R[u0,i, u0,j , β], so we can remove v1,i from any subtree of type (B) without
destroying the MW-β drawing properties. Hence, we obtain a parallelogram
MW-β drawing of ⟨T, T \ L⟩. Note that the strip ratio of the drawing can also
be lowered by moving r0 upwards along the ray b0r0 and r1 downwards along
the ray b1r1 as in the proof of Lemma 3.

Consider now the inductive case of δ > 2. Let (T0, r0) = (T, r) and let
(T0,0, r0,0), . . . , (T0,m, r0,m) be the subtrees of (T0, r0) resulting from deleting r0
from T0. Then each tree (T0,j , r0,j) is of one of four types; see Figure 16:

(A) r0,j is a leaf not in L,
(B) (T0,j , r0,j) has height 1 with exactly one of its leaves v0,j ∈ L,
(C) (T0,j , r0,j) has height 1 with no leaf in L,
(D) (T0,j , r0,j) has height at least 2 but smaller than δ.

Note that there must be at least one subtree of type (D), but there might be no
subtrees of type (A), (B) or (C). We now reorder the children of r0 such that,
from left to right, we first have all subtrees of type (A), then all subtrees of type
(B), then all subtrees of type (C), and then all subtrees of type (D). Within each
subtree of (T0,j , r0,j) type (B), we order the leaves such v0,j is the rightmost leaf;
see Figure 16.

Let L′ ⊆ L be the set of leaves of L in the subtrees of type (D). Let
(T1, r1) be isomorphic to (T0 \ L′, r0). By induction, every pair of subtrees
⟨(T0,j , r0,j), (T1,j , r1,j)⟩ of type (D) has a parallelogram MW-β drawing where
the strip ratio can be arbitrarily lowered.

We arrange the parallelogram drawings of the subtrees ⟨(T0,j , r0,j), (T1,j , r1,j)⟩
inside a horizontal strip H as in the base case, using Lemma 3 to ensure that the
drawing of ⟨(T0,m, r0,m), (T1,m, r1,m)⟩, which is of type (D), has the largest strip
ratio among all pairs of subtrees ⟨(T0,m, r0,m), (T1,m, r1,m)⟩; see Figure 16.

Let w1 be the topmost (and rightmost) vertex of (T1,m, r1,m) inside H. We
again move r0 upwards along the ray b0r0 such that, For every vertex u0 of T0 in
the interior of H, ∠(u0, w1, r) ≥ π/2, so that w1 lies in the β-region R[r0, u0, β];
see Figure 17. Since w1 /∈ L (otherwise it would not be in (T1,m, r1,m), as we
already removed the leaves of L′), after removing the leaves of L, all edges
between r0 and any non-adjacent vertex u0 of T0 (which lies in the interior of H)
still have w1 as a witness. Furthermore, the edges between disjoint subtrees still
have witnesses following the same argument as in the base case, and r1,m, which
is not a leaf and thus not in L, lies at point b of the parallelogram. Hence, after
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removing all leaves of L, we obtain a MW-β parallelogram drawing of ⟨T, T \ L⟩.
⊓⊔

Corollary 1 (⋆). For any m ≥ 1 and n = 7m+1, there exist tree pairs ⟨T0, T1⟩
with |V (T1)| ≤ 1+ 5

6 (|V (T0)|−1) that admit an MW-β drawing for all β ∈ [1,∞].

Proof. We construct an infinite family of trees and sets of leaves as follows. For
any m > 0, (T, r) is a tree rooted in r such that removing r yields m subtrees
(T0, r0), . . . , (Tm−1, rm−1). Every subtree Tj , 0 ≤ j < m consists of the following;
see Figure 18.

(i) The root rj has 2 children uj and u′
j ;

(ii) uj has one child vj which is a leaf
(iii) u′

j has two children wj and w′
j which are leaves with w′

j ∈ L.

Then L is sparse, so ⟨T, T \ L⟩ admits an MW-β drawing by Theorem 2. Every
subtree Tj has 6 vertices, so |V (T )| = 6m+ 1. L has one leaf per subtrees Tj , so
|L| = m and thus |V (T \ L)| = 5m+ 1 = 1 + 5

6 (|V (T )| − 1). ⊓⊔
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r0

r1

w1 ∈ R[r0, u0,i, β]

r0,0

R[r0, r0,0, β]

w1

u0,i
r1,i ∈ R[u0,i, u0,j , β]

u0,j

Fig. 17: The drawing in the induction step of Theorem 3 after removing the leaves
of L. There is not witness in R[r0, r0,0, β] (green disk); w1 ∈ R[r0, u0,i, β] (red disk);
r1,i ∈ R[u0,i, u0,j , β] (blue disk)

rj

uj u′
j

vj wj w′
j

r

Fig. 18: Construction of (T, r) in the proof of Corollary 1.
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