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Abstract. We study two notions of fan-planarity introduced by (Cheong
et al., GD22), called weak and strong fan-planarity, which separate two
non-equivalent definitions of fan-planarity in the literature. We prove that
not every weakly fan-planar graph is strongly fan-planar, while the upper
bound on the edge density is the same for both families.
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1 Introduction

Crossings in graph drawings are known to heavily impede readability [16,17].
Unfortunately, however, minimizing the number of crossings is NP-complete [8],
while many real-world networks turn out to be non-planar. Fortunately, readable
drawings of non-planar graphs can be obtained by limiting the topology [15] or the
geometry of crossings [10,11]. Based on these experimental findings, the research
direction of graph drawing beyond planarity has emerged. This line of research is
dedicated to the study of so-called beyond planar graph classes that are defined
by forbidden edge-crossing patterns. More precisely, a graph belonging to such
a class admits a drawing in which the forbidden pattern is absent. Important
beyond planar graph classes are k-planar graphs, where the forbidden pattern
is k + 1 crossings on the same edge, k-quasiplanar graphs, where k mutually
crossing edges are prohibited, and RAC-graphs, where edges are not allowed to
cross at non-right angles. We refer the interested reader to the survey by Didimo
et al. [7] and a recent book [9] on beyond planarity.

In this paper, we study fan-planar graphs, which admit fan-planar drawings.
In these drawings, each edge e may only be crossed by a fan of edges, that
is a bundle of edges sharing a common endpoint, called anchor of e, that all
cross e from the same side. Kaufmann and Ueckerdt introduced this graph class
in 2014 [12] and described the aforementioned requirement with two forbidden
patterns, Pattern (I) and (II) in Fig. 1: the first forbids two edges crossing e to
be non-adjacent whereas the second forbids crossings of e by adjacent edges with
the common endpoint on different sides of e. Since their introduction, fan-planar
graphs have received a lot of attention in the scientific community; see [2] for an
overview.
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Fig. 1: Forbidden configurations.

Recently, Klemz et al. [14] pointed out a missing case in the proof of the edge
density upper-bound in the preprint that introduced fan-planar graphs [12]. This
case was consequently fixed in the journal version [13] by the original authors.
However, in the process, they introduced a third forbidden pattern, namely
Pattern (III) of Fig. 1, which is quite reminiscent of the previously defined
Pattern (II). Namely, in both patterns, the drawing restricted to the edge e
and the two edges crossing e has two connected regions, called cells, where one
is bounded and the other one is unbounded. The difference between the two
configurations is that in Pattern (II), one endpoint of e lies in the bounded cell,
while in Pattern (III), both endpoints are contained there. In the new definition
of fan-planarity, both endpoints of e must lie in the unbounded cell.

The new forbidden Pattern (III) poses a problem for the existing literature
on fan-planarity. Namely, while some previous results still apply when forbidding
Pattern (III), other existing results, e.g., the bound of 4n− 12 on the number of
edges of n-vertex bipartite “fan-planar ” graphs [1], build on the lemmas of the
original paper [12] and may be affected by the recent changes to the definition.

Cheong et al. [6] introduced a clear distinction of the two models with the
notions of weak and strong fan-planarity. Namely, weak fan-planarity allows
Pattern (III) whereas strong fan-planarity forbids it. The original definition of
fan-planarity [12] coincides with weak fan-planarity whereas strong fan-planarity
matches the definition of the new journal version [13]. Graphs admitting such
drawings are called weakly fan-planar and strongly fan-planar, respectively.

The family of graphs that admits drawings where only Pattern (I) is forbidden,
called adjacency-crossing graphs, has also been studied by Brandenburg [4]. He
showed that there are adjacency-crossing graphs that are not weakly fan-planar,
so weakly fan-planar graphs form a proper subset of the adjacency-crossing graphs.
Moreover, he shows that for any n-vertex adjacency-crossing graph with m edges,
one can construct a weakly fan-planar graph with n vertices that also has m edges.
Brandenburg concluded from this that an n-vertex adjacency-crossing graph has
at most 5n− 10 edges, since that was the bound claimed by [12] for “fan-planar”
graphs. Since that bound holds only under strong fan-planarity, this conclusion
contains a gap, which the present paper fills.

Our contribution. First, we prove that the family of strongly fan-planar graphs
is a proper subset of the weakly fan-planar graphs. Together with Brandenburg’s
result, this implies that the two inclusions of strongly fan-planar graphs inside
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weakly fan-planar graphs and weakly fan-planar graphs inside adjacency-crossing
graphs are both proper. We then continue to show that the known upper bound
on the edge-density of strongly fan-planar graphs (namely 5n − 10 for an n-
vertex graph) carries over to weakly fan-planar graphs. This implies that also
Brandenburg’s bound [4] is in fact correct. We also prove that the known upper
bound of 4n − 12 on the number of edges of an n-vertex bipartite strongly
fan-planar graph carries over to bipartite weakly fan-planar graphs.

2 Not every weakly fan-planar graph is strongly fan-planar

In this section, we will establish that strongly fan-planar graphs form a proper
subset of weakly fan-planar graphs by constructing a graph G with a weakly
fan-planar drawing Γ , where Pattern (III) cannot be avoided in Γ .

In order to guarantee the existence of at least one Pattern (III) in any valid
weakly fan-planar drawing of G, we will use the following key idea. We start with
a planar graph with a unique embedding. We will then make every edge of this
planar graph “uncrossable” by replacing it with a suitable gadget introduced by
Binucci et al. [3]. Afterwards, we insert into every face of the planar graph a small
gadget graph (shown in Fig. 2a), which can only be drawn with a quadrangular
outer face if we allow (III). Note that this gadget graph itself is in fact strongly
fan-planar, as shown in Fig. 2b, and, hence, does not serve itself as an example
of a weakly but not strongly fan-planar graph. In order to achieve our goal, we
will leverage the following lemma:

Lemma 1 (Binucci et al. [3]). Let P be the planarization3 of any weakly
fan-planar drawing of K7. Then, between any pair of vertices of K7, there exists
a path in P that contains no real edge of the K7.

Moreover, we will use the following definition throughout the paper.

Definition 1. Let Γ be a weakly fan-planar drawing of a graph G. Γ is said
to be minimal, if, among all weakly fan-planar drawings of G, it contains the
smallest possible number of triples of edges that form Pattern (III).

Theorem 1. There exists a weakly fan-planar graph that does not admit a
strongly fan-planar drawing.

Proof. Let G0 be a 3-connected planar quadrangulation; e.g, one that is obtained
by the construction in [5]. Note that by construction, G0 is bipartite and has a
unique embedding into R2 up to the choice of the outer face and a mirroring [18].
Next, we insert a copy of our gadget graph H shown in Fig. 2a into every face f
of G0 by identifying the outer cycle of H with the facial cycle of f . Denote by G1

this supergraph of G0. We use the color scheme of Fig. 2a to color all edges of
G1 – in particular, the edges of G0 form a subset of the red edges of G1. In the
3 In a planarization P of a non-planar drawing of a graph G, each crossing is replaced

with a dummy-vertex that subdivides both edges involved in the crossing. We call an
edge of P that is not incident to any dummy-vertex a real edge of G.
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next step, we substitute every red edge of G1 by a K7 and denote the resulting
graph by G. We claim that G is weakly fan-planar, but not strongly fan-planar.

For the first statement, observe that K7 admits a weakly fan-planar drawing,
see Fig. 2c, and that our gadget graph H has a weakly fan-planar drawing shown
in Fig. 2a. Combining both, we obtain a weakly fan-planar drawing of G.

Consider now the second statement. Let Γ be a weakly fan-planar drawing
of G that is minimal and that has the smallest number of crossings among all
minimal weakly fan-planar drawings of G. We will prove that Γ contains at least
one Pattern (III), which implies by our choice of Γ that every weakly fan-planar
drawing of G requires at least one Pattern (III).

Consider a red edge ab ∈ G1 and denote by a = v1, . . . , v7 = b the vertices
of the K7 which substitute ab in G. By Lemma 1, in the drawing Γ of this K7,
there exists a sequence S of crossed edges from a to b; see Fig. 2c. By (I), no
edge which is not incident to one of v1, . . . , v7 can intersect S. By construction,
the only edges incident to vertices v2, . . . , v6 are edges of the K7. Hence, the
only edges that can potentially cross S and interact with the remainder of G are
incident to either a = v1 or b = v7. Suppose for a contradiction that there exists
an edge incident to a or b that crosses S in Γ such that its other endpoint is not
one of the vertices of the K7. But then we can easily reroute the edge such that
its crossing with S is avoided, see Fig. 2d, a contradiction to our choice of Γ .

We interpret Γ as a drawing Γ ′ of G1, where the red edges are uncrossed.
Since G0 has a unique planar embedding into R2 up to the choice of the outer
face and a mirroring and since G0 consists only of the red edges, in Γ ′, G0 is
drawn as a planar graph, all faces of which are quadrilaterals. Since the red
edges are uncrossed, each quadrilateral face must contain a copy of our gadget H.
Indeed, since each vertex of H is connected by a path to both u and u′, it must
lie in a face that contains both u and u′. But by 3-connectivity of G0, this face
is unique.

Let f be a bounded quadrilateral face of G0. As argued above, f contains a
copy of H in its interior in Γ ′, i.e. vertices v, v′, w, w′, z and z′, refer to Fig. 2a, lie
in the interior of f . Consider the subgraph H ′ of this H consisting of its red edges.
Since the red edges are uncrossed, H ′ is drawn without crossings in Γ . Since the
black edges do not cross H ′, a small case analysis shows that the vertices u′, w,
z, and w′ must lie in the same face of H ′, and in fact the embedding of Fig. 2a
is unique up to symmetry with respect to the vertical axis. Thus, the blue edges
(u, v), (u, v′) and (w,w′) can only be drawn in the indicated way, but that means
that the blue edges form (III), which concludes the proof. ⊓⊔

3 Density of weakly fan-planar graphs

In this section, we show that the density results for strongly fan-planar graphs
also transfer to the weakly fan-planar setting. Let us call a triple e, eℓ, er of edges
in a weakly fan-planar drawing a heart if eℓ and er share an endpoint u, both
cross e such that they form Pattern (III), and the part of e between the crossings
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Fig. 2: (a) Gadget graph H. (b) Gadget graph H with (z, v, v′) chosen as the
outer face. Note that there is no pattern (III). (c) A planarization of a fan-planar
drawing of K7, where the bold edges form a path from a to b that contains no
uncrossed edge of the K7. (d) An edge incident to a that crosses the K7 to avoid
this crossing.

with eℓ and er is not crossed by any edge of the graph, see Fig.3. In the remainder
of the paper, we call the intersection points of e and eℓ (er, resp.) xℓ (xr, resp.).

Lemma 2. Let Γ be a weakly fan-planar drawing that is not strongly fan-planar.
Then Γ contains a heart H.

Proof. By assumption, Γ contains three edges e, eℓ, er that form Pattern (III),
where eℓ and er share endpoint u and cross e. Let E′ be the set of edges that
cross e. By (I) and (II), any edge e′ ∈ E′ must be incident to u, and by (II) it
must cross e from the same side as eℓ and er. The edges of E′ cannot cross each
other since they share an endpoint, and each edge e′ ∈ E′ forms Pattern (III)
either with e and er, or with e and eℓ. Let Eℓ ⊂ E′ be the set of edges of the
first kind, Er = E′ \ Eℓ the second kind. If we order E′ by their crossing point
with e along e, then we first encounter all elements of Eℓ, then all elements of Er.
The last element of Eℓ and the first element of Er form a heart with e. ⊓⊔

We will call the sets Eℓ and Er as defined in the previous proof the left valve
and the right valve of the heart H = e, eℓ, er, respectively. We denote by H the
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Fig. 3: A heart.
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Fig. 4: (a) Illustration of the setting previous to the flip-operation. (b) Transfor-
mation from Γ to Γ ′ by flipping Eℓ.

edge set containing both valves of H and the edge e, namely H = Eℓ ∪ Er ∪ e.
In the following, we will define an edge-rerouting operation that will later allow
us to reduce the number of hearts in a weakly fan-planar drawing under certain
conditions.

Flipping the valve of a heart. Consider a heart H formed by the edges e, eℓ, er
in a weakly fan-planar drawing Γ ; refer to Fig. 4a for a visualization. In the
following, we will define an operation that we call flipping a valve of H resulting
in the drawing Γ ′. We describe the flip of Eℓ, as the other case is symmetric.
The general idea is to redraw the edges in Eℓ “close” to the ones in the other
valve Er, in particular, mainly following the curve of er.

Let eℓ1, eℓ2, . . . eℓk be the edges of Eℓ in the order that they intersect edge e in Γ
starting at w, i.e. eℓk = eℓ. We will draw the curve γi of eℓi in three parts, denoted
as γi

1, γ
i
2, γ

i
3. We consider the edges in reverse order and start with eℓk = eℓ. The

first part γk
1 of the curve of eℓk in Γ ′ follows the curve of er slightly outside until

xr, then γk
2 follows e until xℓ, where the curve intersects e and afterwards it

inherits its original curve in Γ as the last part γk
3 . So, assume that we have drawn
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eℓi with 2 < i ≤ k. The curve of eℓi−1 follows the curve of eℓi (slightly outside) until
xr, where it follows e until the intersection point of eli−1 with e in Γ . Here, the
curve intersects e and then again inherits its original curve in Γ until it reaches
its endpoint different from u. After this operation, the edges of Eℓ ∪ Er do not
cross by simplicity and e does not form Pattern (I) to (III) with Eℓ ∪Er, thus
we can make the following observation, illustrated in Fig. 4b.

Observation 1. Let Γ ′ be the drawing obtained from flipping a valve of a heart
H. Then, Γ ′[H] is a strongly fan-planar drawing.

Moreover, in the entire drawing Γ ′ (not limited to H) resulting from a flip, new
crossings can arise only in a restricted part of the flipped edges.

Lemma 3. Let H be a heart formed by edges e, eℓ, er in Γ and Eℓ = {eℓ1, eℓ2, . . . eℓk}
be the edges of a flipped valve of H in Γ ′. Then any crossing introduced by the
flipping operation occurs on the partial curves γ1

1 , γ
2
1 , . . . γ

k
1 .

Proof. Let us consider a flipped edge eℓi ∈ Eℓ and its curve γi in Γ ′. Clearly,
any additional crossing that we introduce may only occur on the first part γi

1 or
second part γi

2 of γi, as the last part γi
3 is inherited from Γ . By construction, γi

2

is crossing free, as the segment of e between xℓ and xr in Γ is crossing-free since
eℓ, er and e form a heart and by considering the edges in the reverse order that
they intersect e (starting at w), they do not intersect each other. ⊓⊔

For our later proofs of Theorems 2 and 3 on the edge density of (bipartite) weakly
fan-planar drawings, we need to show that a certain configuration, as described
in the following lemma, cannot occur in a minimal weakly fan-planar drawing.

Lemma 4. Let e, eℓ, er be a heart in a minimal weakly fan-planar drawing Γ .
Then there is no edge e′ ̸= e in Γ that crosses both eℓ and er.

Proof. Assume for a contradiction that there exists an edge e′ ̸= e that intersects
both eℓ and er. By (I), e and e′ share an endpoint, say w, see Fig. 5a. This
implies by (I) and (II) that every edge which crosses eℓ or er is incident to w.
W.l.o.g. assume that xℓ is encountered before xr when traversing e starting at w.
First, notice that e, e′ and er can in turn form (III) themselves, refer to Fig. 5b.

Based on this observation, we will define four sets of edges that will be
helpful in the remainder. In particular, we construct these sets based on their
drawing in Γ—while some of the edges may be redrawn at a later time, they will
always belong to their corresponding sets. Let Eℓ and Er be the sets of edges
that correspond to the left valve and the right valve of the heart H induced by
e, eℓ, er—in particular, eℓ ∈ Eℓ and er ∈ Er. Further, let Et be the set of edges
that cross both eℓ and er and do not form (III) with er and e when traversing
eℓ starting at v. Complementary, let Eb be the set of edges that also cross eℓ
and er and are not contained in Et. Further, let e be the first edge in Et that
is encountered when traversing eℓ (er) starting at u. In the following, we will
distinguish between two cases. First, if Eb = ∅, we call H a single heart. Otherwise,
that is when Eb ̸= ∅, we assume that e′ is the last edge in Eb that is encountered
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w
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e′
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(b)

Fig. 5: (a) A single heart H = e, eℓ, er. (b) A double heart formed by H = e, eℓ, er
and H′ = er, e, e

′, the area bounded by H′ is indicated in gray.

when traversing eℓ starting at u (and therefore also when traversing er). We say
that H forms a double heart with H′ defined by the edges er, e, e

′; see Fig. 6.
The main idea is to apply the flip operation to reduce the number of hearts

in the resulting (weakly fan-planar, as to be shown) drawing Γ ′ to obtain a
contradiction to the minimality of Γ . For a single heart, one flip will suffice while
two flips will be necessary for a double heart. In both cases, we start by flipping
the valve Eℓ as previously defined to obtain the drawing Γ ′. We first assert:

Γ ′ is weakly fan-planar. By Observation 1, any new edge triple forming Pattern
(I) or (II) in Γ ′ must involve at least one edge in the flipped valve Eℓ and at
least one edge belonging to neither Eℓ nor Er. Consider a flipped edge eℓi ∈ Eℓ.
By Lemma 3, any new crossing on the curve γi of eℓi may only occur on its first
part γi

1 in Γ ′. Any edge that intersects γi
1 in Γ ′ also intersects er and is therefore

incident to w by Pattern (I). To show that we do not introduce new edge-triples
forming Pattern (I), it remains to show that all edges in Eℓ have vertex w as
their anchor, even if they only cross e and no other edge in Et.

We consider two cases. If H forms a double heart with H′, consider any edge
eb ∈ Eb. Since e ∈ Et, we observe that each edge eℓ ∈ Eℓ is crossed both by e and
eb; see Fig. 7a. Thus, its anchor is w. Otherwise, H is a single heart. Consider the
region R defined by w, xℓ and the intersection of eℓ and another edge et ∈ Et in
the original drawing Γ , see Fig. 7b for an illustration of this case.

By definition, every edge in Eℓ besides eℓ enters R over e. If such an edge
is leaving R, then it has to also cross et by simplicity, but then its anchor is w
and by (I) it can only be crossed by edges that are incident to w. Suppose now
an edge of Eℓ ends in R, but its anchor is not w. Since the edge intersects e, its
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Fig. 6: Illustration of edge sets used in (a) a single heart and (b) a double heart.

anchor is therefore w′. But no edge incident to w′ can enter R, since it would
either cross eℓ, whose anchor is w and hence it would coincide with e = (w,w′),
it cannot cross e by simplicity and if it crosses et, then it has to be incident to
the anchor of et, which is u, but then the curve has to intersect the boundary of
R twice which is impossible.

It remains to show that we do not introduce Pattern (II) by the flip-operation.
For the sake of contradiction, assume that there is a new edge triple T forming
Pattern (II) after the flip. Note that T involves at least one flipped edge eℓi ∈ Eℓ.
We will first establish that the anchor of T is either w or u. Suppose that eℓi is
not incident to the anchor of T , then the anchor of T is w (since all edges in
Eℓ have w as their anchor). Otherwise, the edge crossing eℓi in T also crosses er,
hence u is the anchor of T . In the case that w is the anchor of T , observe that
all edges in Eℓ ∪Er are crossed from the same side by edges incident to w when
directed from u to their other endvertex. Hence, T cannot form Pattern (II). If u
is the anchor of T , it would require a non-empty region between γi

1 and another
partial curve γj

1 with j ̸= i to form Pattern (II), which is a contradiction to our
construction.

Thus, we have established that Γ ′ is indeed weakly fan-planar and we can
now consider the number of Patterns (III). We distinguish two cases.

Case 1: H forms a single heart. By Observation 1, the drawing Γ ′[H] does not
contain any edge triple forming Pattern (III). Hence, any new Pattern (III) in Γ ′

involves either one or two flipped edges of Eℓ. In the latter case, since edges in Eℓ

do not cross by simplicity, this would require a non-empty region between the first
partial curves of two edges in Eℓ, which is a contradiction to our construction.
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ereel erw

v′v

u

w′

eb

(a)

et

ereel erw

v′v

R

u

w′

(b)

Fig. 7: (a) Every edge in Eℓ has anchor w if H is part of a double heart. (b) Any
edge of Eℓ that enters region R has w as its anchor, if H forms a single heart.

Suppose now that one edge of Eℓ and two edges e1, e2 incident to w form
a new Pattern (III). Since the edges in Eℓ follow the curve of er after the flip,
er is necessarily crossed by one of the two edges incident to w, say e1, in order
to contain u in a closed region. But then e1 would be already present in Γ and
belong to the set Eb, as e, eℓ, er form Pattern (III), a contradiction to Eb = ∅.

We conclude that no new Pattern (III) is introduced by Observation 1 while
all triples in H forming (III) are eliminated, i.e., the overall number is reduced.

Case 2: H and H′ form a double heart. First, observe that all edges in the valves
Eℓ ∪ Er of H are anchored by w and all edges of the valves Et ∪ Eb of H′ are
anchored by u. In particular, every edge forming H and H′ is contained in one
of the four edge sets Eℓ, Er, Et, Eb. Suppose now that there is a third heart H′′

distinct from H that forms a double heart with H′. Hence, there are crossings
between the valves of H′ and H′′. It follows, that the edges in the valves of H′′

are necessarily incident to u by (I), but then all crossings between edges of H ′

and H ′′ occur from the same side as between edges of H and H ′, as otherwise
Pattern (II) would be present in Γ . It follows that the hearts H and H′′ are
identical. Thus, we can consider H and H′ symmetrically, since in a double heart
one always has the other as its counterpart. In this case, the flip of Eℓ can indeed
form new Patterns (III). However, as discussed in the previous case, this can
only occur when a flipped edge eℓ ∈ Eℓ forms a heart with an edge et ∈ Et and
eb ∈ Eb. Thus, all new Patterns (III) are contained in the single heart H′ where
Er takes the role of Et in the discussion of the previous case; see Fig. 8a. We can
now proceed as in the previous case by flipping Eb which eliminates all triples
forming Pattern (III) as Eℓ = ∅; see Fig. 8b. ⊓⊔

So far, we investigated minimal weakly fan-planar drawings and their proper-
ties. One last ingredient is needed to prove Theorem 2. Given a graph G with
a minimal weakly fan-planar drawing, we will sometimes reduce the number of
Patterns (III) by modifying G into a different, weakly fan-planar graph G′ with
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Fig. 8: Illustration of second flip operation in the double heart case in Lemma 4.

the same number of vertices and with the same number of edges. The following
lemma states when this modification is possible; see Appendix A for the proof:

Lemma 5. Let eℓ, er and e = (w,w′) be a heart H in a minimal weakly fan-
planar drawing Γ of a graph G = (V,E), let L be the closed curve that consists of
the partial curves of the edges e, eℓ, er up to the crossing points xℓ and xr and let
p1, p2 be two common neighbors of w and w′ outside of L. Then, there is a graph
G′ = (V ′, E′) with |V ′| = |V | and |E′| = |E| that admits a fan-planar drawing Γ ′

with fewer edge triples forming Pattern (III) than Γ contains.

We are now ready to prove our main theorem:

Theorem 2. A weakly fan-planar graph G with n vertices has at most 5n− 10
edges.

Proof. We proceed by induction on the number of edge triples forming Pat-
tern (III) in a minimal weakly fan-planar drawing of G. In the base case, this
number is zero, so the drawing is strongly fan-planar. Then G is strongly fan-
planar, and has at most 5n− 10 edges by [13]. For the induction step, consider a
graph G and let Γ be a minimal weakly fan-planar drawing of G.

By Lemma 2, Γ contains a heart e = (w,w′), eℓ, er, see Fig. 9. If w and w′

have at least two common neighbors outside of L, we obtain a graph G′ with the
same number of vertices and edges with fewer edge triples forming (III) as stated
by Lemma 5 and proceed with G′.

Otherwise, denote by G1 the subgraph of G consisting of those vertices and
edges of G that lie (entirely) in the bounded closed region bounded by L. In
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Fig. 9: Illustrations for the proof of Theorem 2.

particular, the vertices u,w, v, v′, and w′, and the edges eℓ,er, and e all belong
to G1. Similarly, let G2 be the subgraph of G consisting of those vertices and
edges of G that lie entirely in the unbounded closed region bounded by L. In
particular, vertex u ∈ G2, but none of the edges e, eℓ, er is in G2. Let |V [G2]| = r
and thus |V [G1]| = n− (r − 1), as u is part of both G1 and G2.

Note that the graph G contains edges that are neither in G1 nor in G2. We
will show how to augment G2 to G′

2 so that it contains an equal number of extra
edges. We will create new weakly fan-planar drawings Γ ′

1 and Γ ′
2 for G1 and G′

2

that have at least one fewer edge triple forming Pattern (III) each.
We start with G1. Let Eℓ and Er be the left valve and the right valve of our

heart, respectively, such that eℓ ∈ Eℓ and er ∈ Er holds. Recall that G1 lies
entirely in the bounded region L defined by the partial curves of eℓ, er and e up
to their respective intersection points. In particular, this implies that the partial
curve of eℓ between u and xℓ is crossing free. Moreover, the partial curve of e
between xℓ and xr is also crossing free as eℓ, er and e form a heart. Based on
this observation, we flip the left valve Eℓ, obtaining Γ ′

1; see Fig. 10a.

Γ ′
1 is weakly fan-planar and contains fewer Pattern (III). To show that Γ ′

1 is
weakly fan-planar and contains at least one Pattern (III) less than the drawing
of G1 in Γ , fix an edge eℓi ∈ Eℓ and let γi be its curve in Γ ′

1. Recall that by
Lemma 3, any new crossings of eℓi can only occur on the partial curve γi

1 ⊂ γi.
Since no two edges of Eℓ intersect in Γ ′

1 by construction and any other edge that
would intersect γi would also cross er in Γ and thus be contained both inside
and outside L by Lemma 4, γi

1 is uncrossed in Γ ′
1. Hence, all crossings of eℓi ∈ Eℓ

are on the part of γi which was inherited from Γ ; it follows that no new Pattern
(I), (II), and (III) is introduced in Γ ′

1.
Hence, our new weakly fan-planar drawing Γ ′

1 has |Eℓ|×|Er| ≥ 1 Pattern (III)
less than Γ , and we can apply the inductive assumption to get
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Fig. 10: Illustrations for the proof of Theorem 2.

|E(G1)| ≤ 5|V (G1)| − 10.

Now we consider G2 and the edges that are neither in G1 nor in G2.

Edges that are neither in G1 nor in G2. Consider such an edge e′. Clearly, e′
crosses L. This crossing cannot be on e by the heart property, so it must be on eℓ
or er. The edge e′ cannot cross both eℓ and er by Lemma 4, so e′ either crosses eℓ
and must be incident to w or crosses er and must then be incident to w′ by (I)
and (II). We claim that e′ can only cross edges incident to u outside of L; see
the light gray edges in Fig. 9. To see this, suppose for a contradiction that e′ is
crossed by an edge e′′ outside of L which is not incident to u. W.l.o.g. assume
that e′ is incident to w and crosses eℓ, the other case is symmetric. By (I), e′′ is
then necessarily incident to v, which is contained inside L. However, we already
established that only edges such as e′ which are incident to w or w′ can leave L,
a contradiction to e′′ crossing e′ outside of L.

Augmenting G2. Let k be the number of edges of G neither in G1 nor in G2. Note
that w and w′ have at most one common neighbor outside of L (as otherwise we
have already applied Lemma 5). Then, we construct a new graph G′

2 from G2 by
adding edges as follows. Recall that the weakly fan-planar drawing Γ [G2] derived
from Γ contains an empty region inside L and contains fewer triples forming
Pattern (III), as we removed the heart formed by e, eℓ, er.

We insert a single vertex v∗ inside this region, and connect it to all neighbors
of w and w′ in G2, and to u; see Fig. 10b. By assumption, w and w′ share at most
one such vertex and hence there are at least k−1 neighbors. Recall that any such
edge crosses only edges incident to u outside of L and therefore fan-planarity is
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Fig. 11: Illustrations for the proof of Theorem 3.

maintained. Hence, we augmented G2 to the weakly fan-planar graph G′
2 that

contains r + 1 vertices and onto which we can apply the induction hypothesis.

We can now bound E(G) as follows:

|E(G)| = |E(G1)|+ |E(G2)|+ k = |E(G1)|+ |E(G′
2)|

≤ 5(n− r + 1)− 10 + 5(r + 1)− 10 = 5n− 10

which concludes the proof. ⊓⊔

For bipartite graphs, we proceed in a similar way.

Theorem 3. An n-vertex bipartite weakly fan-planar graph has at most 4n− 12
edges.

Proof. Let Γ be a minimal weakly fan-planar drawing of G. We again proceed by
induction on the number of edge triples forming Pattern (III). In the base case,
Γ is strongly fan-planar and hence G has at most 4n− 12 edges by [1]. In the
induction step, we proceed as in the previous proof with two differences: First,
since G is bipartite, w and w′ cannot have a common neighbor, so we do not need
to apply Lemma 5. Second, when constructing G′

2, instead of inserting a single
vertex v∗, we insert two vertices va and vb, and connect va with the neighbors
of w in G2, vb with the neighbors of w′ in G2; thus maintaining bipartiteness;
see Fig. 11b. In total, we get

|E(G)| = |E(G1)|+ |E(G2)|+ k = |E(G1)|+ |E(G′
2)|

≤ 4(n− r + 1)− 12 + 4(r + 2)− 12 = 4n− 12,

which concludes the proof. ⊓⊔



Weakly and Strongly Fan-Planar Graphs 15

References

1. Angelini, P., Bekos, M.A., Kaufmann, M., Pfister, M., Ueckerdt, T.: Beyond-
planarity: Turán-type results for non-planar bipartite graphs. In: Hsu, W., Lee, D.,
Liao, C. (eds.) 29th International Symposium on Algorithms and Computation,
ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan. LIPIcs, vol. 123, pp.
28:1–28:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018). https:
//doi.org/10.4230/LIPIcs.ISAAC.2018.28

2. Bekos, M.A., Grilli, L.: Fan-planar graphs. In: Hong and Tokuyama [9], chap. 8, pp.
131–148. https://doi.org/10.1007/978-981-15-6533-5_8

3. Binucci, C., Di Giacomo, E., Didimo, W., Montecchiani, F., Patrignani, M., Symvo-
nis, A., Tollis, I.G.: Fan-planarity: Properties and complexity. Theoretical Computer
Science 589, 76–86 (2015). https://doi.org/10.1016/j.tcs.2015.04.020

4. Brandenburg, F.J.: On fan-crossing graphs. Theor. Comput. Sci. 841, 39–49 (2020).
https://doi.org/10.1016/j.tcs.2020.07.002

5. Brinkmann, G., Greenberg, S., Greenhill, C.S., McKay, B.D., Thomas, R., Wollan,
P.: Generation of simple quadrangulations of the sphere. Discret. Math. 305(1-3),
33–54 (2005). https://doi.org/10.1016/j.disc.2005.10.005

6. Cheong, O., Pfister, M., Schlipf, L.: The thickness of fan-planar graphs is at most
three. In: Angelini, P., von Hanxleden, R. (eds.) Graph Drawing and Network
Visualization - 30th International Symposium, GD 2022, Tokyo, Japan, September
13-16, 2022, Revised Selected Papers. Lecture Notes in Computer Science, vol. 13764,
pp. 247–260. Springer (2022). https://doi.org/10.1007/978-3-031-22203-0_18

7. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond
planarity. ACM Comput. Surv. 52(1) (2019). https://doi.org/10.1145/3301281

8. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM Journal
on Algebraic Discrete Methods 4(3), 312–316 (1983). https://doi.org/10.1137/
0604033

9. Hong, S., Tokuyama, T.: Beyond Planar Graphs, Communications of NII Shonan
Meetings. Springer (2020). https://doi.org/10.1007/978-981-15-6533-5

10. Huang, W.: Using eye tracking to investigate graph layout effects. In: Hong, S., Ma,
K. (eds.) APVIS 2007, 6th International Asia-Pacific Symposium on Visualization
2007, Sydney, Australia, 5-7 February 2007. pp. 97–100. IEEE Computer Society
(2007). https://doi.org/10.1109/APVIS.2007.329282

11. Huang, W., Eades, P., Hong, S.: Larger crossing angles make graphs easier to read.
J. Vis. Lang. Comput. 25(4), 452–465 (2014). https://doi.org/10.1016/j.jvlc.
2014.03.001

12. Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. CoRR
abs/1403.6184v1 (2014), http://arxiv.org/abs/1403.6184v1

13. Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. Electron. J. Comb.
29(1) (2022). https://doi.org/10.37236/10521

14. Klemz, B., Knorr, K., Reddy, M.M., Schröder, F.: Simplifying non-simple fan-planar
drawings. J. Graph Algorithms Appl. 27(2), 147–172 (2023). https://doi.org/10.
7155/jgaa.00618

15. Mutzel, P.: An alternative method to crossing minimization on hierarchical graphs.
In: North, S. (ed.) Graph Drawing. Lecture Notes in Computer Science, vol. 1190,
pp. 318–333. Springer (1996)

16. Purchase, H.C.: Which aesthetic has the greatest effect on human understand-
ing? In: Battista, G.D. (ed.) Graph Drawing, 5th International Symposium, GD

https://doi.org/10.4230/LIPIcs.ISAAC.2018.28
https://doi.org/10.4230/LIPIcs.ISAAC.2018.28
https://doi.org/10.4230/LIPIcs.ISAAC.2018.28
https://doi.org/10.4230/LIPIcs.ISAAC.2018.28
https://doi.org/10.1007/978-981-15-6533-5\_8
https://doi.org/10.1007/978-981-15-6533-5_8
https://doi.org/10.1016/j.tcs.2015.04.020
https://doi.org/10.1016/j.tcs.2015.04.020
https://doi.org/10.1016/j.tcs.2020.07.002
https://doi.org/10.1016/j.tcs.2020.07.002
https://doi.org/10.1016/j.disc.2005.10.005
https://doi.org/10.1016/j.disc.2005.10.005
https://doi.org/10.1007/978-3-031-22203-0\_18
https://doi.org/10.1007/978-3-031-22203-0_18
https://doi.org/10.1145/3301281
https://doi.org/10.1145/3301281
https://doi.org/10.1137/0604033
https://doi.org/10.1137/0604033
https://doi.org/10.1137/0604033
https://doi.org/10.1137/0604033
https://doi.org/10.1007/978-981-15-6533-5
https://doi.org/10.1007/978-981-15-6533-5
https://doi.org/10.1109/APVIS.2007.329282
https://doi.org/10.1109/APVIS.2007.329282
https://doi.org/10.1016/j.jvlc.2014.03.001
https://doi.org/10.1016/j.jvlc.2014.03.001
https://doi.org/10.1016/j.jvlc.2014.03.001
https://doi.org/10.1016/j.jvlc.2014.03.001
http://arxiv.org/abs/1403.6184v1
https://doi.org/10.37236/10521
https://doi.org/10.37236/10521
https://doi.org/10.7155/jgaa.00618
https://doi.org/10.7155/jgaa.00618
https://doi.org/10.7155/jgaa.00618
https://doi.org/10.7155/jgaa.00618


16 Cheong et al.

’97, Rome, Italy, September 18-20, 1997, Proceedings. Lecture Notes in Com-
puter Science, vol. 1353, pp. 248–261. Springer (1997). https://doi.org/10.1007/
3-540-63938-1_67

17. Ware, C., Purchase, H.C., Colpoys, L., McGill, M.: Cognitive measurements of graph
aesthetics. Inf. Vis. 1(2), 103–110 (2002). https://doi.org/10.1057/palgrave.
ivs.9500013

18. Whitney, H.: Congruent Graphs and the Connectivity of Graphs, pp. 61–79.
Birkhäuser Boston (1992). https://doi.org/10.1007/978-1-4612-2972-8_4

https://doi.org/10.1007/3-540-63938-1\_67
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1007/3-540-63938-1\_67
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1057/palgrave.ivs.9500013
https://doi.org/10.1057/palgrave.ivs.9500013
https://doi.org/10.1057/palgrave.ivs.9500013
https://doi.org/10.1057/palgrave.ivs.9500013
https://doi.org/10.1007/978-1-4612-2972-8_4
https://doi.org/10.1007/978-1-4612-2972-8_4


Weakly and Strongly Fan-Planar Graphs 17

er

e

eℓ er

w w′

v′v

u

p1

p2

L

K

wp

ws

(a)

er

e

eℓ er

w w′

v′v

u

p1

p2

L

K

yK

yL

γ

(b)

Fig. 12: (a) Regions K and L and vertices wp and ws. (b) Replacement of e.

A Proof of Lemma 5

Lemma 5. Let eℓ, er and e = (w,w′) be a heart H in a minimal weakly fan-
planar drawing Γ of a graph G = (V,E), let L be the closed curve that consists of
the partial curves of the edges e, eℓ, er up to the crossing points xℓ and xr and let
p1, p2 be two common neighbors of w and w′ outside of L. Then, there is a graph
G′ = (V ′, E′) with |V ′| = |V | and |E′| = |E| that admits a fan-planar drawing Γ ′

with fewer edge triples forming Pattern (III) than Γ contains.

Proof. To prove the claim, will remove e, which in turn removes all triples of
Pattern (III) of H, and add another edge (yK, yL) /∈ E to account for the missing
edge, maintaining weak fan-planarity in the resulting drawing Γ ′ of G′.

Assume w.l.o.g. that H is chosen so that L does not contain any other heart H′.
We aim to find a sequence of curve-segments in Γ , along which we can insert
the edge (yK, yL) without introducing Pattern (I) to (III). We refer to the curve
constructed in this way as γ. Since the edges of w and w′ to p1 and p2 both cross
edges incident to u they cannot cross each other. Hence there exists a nesting
of p1 and p2, w.l.o.g. assume that p1 is the inner one, i.e., the edge (w, p1) is
encountered before the edge (w, p2) when following eℓ starting at v. In other
words, p1 is contained inside a region which we denote as K that is delimited by
e,eℓ,er,(w, p2) and (w′, p2). Further, denote by wp and ws the predecessor and
successor of the edge e, i.e., the edge ep = (w,wp) crosses eℓ immediately before
e and es = (w,ws) immediately after e when following eℓ starting at u. Note
that, possibly wp = p1 and ws = NIL; see Fig. 12a.

We first identify a suitable vertex yK and crossing-free subcurve of γ that
connects yK with the segment of e between xℓ and xr. Consider wp. By Lemma 4,
(w,wp) cannot cross both eℓ and er, hence wp lies outside of L. Further, since
edges of w and w′ do not intersect, wp is contained inside K. Let xp be the
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Fig. 13: Identification of yK.

crossing point of ep and eℓ in Γ . Observe that as ep is the predecessor of e, the
curve-segment of eℓ between xℓ and xp is crossing-free, hence we add it to γ. To
identify the endpoint y, consider the curve-segment γp of ep between xp and wp.

First, assume that γp is crossing-free. In this case, we identify yK with wp

and append γp to γ; see Fig. 13a.
Second, assume that γp has at least one crossing. Let e1 be the first edge

crossing ep when traversing γp from xp. Let x1 be the intersection of e1 and ep.
Observe that the segment from x1 to xp on ep is crossing-free and hence can be
appended to γ. Since (xℓ, xr) is crossing-free by definition, the anchor of ep must
be u. Hence, e1 also intersects the edge (w, p2), its anchor is w, and its endpoint
w1 lies inside K (its other endpoint is u). Finally, we observe that the curve
γ1 of e1 between x1 and w1 is crossing free, since otherwise (w,wp) is not the
predecessor of e at w. Thus, we fix w1 as yK and append γ1 to γ; see Fig. 13b.

Observe that in both cases yK lies in K. Also note that yK can only be adjacent
to w and w′ inside L as the segment of e between xℓ and xr is uncrossed whereas
w and w′ are the anchors of eℓ and er, respectively. Hence, we can be sure that
(yK, yL) does not exist in G yet as long as yL /∈ {w,w′, u} and yL lies in L; see
Fig. 12b. Thus, it remains to extend γ starting from its intersection with e to a
suitable vertex yL that is contained in L.

Consider the curve γℓ of eℓ from xℓ to v. First, if γℓ is crossing-free, we identify
yL with v and add γℓ to γ; see Fig. 14a.

Otherwise, γℓ contains a crossing. Assume momentarily that γℓ is crossed
by an edge incident to w′. In this scenario, we repeat the argumentation for w′

for which this case cannot occur at the same time. Thus, we conclude that es
must be present. Denote by xs the crossing between eℓ and es. We add the curve
segment between xℓ and xs to γ.

If the curve of es between ws and xs is crossing-free, we add it to γ and
identify ws with yL; see Fig. 14b.

Note that in all cases discussed so far, γ is crossing-free when removing e.
Thus, when replacing e with (yK, yL), the number of (I) stays at most the same
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Fig. 14: Identification of yL.

while the number of (III) decreases by at least 1; see Fig. 12b (in this case the
dotted edge at w does not exist).

Finally, it remains to consider the case where there is an edge e′1 crossing es.
We choose e′1 such that it is the first edge crossing es after xs when traversing
es from xs to ws. Note that the anchor of es is either v or u. If it is u, we
observe that eℓ, es and e′1 form a heart inside L (see Fig. 14c); a contradiction
to the choice of H. Thus, the anchor of es must be v. In this case, we again
choose yL = v and append the segment between xs and v to γ. I this case γ
will cross (w,ws). However, the anchor of (w,ws) is yL = v so the number of
(I) is maintained. Moreover, since γ intersects (w,ws) in between eℓ and e′1 the
number of (III) still decreases by at least 1 when replacing e with (yK, yL); see
Fig. 12b. ⊓⊔
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