
A Simple Pipeline for Orthogonal Graph Drawing

Tim Hegemann and Alexander Wolff

Universität Würzburg, Würzburg, Germany
hegemann@informatik.uni-wuerzburg.de

Abstract. Orthogonal graph drawing has many applications, e.g., for
laying out UML diagrams or cableplans. In this paper, we present a
new pipeline that draws multigraphs orthogonally, using few bends, few
crossings, and small area. Our pipeline computes an initial graph layout,
then removes overlaps between the rectangular nodes, routes the edges,
orders the edges, and nudges them, that is, moves edge segments in
order to balance the inter-edge distances. Our pipeline is flexible and
integrates well with existing approaches. Our main contribution is (i) an
effective edge-nudging algorithm that is based on linear programming,
(ii) a selection of simple algorithms that together produce competitive
results, and (iii) an extensive experimental comparison of our pipeline
with existing approaches using standard benchmark sets and metrics.

Keywords: Orthogonal graph drawing · Edge routing · Edge nudging ·
Experimental evaluation

1 Introduction

Due to its many applications, the orthogonal drawing style has been studied
extensively in Graph Drawing. One of the milestones in the development of
efficient algorithms for this domain was Tammasia’s Topology–Shape–Metric
framework [19] which showed that embedded planar graphs with a vertex degree
of at most 4 can be laid out efficiently, using the minimum number of bends. The
restriction to degree 4 comes from the fact that the framework represents vertices
by (grid) points. For practical purposes, however, the restriction to (embedded)
planar graphs of constant degree is prohibitive. This triggered many practical
approaches to orthogonal graph drawing. For example, the three-phase method
of Biedl et al. [1] draws normalized graphs (that is, graphs without self-loops
and leaves) with vertices in general position (that is, on different grid lines) with
“small” vertex boxes on an quadratic size grid using at most one bend per edge.
For compaction, Biedl et al. referred to Lengauer’s book [10] on VLSI layout,
which is also relevant for orthogonal graph drawing. Building on earlier work
[3,5,16,20], Kieffer et al. [8] introduced Hola (“Human-like Orthogonal Network
Layout”), a multi-step approach for drawing graphs orthogonally. They partition
the input graph and use different layout strategies for different parts: stress
minimization for the graph core and specialized code for tree-like subgraphs.

Schulze et al. [17] presented the orthogonal graph drawing library Kieler [15]
that took special care of so-called port constraints. They allow the user to specify

ar
X

iv
:2

30
9.

01
67

1v
2

 [
cs

.C
G

]
 7

 S
ep

 2
02

3

https://orcid.org/0009-0008-4770-3391
https://orcid.org/0000-0001-5872-718X

on which side of a vertex box an edge must be attached, which is important,
for example, for UML diagrams. Zink et al. [21] presented the Praline library,
which generalizes port constraints by introducing port groups and port pairings,
which are useful for drawing cableplans. Both the approaches of Schulze et al.
and Zink et al. arrange nodes on layers and use the framework of Sugiyama et
al. [18] for layered graph drawing (although they do not assume input graphs to
be directed), among others, in order to reduce edge crossings.

Whereas most graph drawing algorithms place labels into vertex boxes, Bin-
ucci et al. [2] also incorporated edge labels. Using mixed integer programming,
they can draw sparse graphs with vertex and edge labels of up to 100 vertices.

We considered orthogonal graph layout in a third-party-funded project with
two industrial partners with different backgrounds. One of them produces net-
work management software; the other produces software for drawing cableplans
of complicated, highly configurable machines. Both asked for layouts that work
well on mobile devices such as tablet computers used by, for example, technicians
who service harvesting machines in the field.

Rather than a monolithic software package, they were interested in a highly
configurable, flexible pipeline whose parts can easily be exchanged in order to
meet the various needs of their customers. Still, they insisted on a number of basic
requirements. The drawings computed by our algorithm must be orthogonal,
that is, edges are drawn as sequences of axis-aligned segments and vertices are
represented by non-overlapping boxes (i.e., axis-aligned rectangles). Also, the
user must be able to specify a minimum object distance δmin to be respected by
vertex boxes and edge segments.

In terms of quality, we agreed upon standard graph drawing criteria such as
few crossings, few bends, small area, good aspect ratio, small total edge length,
and small edge length variance. With mobile applications in mind, using small
area becomes our key objective. However, rather than an algorithm that excels
in one of these metrics (and fails badly in another), our partners were interested
in allrounders that are sufficiently fast and generally perform well.

Our Contribution. We set up a layout pipeline with three variants. For the
first variant (Force), we use a force-directed layout algorithm [6] to place the
vertices of a given graph G as points (ignoring their boxes). Then we center the
vertex boxes on these points. If some of them overlap, we call an overlap removal
algorithm of Nachmanson et al. [11]. Instead of these three steps, for the second
variant (Hybrid1), we used the vertex placement computed by Praline. In
both cases, we apply the following steps that we describe in detail in Section 2.
Port assignment: We assign the endpoints of the edges to the sides of the vertex
boxes. Routing graph construction: We construct an auxiliary grid-like graph H.
Edge routing and path ordering: We route (and order) the edges of G along the
edges of H. Our path ordering is based on existing techniques [7,12,13]. Now each
edge of G consists of a path of axis-aligned segments. Edge nudging: In this final
step, we distribute the path segments so that they partition the available space
between the vertex boxes as evenly as possible. As a third variant (Hybrid2),

we initialize our pipeline with both the vertex positions and the edge routing
computed by Praline and apply only the nudging step as a post-processing.

Our main contribution is (i) the edge nudging step, (ii) our simple and flex-
ible pipeline as a whole, and (iii) an experimental comparison with the state-of-
the-art orthogonal layout libraries Hola1 [8] and Praline2 [21] on two stan-
dard benchmark sets (see Section 3). Praline has already been compared with
Kieler, and performed similarly well or even slightly better [21]. Hola has been
compared to the orthogonal style automatic layout of yFiles3; Hola outper-
formed yFiles almost universally in a user study with 89 participants [8].

As it turns out, our pipeline proves to be a good allrounder that performs well
in many of the metrics mentioned above. Due to careful nudging, our pipeline
yields very compact layouts, whereas its competitors usually produce fewer cross-
ings and bends. Depending on the variant, our pipeline takes slightly less or about
twice as much time than Praline. It is much faster than Hola.

Our source code is available at https://github.com/hegetim/wueortho.

2 Our Pipeline

In order to fine-tune the layout for different requirements (as discussed in Sec-
tion 1), we designed our pipeline as a sequence of mostly independent, inter-
changeable, and self-contained steps that we describe in detail in this section.

The input for our pipeline is a multigraph G with vertex set V (G) of size
n and edge multiset E(G) of size m. We explicitly allow our graphs to have
self-loops and handle them in the port assignment step. Each vertex comes with
a (textual) vertex label or directly with a vertex box, that is, an axis-aligned
rectangle. Given a text label, we compute a box that fits the label (in some
standard font).

Our pipeline consists of several simple algorithms for specific subproblems
of orthogonal graph drawing; see Fig. 1 for an overview. The main steps in our
pipeline are vertex layout, overlap removal, port assignment, construction of the
routing graph, edge routing, path ordering, and edge nudging. Below we detail
most of these steps. For the remaining, we use standard algorithms, see “Pipeline
Variants”, Section 3.

Port Assignment. Each edge connects one or two vertices that are represented
by rectangular boxes. We call the start point and the end point of an edge its
ports. Ports lie on the boundary of the vertex boxes that an edge connects. Port
positions can either be specified in the input, or they are set by our pipeline as
follows (before the edge routes are determined).

For each edge uv, we first determine the sides of the boxes of u and v on which
we place the ports of uv. Let suv be the straight-line segment that connects the
1 see https://www.adaptagrams.org/
2 see https://github.com/j-zink-wuerzburg/praline
3 see https://www.yworks.com/products/yfiles

https://github.com/hegetim/wueortho
https://www.adaptagrams.org/
https://github.com/j-zink-wuerzburg/praline
https://www.yworks.com/products/yfiles

vertex layout vertex boxes overlap removal port assignment

routing+ordering full nudgingrouting graph constrained nudging

Fig. 1: Our flexible pipeline of simple algorithms for orthogonal graph drawing.

centers of the boxes of u and v. We usually assign the ports to those box sides
that intersect suv. To avoid situations where an edge uv would have to be drawn
as a Z-shape according to the rule above, we adjust the rule as follows. We
split each side evenly into four pieces. If suv intersects a side in the first or last
piece of the side, we instead reassign one of the two ports such that uv can be
drawn as an L-shape that bends away from the barycenter of the vertex boxes’
center points. (We do not actually route uv now, we just use geometry to place
its ports.) The order along a side of vertex u is then determined by the circular
order of the segments of type suv, where v is a neighbor of u. Multi-edges require
special care regarding their order within a side. They are routed next to each
other without crossings. Self-loops get neighboring ports assigned to the least
populated side. When all ports have been assigned to a box, we evenly distribute
the ports on each side.

Routing Graph Construction. We route each edge of the input graph along
an obstacle-avoiding path in a routing graph H whose vertices are the ports and
the potential bend points of edge routes. This graph forms a partial grid with
gaps around the vertex boxes. A precise definition follows below.

The intuition for our routing graph is that edges get routed through horizon-
tal and vertical channels. We describe only vertical channels. Horizontal channels
are defined symmetrically. For a pair of vertex boxes (u, v) where v is entirely to
the right of u, we define its vertical channel as the largest axis-aligned rectangle
whose vertical sides touch the right side of u and the left side of v and that
is interior-disjoint from all vertex boxes – if such an empty rectangle exists for
(u, v). For each box u we keep only the channel to the right of u that has the
smallest width. For this step, we interpret the left and right boundaries of the
drawing as vertex boxes of zero width and infinite height. In Fig. 2, the orange
boxes depict the vertical channels. Note that some of these channels overlap. We
can find all channels in O(n log n) time with a sweepline algorithm.

For each vertical channel, we define a vertical line segment that spans the
channel’s entire height as its representative. If possible, we choose an appropriate

À

Â

Ã

Á Ä

Å

Fig. 2: Routing graph construction: vertical channels (orange hatched) and their rep-
resentatives (red). Dotted representatives have been sorted out. Note that ports are
omitted and all representatives are the vertical center line of their channel. Black crosses
mark where horizontal representatives (not shown) intersect. Those will host vertices
in the final routing graph.

line segment starting in a port. Otherwise, we choose the center line of the chan-
nel. As a further optimization, we ignore every vertical channel C that intersects
another channel C ′ such that the projection of C on the y-axis is contained in
that of C ′. See the dotted red segments in Fig. 2. We define representatives for
horizontal channels symmetrically. We add additional representatives for each
remaining port. We can find all representatives using the same sweepline algo-
rithm as above in O(m logm) time, assuming n ∈ O(m).

The routing graph H has a vertex for each port and for each intersection
point between a vertical and a horizontal representative. It has an edge between
each pair of vertices that are consecutive along a representative. Let M be the
number of edges of H. Again assuming n ∈ O(m), we have M ∈ O(m2) since
there are at most 4n channels (one per side for each vertex box) and 2m ports.

Edge Routing. In the next step, for each edge we connect its endpoints (which
are ports and thus vertices in the routing graph H) by a shortest path in H. Our
approach for edge routing is similar to that of Wybrow et al. [20] except that
they use the A∗ search for computing shortest paths whereas we use Dijkstra’s
algorithm (for simplicity). Recall that H is a partial grid graph. Among all
shortest paths, we choose a bend-minimal one by augmenting the state used in
Dijktra’s algorithm. For each partial path ending in a node v, in addition to the
length of the path, we store the number of bends and the direction of entry when
entering v. In the following, we refer to routed edges as paths. Each such path
can be found in O(M logM) time.

The edge routing algorithm of Wybrow et al. does not take crossings into ac-
count. Therefore, as a post-processing, we apply an additional crossing reduction
step. Whenever two paths cross each other more than once, we replace the sec-
tion between the first and last shared vertex in one path with the corresponding
section of the other. This ensures that, eventually, every pair of edges crosses at
most once.

a b c a b c

(a) Edge paths ordered with the algorithm by Pupyrev et al. [13].

b c

a

b c

a
3

(b) Edge paths ordered with our modified version of the algorithm.

Fig. 3: Path ordering: The algorithm of Pupyrev et al. assigns each segment an ar-
bitrary direction. This can result in additional bends in the geometric realization (to
the right). For orthogonal routing, we therefore preassign directions for horizontal and
vertical segments.

Path Ordering. We now know, for each edge of the routing graph H, the set of
edge paths routed over this segment. Where several edge paths (forming an edge
bundle) share a segment, we determine a path order that minimizes crossings.

For non-orthogonal routing graphs, Pupyrev et al. [13] observed that the
problem of determining such a path order is computationally equivalent to the
metro-line crossing minimization (MLCM) problem: Let G̃ be a plane graph
(such as the routing graph), and let P be a set of simple paths in G̃. For each
edge e in E(G̃), find an order of all paths that contain e that minimizes the
number of crossings among all pairs of paths.

We use the algorithm of Pupyrev et al. [13] for our case where all edges are
incident to unique ports (which makes MLCM efficiently solvable). When sorting
paths in an edge bundle, for each pair of paths, they consider the directions the
paths take after leaving their common subpath at a fork vertex. In Fig. 3a, for
example, the leftmost vertex is a fork vertex for paths a and b. With a leaving
to the top, it will be ordered above of b. For each segment (i.e., edge in H)
such an ordering of paths has to be found. They fix an arbitrary direction that
determines where to look for either a fork vertex or a segment that has already
been processed (see the gray arrowheads in Fig. 3). Crossings are unavoidable
if the path orders at the start and end of the common subpath differ. Pupyrev
et al. process the segments in arbitrary order. Still, they introduce at most one
crossing for each pair of paths in an edge bundle and only if such a crossing is
unavoidable. For example, paths a and b in Fig. 3a have an unavoidable crossing.

In our orthogonal setting, if two paths change order between two adjacent
edges of H (see the red lightning in Fig. 3a (left)), then we have to introduce
two additional bends in a Z-shaped fashion in their geometric realization (see
Fig. 3a (right)). In order to avoid such situations, we preassign directions for all
segments based on their orientation (left for horizontal segments and down for

a b

c

a b

c

d

d

Á

À

Â

(a) edge order indicated by colored boxes

a b

c

a b

c

d

d

Á

Â

À

(b) defining the constraint graph

Fig. 4: Edge nudging: Given an edge order on the vertical edge segments, we define
horizontal separation constraints between vertical segments, left and right borders of
vertex boxes, and two dummy segments (black bars). In (b) segments are partially
nudged for readability.

vertical ones; see Fig. 3b). Crossings now happen only where the orientation of
segments changes (i.e., at bend points of paths). Such crossings can be realized
without additional edge bends; see the crossing at the green checkmark in Fig. 3b.
Therefore, before the next step, we join consecutive collinear segments of the
same path. Then, in any path, the orientation of the segments alternates.

Applied to the graph H, our modification of the algorithm of Pupyrev et al.
runs in O(Mk logm) time, where k is the total number of segments in all paths.

Edge Nudging. In the last step of our pipeline, we aim to balance the distances
between the path segments within their channels. Our algorithm has two modes
called constrained nudging, when vertex and port positions must not be altered,
and full nudging, when a minimum distance between path segments and vertex
boxes must be met, but boxes can be moved and, if necessary, enlarged. Both
modes use basic linear programming (LP) to optimize segment distances. They
process horizontal and vertical distances independently.

We now describe the horizontal pass. The vertical pass works symmetrically.
First, we determine the horizontal order χ of all vertical path segments, the left
and right borders of all vertex boxes, and the two vertical sides of a (slightly
enlarged) bounding box of our instance (see the black bars in Fig. 4b). The
order of the objects in χ is determined by their x-coordinate. The two dummy
segments are the first and last elements of χ. It remains to define the order of
objects with identical x-coordinate. We assume non-intersecting, non-touching
vertex boxes. Where path segments overlap, the path order determined in the
previous section applies; see the colored boxes in Fig. 4a. Right (left) borders
of vertex boxes are inserted into χ before (after) any path segment with the
same x-coordinate. The order of non-overlapping path segments with the same
x-coordinate is arbitrary.

a b

c

a b

c

d

d

Á

Â

À

(a) without transitive constraints

a b

c

a b

c

d

d

Á

Â

À

(b) components of the constraint graph

Fig. 5: Common steps of edge nudging: (a) After removing transitive arcs, pink arcs
remain between unmovable objects. Brown arcs get distance variables. (b) The con-
straint graph is split at barriers (black bars). All constraints from arcs in the same
component share their distance variables.

Given χ, we define the constraint graph Gχ, the directed acyclic graph that
has a vertex for each object as defined above, and an arc from object u to
object v if the vertical dimensions of these objects overlap, u comes before v
in χ, and there is no other vertically overlapping object in between. If this is the
case, u will be drawn to the left of v. Edges of this constraint graph will yield
separation constraints of the form ux + δ ≤ vx in the LP, where ux and vx are
the x-coordinates of u and v, respectively, and δ is either a non-negative variable
or the user-defined minimum distance δmin between them.

Let N = 4n+m+b be the number of sides of the vertex boxes plus the number
of edge segments (i.e., the number of edges plus the number of bends). Then
the constraint graph can be constructed in O(N logN) time, using a sweepline
algorithm of Dwyer et al. [5]. They showed that the number of edges in the
constraint graph is linear in N and that the separation constraints derived from
the edges of Gχ guarantee a horizontally overlap-free drawing. Next, we decide
which constraints share the same distance variables of type δ, which we will then
maximize. Wider channels with few segments allow for larger gaps than small
crowded channels. To obtain a balanced solution, we need to avoid situations
where two distance variables work against each other.

To identify preferably small sets of constraints that share the same distance
variable, we apply the following operations to the constraint graph. We remove
all transitive arcs, i.e., arcs uw where also arcs uv and vw exist in the graph.
Constraints from these arcs are redundant. We remove all arcs between objects
that do not move in constrained nudging mode, that is, the sides of vertex boxes
and edge segments incident to ports; see the purple arrows in Fig. 5a. Then,
the graph is split into components (the green areas in Fig. 5b) that are confined
by unmovable objects or by dummy segments (the big black bars in Fig. 5b).
All constraints derived from arcs of the same component get the same distance
variable.

a b

c

a b

c

d

d

δ1δ1
δ2

δ2
δ2

Á

Â

À

(a) constrained nudging

a b

c

a b

c

d

d

δmin

Á

Â

À

(b) full nudging with distance δmin

Fig. 6: Results of a horizontal nudging phase: (a) optimization nudges objects apart,
(b) in full nudging mode, objects must maintain a given minimum distance δmin. Note
that vertex ➂ has been slightly enlarged to make room for the ports of edges a and b.

In constrained nudging mode, for each movable or dummy segment, we re-
place its position by a position variable in all related constraints. Finally, our LP
minimizes

|W |(ω − α)−
∑
δ∈W

δ,

where α and ω are the position variables of the left and right dummy segments,
respectively, and W is the set of distance variables. The factor |W | is required
to prevent the constraints involving distance variables from pushing the dummy
segments towards infinity. The result is shown in Fig. 6a. Objects are separated
with space between them equivalent to at least the values of the respective
distance variables.

In full nudging mode we allow both, the port segments and the borders of
the vertex boxes, to be moved by the nudging procedure in order to maintain
a minimum object distance δmin and to control the total edge length. We allow
vertex boxes to grow, if necessary, but not to shrink. Therefore, we use position
variables for all sides of vertex boxes and edge segments instead of fixed positions.

In addition to the constraints from the constrained mode (brown arrows in
Fig. 5b), we introduce, for each vertex box b of original width wb (as specified
in the input) a separation constraint bR − bL ≥ wb where bL and bR are the
position variables of the left and right sides of b, respectively. For all arcs that
have not been transitively removed (see brown and pink arrows in Fig. 5a), we
add separation constraints with a constant distance of δmin.

In order to establish a hierarchy in optimization, we weight our objective by
adding constant factors. Let W be the set of distance variables, let SH be the
set of horizontal segments, and let B the set of vertex boxes. We use the term
bR− bL for the width of box b ∈ B and sR−sL for the length of segment s ∈ SH.
Now we have our LP minimize the sum of the widths of the vertex boxes and

the lengths of the segments minus the sum of the distance variables, that is,

2(|W |+ |SH|)

(
ω +

∑
b∈B

(bR − bL)

)
+ 2

∑
s∈SH

(sR − sL) −
∑
δ∈W

δ.

Fig. 6b shows the result for the example depicted in Fig. 4a. Multiple phases
of nudging can be repeatedly applied to optimize compactness and edge lengths.
To get rid of unnecessary bends, we simply set the separation distance of con-
straints between segments of the same path to zero.

3 Experiments

We considered three variants (described below) of our pipeline, and compared
them to the state-of-the-art orthogonal layout libraries Praline and Hola.

Benchmark Sets. Our pipeline has been implemented as part of a third-party-
funded project with two industrial partners that suggested two benchmark sets
from their respective domains. The first benchmark set is called Internet Topol-
ogy Zoo4 [9]. The data set includes textual vertex labels of varying length.

The second dataset is called Pseudo-cableplans. The graphs have been part of
a benchmark set for orthogonal graph drawing by Zink et al.5 [21]. We removed
some domain-specific peculiarities such as special vertex pairing and port group-
ing constraints, and we replaced each hyperedge e by a new dummy vertex ve
that we connected to every vertex in e. The labels in this dataset are fixed-length
or empty (the dummy vertices).

In both benchmark sets, we kept only the largest connected component of
each graph. Although preliminary tests showed some good results, Hola of-
ficially does not support multigraphs. Therefore, we removed all but the first
occurrence of each multi-edge and all self-loops. Furthermore, we removed all
graphs where Hola crashed or took more than 10 minutes. Note that our
pipeline correctly draws every connected instance in the original datasets, in-
cluding multi-edges and self-loops.

So for our experiments we used 260 simple graphs derived from the original
261 multigraphs of the Internet Topology Zoo and 1,026 graphs derived from the
original 1,139 Pseudo-cableplans. Figure 7 shows the edge density distribution
of the graphs in the two benchmark sets. We set the default dimensions of the
vertex boxes to 12× 38 (pixels) and widened them if necessary to accommodate
the label text and to fit all incident edges (with gaps of 18 pixels).

Pipeline Variants. We set up three variants of our pipeline. In the first variant,
Force, we use a simple force-directed layout algorithm [6] to place the vertices

4 see http://www.topology-zoo.org/index.html
5 see https://github.com/j-zink-wuerzburg/pseudo-praline-plan-generation

http://www.topology-zoo.org/index.html
https://github.com/j-zink-wuerzburg/pseudo-praline-plan-generation

0 100 200

0

200

400

number of vertices

nu
m

be
r

of
ed

ge
s

(a) Internet Topology Zoo

0 100 200

0

200

400

number of vertices

(b) Pseudo-cableplans

Fig. 7: Number of vertices and edges for each graph in the two datasets. Semi-
transparent markers represent the original multigraphs.

as points (ignoring their boxes). Then, we apply the GTree Algorithm by Nach-
manson et al. [11] to remove overlaps. In the second variant, Hybrid1, we use
vertex positions computed by Praline [21]. These variants both go through the
steps port distribution, routing graph construction, edge routing, edge order-
ing, and full edge nudging as described in the previous sections. Full nudging
is applied horizontally, then vertically, and then once more horizontally. As a
third variant Hybrid2, we initialize our pipeline with both the vertex positions
and the edge routing computed by Praline and apply only the nudging step as
a post-processing. All pipeline steps are implemented in Scala and dynamically
configurable for various setups. We use the GLOP6optimizer for LP-solving.

Metrics. To assess the quality of graph drawings many metrics have been pro-
posed. In our experiments we use edge crossings, edge bends, total edge length,
variance in edge length, area, aspect ratio, and minimum object distance (δmin).
These will be discussed below.

It has been shown (e.g., in a study by Purchase [14]) that drawings with fewer
edge crossings and bends simplify several tasks related to graph understanding
and navigation. A study by Dwyer et al. [4] suggests that users benefit from graph
drawings with low variance in edge length. When drawing graphs with more than
30 vertices, scaling becomes an issue as text labels tend to become unreadably
small and overly long edges become hard to follow. Therefore, we include metrics
assessing the compactness of drawings in our comparisons, namely total edge
length and the area of the bounding box. For a drawing with a bounding box
of width w and height h, we define aspect ratio as max(w, h)/min(w, h). This
yields a value in the range [1,∞). We consider lower aspect ratios better and
squares (with aspect ratio 1) optimal. In order to ensure a fair comparison with
metrics sensitive to scaling, we also include the minimum object distance δmin.

6 see https://developers.google.com/optimization

https://developers.google.com/optimization

We configure a minimum value (or target value, if no minimum is supported) of
12pixels and report deviations.

Comparison. We compared our pipeline to the following two libraries. Pra-
line [21] is based on the well-known Sugiyama framework [18] for layered graph
drawing. Praline differs from the original framework especially in terms of
edge routing and port placement. Layering-based algorithms tend to produce
few crossings and balanced results. Hola [8] is a multi-stage algorithm that
decomposes the input into trees and a connected core that is drawn using stress-
minimization and overlap removal. The trees are drawn using a specialized layout
algorithm, and the tree drawings are then inserted into the drawing of the whole
graph. For our comparison, we used the default settings regarding vertex dis-
tances and ideal edge length in Hola. We conducted small-scale experiments
that confirm that the defaults yield a good compromise between compactness
and readability (i.e., sufficiently large δmin).

Results. See Table 1 and Fig. 8 for the results of our experiments. Concerning
the number of crossings, we see a weakness of the simplistic approach of our
pipeline. On average, Force produced over twice as many crossings as the best
results on the Pseudo-cableplans and nearly five times as many on the Internet
Topology Zoo graphs. Hybrid1, combining Praline vertex positions and our
pipeline, on the other hand, produced only 41% more crossings on the Pseudo-
cableplans and 54% more crossings on the Internet Topology Zoo graphs com-
pared to the best results. Hybrid2 per construction produces the same number
of crossings as Praline. Bad vertex placement also hurts down the pipeline.
As we can see, the Hybrid variants are almost consistently better than Force
with two exceptions: edge length variance and aspect ratio. However, in terms
of aspect ratio, the only outlier is Hola, performing nearly 30 % worse than the
others on the Internet Topology Zoo.

Hola shows an impressive performance in terms of crossings and creates
by far the fewest bends. But this comes at a cost of a very large drawing area
and overly long edges. Hola considers δmin an optimization goal, not a strict re-
quirement. In the majority of cases the target value of 12 px could be maintained.
Praline, however, surprised us, too. Not maintaining δmin was confirmed to us
being a bug in the current Praline implementation by the authors.

Overall, the Hybrid variants of our pipeline show good and very consistent
results with Hybrid2, surpassing Praline in all quality metrics. It produces
leading results with respect to area, total edge length, and edge length variance
while reliably maintaining the given minimum object distance.

Running Time. We evaluated the running times of our pipeline using 300
random multigraphs with 5 to 150 vertices and average vertex degree 4. To
ensure that every graph is connected, we first created a tree with all vertices and
then added the remaining edges at random. Our experiments ran on an Intel®

Table 1: Experimental results on two datasets. The mean µ is relative to Praline
(abbreviated Pral); β measures the percentage of cases where an algorithm achieved
the best result. Sums over 100% are possible due to ties.

(a) The Internet Topology Zoo benchmark set.

Force Hybrid1 Hybrid2 Hola Pral.
µ β µ β µ β µ β µ β

crossings 3.90 27 1.30 54 1.00 70 .85 77 1 70
edge bends .92 4 .76 6 .49 51 .50 47 1 2
edge length variance .47 39 .39 21 .37 38 11.43 3 1 1
total edge length .73 20 .61 6 .49 73 1.83 0 1 2
bounding box area .68 30 .56 32 .56 38 3.94 0 1 0
aspect ratio .93 35 1.03 14 1.07 11 1.35 22 1 18
δmin 1.11 88 1.10 87 1.10 87 1.01 45 1 69

(b) The Pseudo-cableplans benchmark set.

Force Hybrid1 Hybrid2 Hola Pral.
µ β µ β µ β µ β µ β

crossings 1.58 9 1.03 19 1.00 25 .73 89 1 25
edge bends .96 1 .76 2 .66 12 .30 88 1 1
edge length variance .34 52 .35 31 .40 19 1.79 0 1 0
total edge length .59 29 .52 29 .54 43 1.20 0 1 0
bounding box area .55 25 .50 24 .50 51 2.21 0 1 0
aspect ratio .99 37 .97 12 .96 17 .97 24 1 10
δmin 1.42 93 1.42 93 1.42 93 1.24 60 1 33

Core™ i7-8565U. We measured runtimes using Java’s nanoTime function (for our
pipeline and Praline) and the GNU time command (for Hola).

See Fig. 9 for different steps of our pipeline. Steps that consistently require
less than 10ms to complete are omitted. The overall runtime is clearly dominated
by edge routing and crossing reduction (that is, finding pairs of edges that cross
more than once and then joining their common subpaths), followed by force-
directed vertex layout. The time spent on nudging, edge ordering, and on creating
the routing graph was insignificant.

The time for drawing the graphs from the two benchmark sets is shown in
Fig. 10. The Hybrid setups are omitted. In Hybrid1 just like with Force the
edge routing dominates the runtime, in Hybrid2 the runtime is dominated by
performing the Praline layout. Note that Praline by default does ten repeti-
tions with different initial vertex positions of which it keeps the best. Depicted
is the sum of all repetitions. For Praline and Force only the bare layouting
time was measured whereas for Hola, for technical reasons, the measurements
include file handling. However, this increases the runtime by less than 50ms.

0 100 200
10−2

10−1

100

101

number of vertices

nu
m

be
r

of
ed

ge
be

nd
s

(a) Edge bends: Internet Topology Zoo

0 100 200
10−2

10−1

100

101

number of vertices

(b) Edge bends: Pseudo-cableplans

0 100 200
10−1

100

101

number of vertices

bo
un

di
ng

bo
x

ar
ea

(c) Area: Internet Topology Zoo

0 100 200
10−1

100

101

number of vertices

(d) Area: Pseudo-cableplans

Fig. 8: Selected metrics of Hola , and Hybrid2 relative to Praline.

4 Conclusions

Our experiments show that Hybrid1 is a good allrounder. The edge nudging
step performs particularly well and leads to compact drawings. On the other
hand, due to our current rather simple edge routing, the drawings tend to have
more bends and crossings than those of its competitors. When combined with a
more sophisticated layouting (the Hybrid2 setup), we can significantly improve
compactness (almost half the bounding box area) and number of edge bends
with the same number of crossings as Praline.

Nonetheless, we intend to improve edge routing, especially in terms of cross-
ings. To this end, Wybrow et al. [20] suggested to take into account edges that
have already been routed. Also it may help to reorder the ports around the
boundary of the vertex boxes. To reduce the number of bends, we want to add
a postprocessing that straightens Z-shaped edges whose middle piece is short.
Currently, such unnecessary double bends tend to occur quite frequently; see
Fig. 11b.

20 40 60 80 100 120 140
0

2

4

6

number of vertices

ru
nn

in
g

ti
m

e
[s

] edge nudging
edge ordering
crossing reduction
edge routing
force-directed

Fig. 9: Running times of the Force pipeline on random multigraphs with an average
vertex degree of 4. Stages with less than 10ms average running time are omitted.

0 100 200

0

2

4

number of vertices

ru
nn

in
g

ti
m

e
[s

]

(a) Internet Topology Zoo

0 100 200

0

2

4

number of vertices

(b) Pseudo-cableplans

Fig. 10: Running times of Force , Hola , and Praline for our benchmark sets.

Acknowledgments. We thank Steve Kieffer, Micheal Wybrow, and Tobias
Czauderna who helped us with Hola in our experiments, Johannes Zink who
helped us with Praline, and our very supportive reviewers. This work was
supported by BMBF grant 01IS22012C.

References

1. T. C. Biedl, B. Madden, and I. G. Tollis. The three-phase method: A unified
approach to orthogonal graph drawing. Int. J. Comput. Geom. Appl., 10(6):553–
580, 2000. doi:10.1142/S0218195900000310.

2. C. Binucci, W. Didimo, G. Liotta, and M. Nonato. Orthogonal drawings of graphs
with vertex and edge labels. Comput. Geom. Theory Appl., 32(2):71–114, 2005.
doi:10.1016/j.comgeo.2005.02.001.

3. T. Dwyer, Y. Koren, and K. Marriott. IPSep-CoLa: An incremental procedure for
separation constraint layout of graphs. IEEE Trans. Visual. Comput. Graphics,
12(5):821–828, 2006. doi:10.1109/TVCG.2006.156.

https://doi.org/10.1142/S0218195900000310
https://doi.org/10.1016/j.comgeo.2005.02.001
https://doi.org/10.1109/TVCG.2006.156

Corte

Nantes

Poiters

Strasbourg

Nancy

Reims

Compiegne

Lille

Rouen

Caen

Martinique, Guadeloupe, Cayenne

Rennes

SFINX

Geant2

None

La Reunion, Nouvelle Caledonie, Mayotte, Tahiti

Cadarache

Marseille

Nice

Grenoble

Internet mondial

Bordeaux

Pau

Orleans

Limoges

Clermont-Ferrand

Dijon

Toulouse

Montpellier

Besancon

CERN

Lyon
Paris

(a) Hybrid1: 2, 38, 12, 67%

Corte

Nantes

Poiters

Strasbourg

Nancy
Reims

Compiegne

Lille

Rouen

Caen

Martinique, Guadeloupe, Cayenne

Rennes

SFINX

Geant2 None

La Reunion, Nouvelle Caledonie, Mayotte, Tahiti

Cadarache

Marseille

Nice

Grenoble

Internet mondial

Bordeaux

Pau

Orleans

Limoges

Clermont-Ferrand

Dijon

Toulouse

Montpellier

Besancon

CERN

Lyon

Paris

(b) Force: 6, 42, 12, 66%

Corte

Nantes

Poiters

Strasbourg

Nancy

Reims

Compiegne

Lille

Rouen

Caen

Martinique, Guadeloupe, Cayenne

Rennes

SFINX

Geant2
None

La Reunion, Nouvelle Caledonie, Mayotte, Tahiti

Cadarache

Marseille

Nice

Grenoble

Internet mondial

Bordeaux

Pau

Orleans

Limoges

Clermont-Ferrand

Dijon

Toulouse

Montpellier

Besancon

CERN

Lyon

Paris

(c) Hybrid2: 2, 20, 12, 72%

Corte

Nantes

Poiters

Strasbourg

Nancy

Reims

Compiegne

Lille

Rouen

Caen

Martinique, Guadeloupe, Cayenne

Rennes

SFINX

Geant2None

La Reunion, Nouvelle Caledonie, Mayotte, Tahiti

Cadarache

Marseille

Nice

Grenoble

Internet mondial

Bordeaux

Pau

Orleans

Limoges

Clermont-Ferrand

Dijon

Toulouse

Montpellier

Besancon

CERN

Lyon

Paris

(d) Praline: 2, 62, 12, 100%

Corte

Nantes Poiters

StrasbourgNancy

Reims

Compiegne Lille

RouenCaen

Martinique, Guadeloupe, Cayenne

Rennes

SFINX

Geant2

None

La Reunion, Nouvelle Caledonie, Mayotte, Tahiti

Cadarache

Marseille

NiceGrenoble

Internet mondial

Bordeaux

Pau

Orleans

Limoges

Clermont-Ferrand

Dijon

Toulouse

Montpellier

Besancon CERN

Lyon

Paris

(e) Hola: 4, 27, 9, 195%

Fig. 11: An example from the Internet Topology Zoo drawn by the five layout algo-
rithms. The figures are scaled proportionally. The numbers refer to: crossings, bends,
δmin (in pixels), and area (in percent w.r.t. Praline).

4. T. Dwyer, B. Lee, D. Fisher, K. I. Quinn, P. Isenberg, G. Robertson, and C. North.
A comparison of user-generated and automatic graph layouts. IEEE Trans. Visual.
Comput. Graphics, 15(6):961–968, 2009. doi:10.1109/TVCG.2009.109.

5. T. Dwyer, K. Marriott, and P. J. Stuckey. Fast node overlap removal. In Graph
Drawing, volume 3843 of LNCS, pages 153–164. Springer, 2006. doi:10.1007/
11618058_15.

6. T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed
placement. Softw. Pract. & Exper., 21(11):1129–1164, 1991. doi:10.1002/spe.
4380211102.

7. P. Groeneveld. Wire ordering for detailed routing. IEEE Design & Test Comput.,
6(6):6–17, 1989. doi:10.1109/54.41670.

8. S. Kieffer, T. Dwyer, K. Marriott, and M. Wybrow. HOLA: Human-like orthogonal
network layout. IEEE Trans. Visual. Comput. Graphics, 22(1):349–358, 2016. doi:
10.1109/TVCG.2015.2467451.

9. S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The internet
topology zoo. IEEE J. Selected Areas Comm., 29(9):1765–1775, 2011. doi:10.
1109/JSAC.2011.111002.

10. T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout.
Vieweg+Teubner, 1990. doi:10.1007/978-3-322-92106-2.

11. L. Nachmanson, A. Nocaj, S. Bereg, L. Zhang, and A. Holroyd. Node overlap
removal by growing a tree. J. Graph Alg. Appl., 21(5):857–872, 2017. doi:10.
7155/jgaa.00442.

12. M. Nöllenburg. An improved algorithm for the metro-line crossing minimization
problem. In Graph Drawing, volume 5849 of LNCS, pages 381–392. Springer, 2010.
doi:10.1007/978-3-642-11805-0_36.

13. S. Pupyrev, L. Nachmanson, S. Bereg, and A. E. Holroyd. Edge routing with
ordered bundles. Comput. Geom. Theory Appl., 52:18–33, 2016. doi:10.1016/j.
comgeo.2015.10.005.

14. H. Purchase. Effective information visualisation: a study of graph drawing aes-
thetics and algorithms. Interacting with Computers, 13(2):147–162, 2000. doi:
10.1016/S0953-5438(00)00032-1.

15. Real-Time and Embedded Systems group. Kiel Integrated Environment for Lay-
out Eclipse Rich Client (KIELER), 2020. URL: https://rtsys.informatik.
uni-kiel.de/confluence/display/KIELER/Overview.

16. U. Rüegg, S. Kieffer, T. Dwyer, K. Marriott, and M. Wybrow. Stress-minimizing
orthogonal layout of data flow diagrams with ports. In Graph Drawing, volume 8871
of LNCS, pages 319–330. Springer, 2014. doi:10.1007/978-3-662-45803-7_27.

17. C. D. Schulze, M. Spönemann, and R. von Hanxleden. Drawing layered graphs
with port constraints. J. Vis. Lang. Comput., 25(2):89–106, 2014. doi:10.1016/
j.jvlc.2013.11.005.

18. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of
hierarchical system structures. IEEE Trans. Syst. Man Cybern., 11(2):109–125,
1981. doi:10.1109/TSMC.1981.4308636.

19. R. Tamassia. On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput., 16(3):421–444, 1987. doi:10.1137/0216030.

20. M. Wybrow, K. Marriott, and P. J. Stuckey. Orthogonal connector routing. In
Graph Drawing, volume 5849 of LNCS, pages 219–231. Springer, 2010. doi:10.
1007/978-3-642-11805-0_22.

21. J. Zink, J. Walter, J. Baumeister, and A. Wolff. Layered drawing of undirected
graphs with generalized port constraints. Comput. Geom. Theory Appl., 105–
106(101886):1–29, 2022. doi:10.1016/j.comgeo.2022.101886.

https://doi.org/10.1109/TVCG.2009.109
https://doi.org/10.1007/11618058_15
https://doi.org/10.1007/11618058_15
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1109/54.41670
https://doi.org/10.1109/TVCG.2015.2467451
https://doi.org/10.1109/TVCG.2015.2467451
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1007/978-3-322-92106-2
https://doi.org/10.7155/jgaa.00442
https://doi.org/10.7155/jgaa.00442
https://doi.org/10.1007/978-3-642-11805-0_36
https://doi.org/10.1016/j.comgeo.2015.10.005
https://doi.org/10.1016/j.comgeo.2015.10.005
https://doi.org/10.1016/S0953-5438(00)00032-1
https://doi.org/10.1016/S0953-5438(00)00032-1
https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Overview
https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Overview
https://doi.org/10.1007/978-3-662-45803-7_27
https://doi.org/10.1016/j.jvlc.2013.11.005
https://doi.org/10.1016/j.jvlc.2013.11.005
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1137/0216030
https://doi.org/10.1007/978-3-642-11805-0_22
https://doi.org/10.1007/978-3-642-11805-0_22
https://doi.org/10.1016/j.comgeo.2022.101886

	A Simple Pipeline for Orthogonal Graph Drawing
	Introduction
	Our Contribution.

	Our Pipeline
	Port Assignment.
	Routing Graph Construction.
	Edge Routing.
	Path Ordering.
	Edge Nudging.

	Experiments
	Benchmark Sets.
	Pipeline Variants.
	Metrics.
	Comparison.
	Results.
	Running Time.

	Conclusions
	Acknowledgments.

