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Abstract

The degenerate crossing number of a graph is the minimum number of transverse cross-
ings among all its drawings, where edges are represented as simple arcs and multiple edges
passing through the same point are counted as a single crossing. Interpreting each crossing
as a cross-cap induces an embedding into a non-orientable surface. In 2007, Mohar showed
that the degenerate crossing number of a graph is at most its non-orientable genus and
he conjectured that these quantities are equal for every graph. He also made the stronger
conjecture that this also holds for any loopless pseudotriangulation with a fixed embedding
scheme.

In this paper, we prove a structure theorem that almost completely classifies the loopless
2-vertex embedding schemes for which the degenerate crossing number equals the non-
orientable genus. In particular, we provide a counterexample to Mohar’s stronger conjecture,
but show that in the vast majority of the 2-vertex cases, the conjecture does hold.

The reversal distance between two signed permutations is the minimum number of re-
versals that transform one permutation to the other one. If we represent the trajectory of
each element of a signed permutation under successive reversals by a simple arc, we obtain
a drawing of a 2-vertex embedding scheme with degenerate crossings. Our main result is
proved by leveraging this connection and a classical result in genome rearrangement (the
Hannenhali-Pevzner algorithm) and can also be understood as an extension of this algorithm
when the reversals do not necessarily happen in a monotone order.

1 Introduction

A cross-cap drawing of a graph G is a drawing of G on the sphere with g distinct points, called
cross-caps, such that the drawing is an embedding except at the cross-caps, where multiple edges
are allowed to cross transversely, as pictured in Figure 1. In [13], Pach and Toth introduced
the degenerate crossing number, denoted by Crdeg(G) which in this language is the minimum
number of cross-caps for a cross-cap drawing of G to exist, where edges are required to be
drawn as simple arcs. In [11], Mohar removed the constraint that edges be simple arcs, leading
to the genus crossing number, which he proved to be equal to the non-orientable genus of the
graph, denoted by g(G). He then made an enticing conjecture claiming that these two crossing
numbers are equal. We say that a cross-cap drawing of graph G is perfect if there are g(G)
cross-caps and every edge intersects each cross-cap at most once. Then this conjecture can be
restated as follows:

Conjecture 1.1. [11, Conjecture 3.1, Proposition 3.3] Every simple graph has a perfect cross-
cap drawing.
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Figure 1: A degenerate crossing and a cross-cap placed at this crossing.

Mohar went further and conjectured that for any loopless graph embedding, there exists
a perfect cross-cap drawing that is compatible with this embedding, in a sense that we now
describe. The terminology that we introduce is equivalent to the PD1S in [11, Section 3]. A
pseudo-triangulation is a cellularly embedded multi-graph ϕ : G → S in which each face has
degree three. Denote by S2 \g

⊗
, the sphere minus g tiny disks, and by (S2 \g

⊗
)/ ∼ the space

obtained by quotienting the boundary of each disk with the antipodal map. Topologically, this
amounts gluing a Möbius band on each missing disk, thus yielding the non-orientable surface of
genus g, denoted by Ng. We say that an embedded multi-graph ϕ : G → Ng admits a cross-cap
drawing ϕ′ : G → (S2 \ g

⊗
)/ ∼, if there is a homeomorphism f : Ng → (S2 \ g

⊗
)/ ∼ such that

f(ϕ(G)) = ϕ′(G).

Conjecture 1.2. [11, Conjecture 3.4] For any positive integer g, every loopless pseudo-
triangulation of Ng admits a perfect cross-cap drawing.

An even stronger conjecture was hinted at in [11, Paragraph following Conjecture 3.4],
suggesting that one could possibly remove the loopless assumption if one forbids separating
loops. This strengthening was disproved by Schaefer and Štefankovič [14, Theorem 7].

In addition to their motivation from crossing number theory, these conjectures would also
shed light on the difficult task of visualizing high genus embedded graphs, providing an alternate
approach to that of Duncan, Goodrich and Kobourov [5], who rely on canonical polygonal
schemes [10].

Our results. A big step towards both these conjectures was achieved by Schaefer and Štefankovič,
who proved [14, Theorem 10] that any multi-graph embedded on a non-orientable surface of
genus g admits a cross-cap drawing with g cross-caps, in which each edge enters each cross-cap
at most twice. This theorem applies in particular to one-vertex embedding schemes, and thus
suggests a natural approach towards proving Conjectures 1.1 and 1.2. First contract a spanning
tree to obtain a one-vertex graph and apply this theorem. Then, edges might enter cross-caps
twice, but since the initial graph is loopless, one could hope to uncontract some edges so as to
spread these two cross-caps on two edges, thus obtaining a perfect cross-cap drawing. Our first
result shows that this approach cannot work, as some loopless 2-vertex schemes do not admit
perfect cross-cap drawings.

Theorem 1.3. A loopless 2-vertex embedding scheme that consists of exactly one non-trivial
positive block and one non-trivial negative block admits no perfect cross-cap drawing.

We refer to Figure 2 for an example that should provide an intuitive idea of the notion of
blocks, and to Section 2 for the precise definition. As a corollary, we obtain a counter-example
to Conjecture 1.2:

Corollary 1.4. There exist a loopless pseudo-triangulation G that admits no perfect cross-cap
drawing.

Our second contribution and main theorem is a converse to Theorem 1.3.
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Figure 2: Left: A loopless 2-vertex scheme made of a positive block, in red, consisting of only
positive edges, and a negative block, in blue, consisting of negative edges. Middle: a cross-cap
drawing showing that it has non-orientable genus 5. The bold red edge enters a cross-cap twice.
Right: A cross-cap drawing where each edge enters each cross-cap at most once requires 6 cross-
caps.

Theorem 1.5. For any embedding G of a loopless 2-vertex graph on Ng, at least one of the
following is true.

1. G admits a perfect cross-cap drawing with g cross-caps,

2. or the reduced graph of G is one of the two schemes pictured in Figure 3,

Figure 3: The only two possible exceptions to perfect cross-cap drawings.

We refer to Section 2 for the definition of blocks and reduced graphs. Essentially, Theo-
rem 1.5 shows that apart from two narrow families of exceptional cases, all the loopless 2-vertex
embeddings do satisfy Conjecture 1.2. As an illustration, Figure 4 shows that while the example
in Figure 2 does not admit a perfect cross-cap drawing, surprisingly, it does after adding two
edges to it. It directly follows from Theorem 1.5 that under standard random models, any
loopless 2-vertex embedding scheme admits a perfect cross-cap drawing asymptotically almost
surely.

Techniques and connections to signed reversal distance. Our focus on the 2-vertex
case in Theorem 1.5 is further motivated by a connection (introduced in [7]) to computational
genomics. An important problem in computational biology is to compute various notions of
distance between two genomes (see [4, 6]). Remarkably, one of the most biologically relevant
distances is also one of the few that can be calculated efficiently: a one chromosome genome
is encoded by a signed permutation (i.e., permutations of integers in which each element has a
sign) π = (π1, . . . , πn). The reversal of the interval (i, j) acts on π by reversing the order of the
elements πi, . . . , πj as well as their signs, it maps

(π1, π2, . . . , πi−1, πi, πi+1 . . . , πj−1, πj , πj+1 . . . πn),

to
(π1, π2, . . . , πi−1, πj , πj−1 . . . , πi+1, πi, πj+1 . . . πn).
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Figure 4: A perfect cross-cap drawing of Figure 2 with two additional edges.

The reversal distance between signed permutations π, π′, denoted by d(π, π′) is the minimum
number of reversals needed to transform π to π′. A celebrated algorithm of Hannenhalli and
Pevzner [8] (see also [2, 3]) computes in polynomial time the reversal distance between two
signed permutations.

Now, a signed permutation is exactly the combinatorial data in the embedding scheme of a
2-vertex loopless graph, and when tracing the action of each element of a signed permutation
under the action of reversals, one obtains a cross-cap drawing of that embedding scheme, where
each reversal corresponds to a cross-cap and each edge is an x-monotone curve, and in particular
no edge enters twice the same cross-cap (see Figure 5 for an illustration).

This easily implies the inequalities: g(π) ≤ Crdeg(π) ≤ d(π, id). It turns out that the
inequality g(π) ≤ d(π, id) is central to the reversal distance theory, and the cases of equality
are well understood. As we explain in Section 4 these arguments are natural from the point
of view of embedding schemes and our proof of Theorem 2 heavily relies on them. Conversely,
Theorem 1.5 can be reinterpreted in the setting of signed permutations as providing an extension
of the Hannenhalli-Pevzner theory.

The proof of Theorem 1.5 consists of two steps which can readily be made algorithmic: we
first reduce a signed permutation π to a simpler one π| for which we can prove that g(π|) =
d(π|, id) (Lemma 5.1), then we devise a technique to blow up (Lemma 5.3) the cross-cap drawing
of the reduced signed permutation π|, yielding a perfect cross-cap drawing of the original signed
permutation.

2 Preliminaries

Embedding schemes In this article, we work with multi-graphs, possibly with loops and
multiple edges. An embedding of a graph G on a surface S is an injective map ϕ : G → S.
We consider two embeddings equivalent if their images are homeomorphic. The faces of an
embedded graph are the connected components of S \ ϕ(G). An embedding is cellular if its
faces are homeomorphic to topological disks. The Euler genus, eg(G), of a cellular embedding
of a graph G is the quantity 2 − v + e − f , where v, e and f denote respectively the number
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Figure 5: From sorting permutations with reversals to monotone cross-cap drawings.

of vertices, edges and faces of the embedding of G. If S is orientable, an embedding can be
described combinatorially by a rotation system, that is, the set of cyclic permutations encoding
the order of the edges around each vertex. When S is non-orientable, which will always be
the case in this paper, some additional data is required to encode an embedding, which is
encompassed in the concept of an embedding scheme. We introduce the main definitions and
refer to Mohar and Thomassen [12, Section 3.3] for extensive background.

Definition 2.1 (Embedding scheme). An embedding scheme consists of a triple (G, ρ, λ) where

• G is a graph,

• ρ = {ρv, v ∈ V (G)}, where each ρv is a cyclic permutation of the edges incident to v, and

• λ is a function that assigns a signature {+1,−1} to each edge of G.

From an embedding scheme (G, ρ, λ), one can naturally recover the set of facial cycles by
following the edges and switching sides according to their signatures. Then, pasting a topological
disk on each facial cycle yields a cellular embedding of G. Given an embedding scheme (G, ρ, λ),
a flip at a vertex v yields another embedding scheme of the same graph, in which we reverse the
order of the edges incident to v and invert the signature of those edges incident to v that are
not loops. We say that two embedding schemes (G, ρ, λ) and (G, ρ′, λ′) are equivalent if one can
go from one to the other one by a sequence of flips. Two embedding schemes are equivalent if
and only if they induce equivalent cellular embeddings [12, Theorem 3.3.1]. This justifies that
equivalence classes of embedding schemes and embedded graphs can be considered as being two
representations of the same objects, and we switch freely between the two points of view in this
article, sometimes using the shorthand G to denote (G, ρ, λ).

A closed curve in an embedding scheme is one-sided (resp. two-sided) if and only if the
signatures of its edges multiply to −1 (resp. +1). An embedding scheme is called orientable if
it only contains two-sided closed curves; otherwise it is called non-orientable. A closed curve
in a non-orientable embedding scheme is separating if cutting along γ yields two connected
components. A closed curve in a non-orientable embedding scheme is orienting [7, 14] if by
cutting along γ, we obtain a connected orientable surface.

For two edges a and b in a 2-vertex embedding scheme, we denote by a · b the concatenation
of a and b which we will interpret as a cycle. Denoting the vertices of the scheme by v1 and v2,
we define a wedge between a and b, ωa,b:

• If both a and b are negative, then ωa,b contains all the half-edges in the interval (a, b) in
both ρv1 and ρv2 .

• If at least one of them is positive, then ωa,b contains all the half-edges in the interval (a, b)
in ρv1 and (b, a) in ρv2 .

We say that a wedge encloses an edge if it contains both its half-edges or none of them.
For example w1,4 in Figure 6 encloses all the edges of the graph. We can recognize orienting
and separating curves in an embedding scheme with the following lemmas. See Figure 6 for an
example of separating and orienting cycle in a 2-vertex scheme.
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Figure 6: The wedges ω1,4 and ω3,5 depicted in orange and green respectively.

Lemma 2.2. For two edges a and b in a non-orientable loopless 2-vertex embedding scheme,
the cycle a.b is orienting,

• if at least one of a and b is positive and ωa,b contains exactly one end of all negative edges
and encloses all the positive edges, or

• if both a and b are negative and their wedge contains exactly one end of all positive edges
and encloses all the negative edges.

Proof. We prove the lemma by contracting the edge a in order to obtain a one-vertex embedding
scheme G′. Note that the topological type of the cycle formed by the edges a and b is the same
as the loop b in G′. Denote the vertices of G by v1 and v2. When we contract a positive edge e in
G, we obtain an embedding scheme G′ with a single vertex w such that the cyclic permutation
of the edges around w after contraction is ρw = ρv1ρv2 where the edge e has been removed from
both cyclic permutations and the notation means that have been concatenated at e. On the
other hand, when we contract a negative edge e in G, ρw = ρv1ρv2 , where the edge e has been
removed from both permutations, the signature of all the edges are reversed and the notation
means that they have been concatenated at e. The ends of the loop b subdivide the half-edges
around w into two sets. We can see that the half-edges in ωa,b in G correspond to one of the
sets of half-edges divided by b in ρw.

By [7, Lemma 2.3], a loop o in a 1-vertex non-orientable embedding scheme is orienting
if and only if its ends alternate with the ends of all negative loops in the cyclic permutation
around the vertex and enclose the ends of any positive loop; i.e. the ends of o does not alternate
with the ends of any positive loop.

To prove the first case, without loss of generality we can assume that a is positive. We
contract the edge a in G. Since the wedge ωa,b in G contains exactly one end of each negative
edge, the ends of the loop b alternate with the ends of negative loops in ρw. Similarly, since
ωa,b encloses all the positive edges, the ends of b enclose the ends of any positive loop in ρw.
Therefore b is orienting in G′ and this implies that the cycle formed by a and b is orienting in
G. For the proof of the second case in 1 we proceed identically by contracting the negative edge
a. This finishes the proof.

Lemma 2.3. For two edges a and b in a loopless 2-vertex embedding scheme, the cycle a.b is
separating if a and b have the same signature and ωa,b encloses all the edges.

Proof. We contract a. The loop b has positive signature in G′ and since ωa,b contains both ends
of any edge inside it then the ends of b separate the ends of the other loops in G′, i.e. the ends
of no loop alternates with those of b. Such a loop is separating the surface, and therefore a and
b form a separating cycle in G.

2-vertex embedding schemes and signed permutations This paper almost exclusively
deals with loopless graphs with two vertices, and in that setting embedding schemes take a
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particularly simple form. Without loss of generality, one can number the edges so that the
cyclic permutation around one of the vertices is the identity. Then the data of the embedding
scheme just consists of the cyclic permutation around the other vertex, and the signature of
the edges, and thus this amounts to a signed cyclic permutation: a cyclic permutation where
each number is additionally endowed with a + or − sign. We also use an overline notation i to
depict negative signs. Therefore, in what follows we freely identify a signed permutation and a
2-vertex embedding scheme. Two edges in a 2-vertex embedding scheme are homotopic if either
they are both positive and appear consecutively in increasing order (e.g., (i, i+ 1)) or they are
both negative and they appear in the reverse order (e.g., (i+ 1, i)).

A positive block in a signed permutation is an interval I = (πi, . . . , πj) where all the elements
are positive, πi < πj , all the integers in [πi, πj ] are contained in I. A negative block in a signed
permutation is an interval I = (πi, . . . πj) where all the elements are negative, πi > πj , and
all the integers in [πj , πi] are contained in I. A block is non-trivial if it is not already sorted,
i.e., it is not equal to (πi, πi + 1, . . . πj − 1, πj) or to (πi, πi − 1, . . . , πj + 1, πj). Our concept of
blocks is similar to the notion of hurdles of [8], or more accurately, to the notion of unoriented
components in [3]. In both cases, we call πi and πj the frames of the block. A block is called
minimal if it does not contain any block except itself.

We say that a signed permutation is reduced if it has no blocks. Given a signed permutation
π, its reduced permutation π| is a permutation in which we replace every minimal block with
a single element of the same sign, and we iterate this process until we arrive at a reduced
permutation.

Cross-cap drawings A cross-cap drawing of an embedding scheme (G, ρ, λ) is a cross-cap
drawing of (G, ρ, λ) or of an equivalent scheme (under flips), that respects the cyclic permuta-
tions and signatures on the edges, i.e., if an edge has signature +1 (resp. −1) then it enters an
even (resp. odd) number of cross-caps. This definition is equivalent to the cross-cap drawings
of embeddings defined in the introduction. For non-orientable embedding schemes, by Euler’s
formula, the minimum number of cross-caps for a drawing coincides with the Euler genus.
For orientable embedding schemes of non-zero Euler genus, one needs exactly one additional
cross-cap:

Lemma 2.4 ([14, Lemma 6]). Let (G, ρ, λ) be an orientable embedding scheme with non-zero
Euler genus. Then any cross-cap drawing of G requires eg(G) + 1 cross-caps, in particular
eg(G) + 1 is odd.

The next lemma allows us to recognize types of curves in a cross-cap drawing.

Lemma 2.5. For any cross-cap drawing of a non-orientable embedding scheme:

1. A closed curve is one-sided (two-sided) if and only if it enters an odd (even) number of
cross-caps.

2. A closed curve is orienting (separating) if and only if it enters each cross-cap an odd
(even) number of times.

We refer to [14, Lemma 3] and [14, Lemma 4] for proofs.

Reversal distance and monotone cross-cap drawings Signed permutations model genomes
with a single chromosome in computational biology where they come endowed with the rever-
sal distance. The reversal distance d(π, id) is the smallest number d such that there exists a
sequence {π = π1, π2, . . . πd = id} such that (πi) and (πi+1) differ by a signed reversal. We call
such a (not necessarily minimizing) sequence, a path of signed permutations.
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Figure 7: A pseudo-triangulation of N5 admitting no perfect cross-cap drawing.

To any path of signed permutations {π1, π2, . . . πd} we can associate a cross-cap drawing.
We place a source vertex at (−1, n/2) and a terminal vertex at (d + 1, n/2). Edges will be
x-monotone piece-wise linear curves between these two vertices, and at each crossing between
two such curves we introduce a cross-cap. The edge j emanates from (−1, n/2) to (0, π1

j ), for

each k ≤ d it passes through (k, πj
k) ∈ R2, and finally it connects (d, πd

j ) to the terminal vertex
at (d + 1, n/2). In the remaining of this article, we often forget about the vertices (−1, n/2)
and (d+ 1, n/2) in our illustrations as they play no role, and we always assume that πd is the
identity (see Figure 5).

3 The counterexample

In this section, we provide a family of 2-vertex embedding schemes that do not admit a perfect
cross-cap drawing. Then we provide an explicit pseudo-triangulation ofN5 (depicted in Figure 7)
, disproving Conjecture 1.2.

Remark 3.1. If an embedding scheme G has one positive and one negative block, then so
does its flipped version, therefore we do not need to account for the possible flip in the proof of
Theorem 1.3.

In order to prove Theorem 1.3, we rely on Lemmas 3.1 and 3.2.

Lemma 3.2. Let G be an embedding scheme that consists of a non-trivial positive block A and
a non-trivial negative block B, then g(G) = g(A) + g(B)− 1.

The proof follows directly from the Euler characteristic.

Proof. Assume that the positive block has edges labelled A = {e1, . . . ek} and the edges of the
negative block are B = {ek+1, ek+2, . . . ek+l}. Notice that f(G) = f(A) + f(B)− 1, indeed the
face e1, ek and the face ek+1, êk+l are the outer faces of A and B, and they merge to become
the face e1, ek+1, ek, ek+l. Hence by Euler’s formula eg(G) = eg(A) + eg(B) + 1. We know that
gA = eg(A) + 1 and gB = eg(B) + 1. On the other hand, a cycle in G that contains one edge
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from A and one edge from B is one-sided, therefore G is a non-orientable, hence eg(G) = gG.
All in all we can conclude

gG = eg(G) = eg(A) + eg(B) + 1 = gA − 1 + gB − 1 + 1 = gA + gB − 1

as claimed.

We now have all the tools to prove Theorem 1.3, and refer to Figure 2 for an example to
help follow the proof.

Proof of Theorem 1.3. Let G be a concatenation of a positive block A with frames a1 and a2
and a negative block B with frames b1 and b2. Let us assume that ϕ is a perfect cross-cap
drawing of G. From Lemma 2.2 we derive that a1 · b1 and a1 · b2 are orienting curves, hence by
Lemma 2.5 each of them enters each cross-cap once. Lemma 2.3 implies that b1 ·b2 is separating.
Therefore by Lemma 2.5, b1 and b2 enter the same cross-caps and do not enter any cross-cap
that a1 enters. Similarly, a1 · a2 is separating and hence they enter the same cross-caps and
no cross-cap that b1 and b2 enter. Then A is drawn with gA cross-caps and B is drawn with
gB cross-caps that are disjoint from the cross-caps that A entered. But by Lemma 3.2 the
non-orientable genus of G is gA + gB − 1. Therefore, there are not enough cross-caps available
to draw both A and B. This concludes.

Corollary 1.4 follows at once as we can always add edges and vertices to a scheme to trian-
gulate it without adding loops nor changing its genus, and any perfect cross-cap drawing of the
triangulation restricts to a cross-cap drawing of the scheme. We provide in Figure 7 an example
of such a pseudo-triangulation.

4 Topology of the reversal distance

In this section, we recall some well-known results from the genomics rearrangements literature1,
which we interpret in the language of embedding schemes (see also [9] for an alternate topological
interpretation of these arguments).

4.1 The Bafna-Pevzner inequality from Euler’s formula.

Let π be a signed cyclic permutation, which, as explained in Section 2, we think of as a 2-vertex
embedding scheme, which requires g(π) cross-caps to be drawn. We can compute its number
of faces, which we denote by f(π) and the number of elements in the permutation corresponds
to the number of edges in the scheme, which we denote by e(π). Then Euler’s formula reads
2 − eg(π) = 2 − e(π) + f(π) which simplifies to eg(π) = e(π) − f(π). By Lemma 2.4, we thus
have d(π, id) ≥ e(π)− f(π).

A very similar inequality was first discovered by Bafna and Pevzner [1, Theorem 2] with-
out reference to embeddings. Figure 8 shows an example where the inequality is strict: the
embedding scheme has Euler genus two, non-orientable genus three and one can show that the
signed permutation requires four reversals to be sorted. However, as pictured on the right, it
does admit a perfect cross-cap drawing with three cross-caps. Necessarily, in that example, the
cross-caps can not be interpreted as reversals: this is apparent here as they do not occur in a
monotone order.

The starting idea of the Hannenhalli-Pevzner (HP) algorithm is to identify intervals in a
signed permutation where applying a reversal is clearly making progress. Given a signed cyclic
permutation π, we call a pair of consecutive integers i and i+1 reversible if they have opposite
signs in π (this is called an oriented pair in [3]). For a given reversible pair there exist two

1The literature primarily deals with sorting standard permutations, while here we are sorting cyclic permuta-
tions. In our description, we directly translate their techniques to this cyclic setting.
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Figure 8: The embedding scheme depicted in this picture has non-orientable genus 3 but requires
four reversals (left). However, it admits a perfect cross-cap drawing with three cross-caps (right).

reversals σ, σ′ such that i and i+1 are homotopic in π · σ and in π · σ′. These two reversals are
equivalent in the sense that the two permutations that they yield are flipped versions of each
other. The following lemma follows from an Euler characteristic argument.

Lemma 4.1. If i, i + 1 are a reversible pair in π and σ is a reversal that turns them into
homotopic curves in π · σ, then eg(π · σ) = eg(π)− 1.

Proof. Since e(π) = e(π · σ), we need to show that f(π · σ) = f(π) + 1. The edges i and i + 1
appear in some face a in π. We claim that the faces of π · σ are the same as the faces of π
except that a is subdivided into the bigon (i, i+ 1) and another face which contains the edges
of a minus i and i + 1. Indeed every other face is not disrupted by the reversal. This finishes
the proof.

4.2 The HP algorithm for reduced signed permutations

It is immediate to see that blocks do not contain reversible pairs of edges, and thus non-trivial
blocks form a natural obstruction to applying the reversals described above. Given a reversible
pair (i, i+1) in the signed permutation π, let σ be a reversal that turns i and i+1 into homotopic
edges. The score of (i, i+ 1) is the number of reversible pairs in π · σ.

HP algorithm: While there is a reversible pair, reverse a pair of maximal score [2].

Theorem 4.2. If a signed permutation π is non-orientable and has no non-trivial blocks then
d(π, id) = eg(π), and the HP algorithm gives a sequence of reversals of this optimal length.

This theorem follows at once from the following lemma.

Lemma 4.3. Let π be a non-orientable signed permutation without non-trivial blocks, (i, i+1)
be a reversible pair of maximal score, and σ be a reversal that makes i and i+1 homotopic such
that π · σ is not the identity. Then π · σ is non-orientable and has no non-trivial blocks.

Proof of Theorem 4.2. By the previous lemma, if π is non-orientable has no non-trivial block
and σ is a reversal of maximum score, then π ·σ is also non-orientable and also has no non-trivial
block. By induction, d(π · σ, id) = e(π · σ) − f(π · σ) = eg(π · σ). Therefore, by Lemma 4.1,
eg(π) ≤ d(π, id), and d(π, id) ≤ d(π · σ, id) + 1 = eg(π · σ) + 1 = e(π)− f(π) = eg(π).

The proof of Lemma 4.3 is almost identical to that of [2, Theorem 10] but first requires some
additional definitions.

Two intervals (i, j) and (k, l) are called interleaving in a cyclic permutation, if we either
have π−1(i) < π−1(k) < π−1(i+ 1) or π−1(i) < π−1(l) < π−1(i+ 1).
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Interleaving graph. Given a permutation π on {1, . . . , n}, Let π∗ be the permutation of size
2n on elements {il, ir for 1 ≤ i ≤ n} in which π∗

2k−1 = πl
i and π∗

2k = πr
i when πi is positive and

π∗
2k−1 = πr

i and π∗
2k = πl

i when πi is negative. We build the interleaving graph Iπ as follows:

• The graph has n vertices labelled by (i, i+ 1) for i modulo n. A vertex (i, i+ 1) is called
reversible if (i, i+ 1) is a reversible pair, otherwise it is called non-reversible. We denote
a reversible pair by a white vertex and a non-reversible pair by a black one.

• Two vertices (i, i+1) and (j, j+1) are connected if the intervals (ir, i+1l) and (jr, j+1l)
are interleaving in π∗.

See Figure 9 for an example. A connected component in Iπ is non-trivial if it has more than
one vertex and it is called orientable if it only contains non-reversible vertices.

Remark 4.4. If (i, i+1) are a homotopic pair in π then the vertex (i, i+1) is an isolated vertex.
A non-trivial block and the vertices in Iπ associated to the pair of edges that belong to the block
correspond to a non-trivial orientable connected component in Iπ. Note that the reverse is not
true and an orientable connected component does not always correspond to a non-trivial block
in the permutation.

Lemma 4.5. Let π be a signed permutation for which Iπ has a non-trivial orientable connected
component U . Then either U corresponds to a non-trivial block or π is orientable.

Proof. We say that an element i belongs to U if (i, i+1) ∈ U or (i− 1, i) ∈ U . By orientability,
all the elements belonging to U have the same signature, let us first assume that it is positive.
Let us furthermore assume, for the sake of contradiction, that π is not orientable and that
U does not correspond to a block. Since π is not orientable, not every element has positive
signature, so there is at least one element that does not belong to U . Let a be an element
belonging to U such that a− 1 does not belong to U . Without loss of generality, we can fix an
origin to the signed permutation π at a − 1. Now let b be an element that belongs to U and
such that for any element j that belongs to U , a, j and b appear in this cyclic order in π. We
claim that either a − 2 = b, or a − 2 does not appear between a and b in π. Indeed, if a − 2
appears between a and b, then (a− 2r, a− 1l) would interleave with one pair on a path between
(a, a+ 1) and (b, b± 1) in U , and thus a− 1 would belong to U . Therefore, either a− 2 = b or
a− 2 does not belong to U . Inductively, none of the elements that are not in [a, b] lie between
[a, b] in π. Similarly, all the elements within [a, b] lie between a and b in π, as otherwise the
smallest one that does not, call it k, does not belong to U , yet (k−1r, kl) interleaves with a pair
on a path between (a, a+ 1) and (b, b± 1) in U , contradicting the fact that k is not in U . We
conclude that a and b are the frames of a block, which is non-trivial since there is at least one
pair in U . This is a contradiction. The case where all the signatures in U are negative follows
from the fact that flipping π does not change its interleaving graph nor the orientability of its
components.

When we apply a reversal on a reversible pair (i, i+1), the effect on Iπ is to complement the
subgraph induced by the vertex (i, i+1) and its neighbors in Iπ. Also if a vertex in this subgraph
was reversible, it gets non-reversible and vice versa. Indeed, let (j, j + 1) be a reversible vertex
connected to (i, i+1). This means that the intervals (jr, j+1l) and (ir, i+1l) are interleaving.
Without loss of generality let us assume that jr is the element that belongs to the interval
(ir, i+ 1l) and it is positive. Reversing the elements between (i, ππ−1(i+1)−1) makes i and i+ 1
homotopic and isolates (i, i+1). Also it makes j negative and therefore the pair (j, j+1) is not
reversible anymore. Similarly it can be seen that if (j, j+1) and (k, k+1) are two neighbors of
(i, i+1) in Iπ and the intervals (jr, j+1l) and (kr, k+1l) interleave, after applying the reversal
they stop being interleaved and therefore vertices (j, j + 1) and (k, k + 1) are not connected
anymore in the interleaving graph. This explains the complementing of the induced subgraph.
Figure 9 depicts the effect of applying the reversal on the pair (4, 5).
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Figure 9: Figure depicts a permutation π, its associated doubled permutation π∗ and its in-
terleaving graph Iπ. At the bottom we can see the effect of reversing elements 1, 3, 5 on the
interleaving graph; this reversal makes 4 and 5 homotopic.

Proof of Lemma 4.3. To prove the lemma, we first show that the number of non-trivial ori-
entable connected components in Iπ·σ cannot be more than Iπ. Let us assume that this is the
case and that by applying σ we create such a component C. In this case, we claim that the
score of any pair (j, j + 1) for which the corresponding vertex is in C, is higher than the score
of the pair (i, i+ 1).

Denote by #+(i, i + 1) (resp. #−(i, i + 1)) the number of reversible (resp. non-reversible)
pairs of edges adjacent edges to (i, i + 1) in Iπ. If π has k reversible pairs of edges, then the
score(i, i+ 1) = k −#+(i, i+ 1) + #−(i, i+ 1).
Before applying the reversal, every non-reversible vertex that is connected to (i, i+1) has to be
connected to (j, j + 1). This is because otherwise after applying the reversal this vertex will be
a reversible vertex connected to (j, j + 1) and therefore belonging to C which is not possible.
This implies that #−(i, i+ 1) ≤ #−(j, j + 1).
Before applying the reversal, every reversible vertex (t, t+1) that is connected to (j, j+1) has to
be connected to (i, i+1). This is because if (t, t+1) is not connected to (i, i+1), after applying
the reversal this vertex remains connected to (j, j + 1) without changing its reversibility. This
means that (t, t + 1) is a reversible pair that belongs to C which is not possible. This implies
that #+(j, j + 1) ≤ #+(i, i + 1). The equality does not happen since the component C has
more than one vertex and a vertex in C to which (j, j + 1) is connected after the reversal,
is a reversible vertex that used to be connected to (i, i + 1) but not to (j, j + 1). Therefore
#+(j, j + 1) < #+(i, i+ 1)

We have that score(i, i+1) = k−#+(i, i+1)+#−(i, i+1) < k−#+(j, j+1)+#−(j, j+1) =
score(j, j + 1) which contradicts our assumption. This finishes the proof of the claim.

Now, the assumptions of Lemma 4.3 imply that there are no non-trivial orientable connected
components in Iπ. Thus there are also none in Iπ·σ. A non-trivial block or the entire scheme
being orientable but not the identity would induce such a non-trivial orientable connected
component. This concludes the proof.
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5 Perfect drawings for most 2-vertex graph embeddings

We say that a cross-cap drawing is fantastic if it is perfect and every edge enters at least one
cross-cap.

Lemma 5.1. Every reduced loopless 2-vertex graph embedding scheme that is different from (1),
(1, 2) or (1, 3, 4, 2) admits a fantastic cross-cap drawing.

The proof is based on an induction and an exhaustive analysis of all the loopless 2-vertex
embedding schemes of genus 2 and 3, as pictured in Figure 10. We first prove the following
lemma.

Lemma 5.2. Let G be an orientable scheme of non-orientable genus g(G) that has no non-
trivial block. We can add an edge to this embedding scheme such that we obtain a non-orientable
scheme of genus g(G) without any block.

Proof. Let us assume that the signatures of the edges are positive. Choose an edge f . Add a
negative edge e consecutive to f , such that in the cyclic permutation of one vertex we see ef and
in the other vertex we see fe. Let us call the new embedding scheme by G′. The scheme G′ is
non-orientable. Since G is orientable, we know that g(G) = eg(G) + 1. Since e(G′) = e(G) + 1,
it is enough to show that f(G′) = f(G). By looking at the face cycles of both schemes, we can
see that all face cycles are intact except a face (i, f, j, . . . ) in G that is turned to a face cycle
(i, e, f, e, j, . . . ) (i and j are two adjacent edges to f in the cyclic permutation of the vertices).
Since the edge e has an opposite signature compared to the edges of G, e cannot create a block
in G′. The proof for the case where all the edges of G are negative can be obtained by flipping.
This finishes the proof.

Proof of Lemma 5.1. Let π be the signed permutation associated to the embedding scheme. If
the embedding scheme is orientable, we first add one edge without changing its genus to make
it non-orientable while keeping it reduced (this is possible by Lemma 5.2). Now, since it is
reduced and non-orientable, by Theorem 4.2, the HP algorithm provides a path in the reversal
graph {π = π1, π2, . . . πg = id}, where g is the non-orientable genus of π. We distinguish cases
depending on the value of g.

If g ≥ 3, we consider the sub-path {π1, π2, . . . , πk}, with g− k = 3 and realize this sub-path
as a cross-cap drawing ϕ as described in Section 2. Notice that if there exists a fantastic cross-
cap drawing ϕ′ for πk, we can concatenate ϕ with ϕ′ to obtain a fantastic cross-cap drawing for
π. Now πk is a reduced signed permutation of non-orientable genus 3. The proof then proceeds
via an exhaustive case analysis. Without loss of generality, we can assume that

• There is no non-trivial block in πk since that is preserved by the HP algorithm.

• There are no homotopic edges since, for any collection of homotopic edges, one can remove
all but one and add them in the end identical to the remaining one.

• There is at least one edge of signature −1 and one edge of signature +1 in πk. Otherwise,
πk is orientable, which is impossible since by Theorem 4.2, the HP algorithm preserves
non-orientability.

• πk is maximal while preserving these three properties. Indeed, otherwise, we can add
edges, draw the resulting scheme and remove these superfluous edges at the end.

With these simplifying assumptions at our disposal, we can exhaustively enumerate all the
genus 3 embedding schemes matching these assumptions. The numbers are small enough that
this can be done by hand, we ran a computer search for safety. One obtains that all the
maximal schemes have their all faces of degree 4, and thus have six edges: for all reduced
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schemes with some faces of degree higher than four, one can always add an edge within a
face while keeping the fact that it is reduced. Then, there are exactly eight loopless 2-vertex
embedding schemes matching our assumptions, their signed permutations are: (1, 6, 5, 4, 3, 2),
(1, 6, 3, 5, 4, 2), (1, 3, 6, 5, 4, 2), (1, 5, 3, 6, 4, 2), (1, 4, 6, 3, 5, 2), (1, 6, 3, 4, 5, 2), (1, 4, 6, 2, 5, 3), and
(1, 4, 6, 2, 5, 3). Fantastic drawings of each of them are provided in Figure 10.

If g = 2, there are exactly three reduced schemes: (1, 3, 4, 2), (1, 2, 3, 4) and (1, 3, 2). Fan-
tastic drawings of the second and third case (or rather its flipped version) are provided in
Figure 10.

If g = 1, there is a single reduced scheme: (1, 2).
If g = 0, there is a single reduced scheme: (1).

Figure 10: Fantastic drawings of genus-2 and genus-3 embedding schemes (these are cylindrical
drawings: the top is identified to the bottom).

In order to prove Theorem 1.5, our strategy is to first look for a fantastic cross-cap drawing
for the reduced graph of an embedding scheme. Then, to obtain a drawing for the initial graph,
we need to bring back the blocks that we replaced and extend the drawing to the edges of the
block. This is achieved via the following blowing-up operation.
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Blowing up a cross-cap. Let ϕ be a fantastic drawing for G. By the definition of fantastic
drawing, any reduced edge enters at least one cross-cap. Let e be a reduced edge that cor-
responded to a block X with frames a and b and let c be a cross-cap in ϕ that e enters. By
Lemma 2.4, X needs an odd number of cross-caps to be drawn, exactly eg(X)+1. We replace c
by eg(X) + 1 cross-caps and we draw the frames of X, a and b as follows. We draw a following
e thoroughly. To draw b we follow e except that we make b enter the new eg(X) + 1 cross-caps
in the reversed order that a enters. All the other edges outside of X that were entering e are
now drawn in the same way as a or b depending on how they were crossing e at c. Finally we
remove e (see Figure 11).

Figure 11: Blowing up a cross-cap to draw the frames of a block

Repeatedly blowing up a drawing of a reduced permutation π| yields a drawing for all edges
of π except for the edges inside the blocks. The following lemma shows that these edges can be
added in this cross-cap drawing.

Lemma 5.3. Let π be a signed permutation on n elements such that all the elements form a
non-trivial minimal negative block. The associated embedding scheme admits a perfect cross-cap
drawing in which the frames of π, i.e. elements 1 and n, enter all the cross-caps but in opposite
order.

Proof. Let us denote by g(π) = eg(π)+1 the non-orientable genus of the associated embedding
scheme. We know that π1 = n and πn = 1. Let us define π′ from π by replacing 1 by n + 1.
The following lemma is proved using the HP algorithm and Theorem 4.2.

Lemma 5.4. The optimal number of reversals to go from π′ to the permutation (2, 3, . . . , n+1)
is g(π′) = g(π). There exists a sequence of such reversals such that no reversal is applied on
the element n+ 1.

Proof. Note that the associated embedding scheme to π′ is a non-orientable scheme and therefore
g(π′) = eg(π′). The number of edges in π and π′ are equal therefore to show that eg(π′) =
g(π) = eg(π) + 1, it is enough to show that f(π′) = f(π) − 1. Let π = (n, . . . , 2, . . . , j, 1).
Then π′ = (n, . . . , 2, . . . , j, n+ 1). π has a face f1 = (0, n) and f2 = (2, n, j, . . . ). Replacing −1
with n + 1, the faces f1 and f2 merge to a single face f = (2, n + 1, n, n + 1, j, . . . ) in π′ (see
Figure 12). The other faces in π′ are the same as the faces in π other than f1 and f2. This
implies that π′ has one face less than π.
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Figure 12: Faces of π′ (left) and π (right).

Furthermore, π′ does not contain any block and therefore it is reduced. It is non-orientable
by construction. Having a reversible pair (i, i+1), there are two reversals that make i and i+1
homotopic. By running the HP-algorithm on π′ and choosing the reversal at each step that
does not reverse n+ 1 we obtain a desired sequence of reversals. This finishes the proof of the
lemma.

Now, the sequence of reversals of Lemma 5.4 gives us a cross-cap drawing for π. By
Lemma 2.2, the edges n and n + 1 form an orienting cycle, and thus together they have to
enter all the g(π′) cross-caps exactly once. We know that the edge n + 1 does not enter any
cross-cap in this drawing which implies that n enters all the cross-caps exactly once. We can
obtain a cross-cap drawing for π from this drawing for π′ by drawing 1 entering the cross-caps
that n enters with the opposite order as depicted in Figure 13.

Figure 13: From a cross-cap drawing of π′ to a cross-cap drawing of π.

We are now finally ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let G denote an embedding scheme for a loopless 2-vertex graph of
non-orientable genus g. We denote by G′ the reduced scheme, i.e., the scheme obtained after
recursively replacing minimal blocks with a curve of the corresponding sidedness. If G′ is exactly
one of the two graphs depicted in Figure 3, the conclusion of the theorem holds. If G′ consists
of a single edge, up to flipping G we can assume that this edge has negative signature. Then
this edge can be drawn in the natural way with a single cross-cap. In all the other cases, by
Lemma 5.1, G′ admits a fantastic cross-cap drawing.

In order to finish the proof, we explain how to inductively put back minimal blocks of G in
the place of the corresponding reduced edge in G′. If A is such a minimal block and is negative
and we denote by e the corresponding reduced edge, e is one-sided and thus goes through at least
one cross-cap. We blow up this cross-cap, replacing it by exactly the odd number of cross-caps
required to draw A. By Lemma 5.3, since A is minimal, it is reduced and thus it can be drawn

16



using these blown-up cross-caps, in such a way that the frames of the block enter the blown-up
cross-caps in opposite orders. This process is pictured in Figure 13. If A is a positive minimal
block and e is the corresponding reduced edge, since the drawing of G′ is fantastic, we know
that e enters at least two cross-caps. We first make the entirety of A enter the first of these
cross-caps. Thus, there remains to draw the flipped version of A, which is now a negative block.
This is achieved as before by blowing-up the second cross-cap, and appealing to Lemma 5.3 to
draw the negative block within the space bordered by the two frames.

This process shows how to obtain a perfect cross-cap drawing of G from a fantastic cross-cap
drawing of the reduced graph G′, concluding the proof.
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