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Abstract. In a right-angle crossing (RAC) drawing of a graph, each edge
is represented as a polyline and edge crossings must occur at an angle
of exactly 90◦, where the number of bends on such polylines is typically
restricted in some way. While structural and topological properties of
RAC drawings have been the focus of extensive research, little was known
about the boundaries of tractability for computing such drawings. In
this paper, we initiate the study of RAC drawings from the viewpoint of
parameterized complexity. In particular, we establish that computing a
RAC drawing of an input graph G with at most b bends (or determining
that none exists) is fixed-parameter tractable parameterized by either
the feedback edge number of G, or b plus the vertex cover number of G.

Keywords: RAC drawings · fixed-parameter tractability · vertex cover
number · feedback edge number

1 Introduction

Today we have access to a wealth of approaches and tools that can be used
to draw planar graphs, including, e.g., Fáry’s Theorem [29] which guarantees
the existence of a planar straight-line drawing for every planar graph and the
classical algorithm of Fraysseix, Pach and Pollack [28] that allows us to obtain
straight-line planar drawings on an integer grid of quadratic size. However, much
less is known about the kinds of drawings that can be achieved for non-planar
graphs. The study of combinatorial and algorithmic aspects of such drawings lies
at the heart of a research direction informally referred to as “beyond planarity”
(see, e.g., the relevant survey and book chapter [21,18]).

An obvious goal when attempting to visualize non-planar graphs would be to
obtain a drawing which minimizes the total number of crossings. This question
is widely studied within the context of the crossing number of graphs, and while
obtaining such a drawing is NP-hard [33] it is known to be fixed-parameter
tractable when parameterized by the total number of crossings required thanks
to a seminal result of Grohe [34]. However, research over the past twenty years
has shown that drawings which minimize the total number of crossings are not
necessarily optimal in terms of human readability. Indeed, the topological and
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geometric properties of such drawings may have a significantly larger impact
than the total number of crossings, as was observed, e.g., by the initial informal
experiment of Mutzel [41] and the pioneering set of user experiments carried out
by the graph drawing research lab at the University of Sydney [36,38,37]. The
latter works demonstrated that “large-angle drawings” (where edge crossings
have larger angles) are significantly easier to read than drawings where crossings
occur at acute angles.

Motivated by these findings, in 2011 Didimo, Eades, and Liotta investigated
graph drawings where edge crossings are only permitted at 90◦ angles [20] (see
Figure 1 for an illustration). Today, these right-angle crossing (or RAC ) drawings
are among the best known and most widely studied beyond-planar drawing
styles [21,18], with the bulk of the research to date focusing on understanding
necessary and sufficient conditions for the existence of such drawings as well as
the space they require [3,4,16,17,8,1,2,27]. A prominent theme in the context of
RAC drawings concerns the number of times edges are allowed to be bent: it has
been shown that every graph admits a RAC drawing if each edge can be bent 3
times [20], and past works have considered straight-line RAC drawings as well as
RAC drawings where the number of bends per edge is limited to 1 or 2.

(a) RAC drawing of K5 (b) RAC drawing of K3,3

Fig. 1: Examples of RAC drawings.

And yet, in spite of the considerable body of work concentrating on combi-
natorial and topological properties of such drawings, so far almost nothing is
known about the complexity of computing a RAC drawing of a given graph.
Indeed, while the problem of determining whether a graph admits a straight-line
RAC drawing is NP-hard [4] and was recently shown to be ∃R-complete [44],
there is a surprising lack of known algorithms that can compute such drawings
for special classes of graphs or, more generally, parameterized algorithms that
exploit quantifiable properties of the input graph to guarantee the tractabil-
ity of computing RAC drawings (either without or with limited bends). This
gap in our understanding starkly contrasts the situation for so-called 1-planar
drawings—another prominent beyond-planar drawing style for which a number
of fixed-parameter algorithms are known [6,25,24]—as well as recent advances
mapping the boundaries of tractability for other graph drawing problems [35,9,10].
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Contribution. We initiate an investigation of the parameterized complexity of
determining whether a graph G admits a RAC drawing. Given the well-motivated
focus of previous works on limiting the amount of bends in such drawings, an
obvious first choice for a parameterization would be to consider an upper bound
b on the total number of bends permitted in the drawing. However, on its own
such a parameter cannot suffice to achieve fixed-parameter tractability in view of
the NP-hardness of the problem for b = 0, i.e., for straight-line RAC drawings.

Hence, we turn towards identifying structural parameters of G that guarantee
fixed-parameter RAC drawing algorithms. While established decompositional
parameters such as treewidth [43] and clique-width [14] represent natural choices
of parameterizations for purely combinatorial problems, the applicability of these
parameters in solving graph drawing problems is complicated by the inherent
difficulty of performing dynamic programming when the task is to obtain a
drawing of the graph. This is why the parameters often used in this setting are
non-decompositional, with the most notable examples being the vertex cover
number vcn (i.e., the size of a minimum vertex cover) and the feedback edge
number fen (i.e., the edge deletion distance to acyclicity); further details are
available in the overview of related work below. As our main contributions, we
provide two novel parameterized algorithms:

1. a fixed-parameter algorithm for determining whether G admits a RAC draw-
ing with at most b bends when parameterized by fen(G);

2. a fixed-parameter algorithm for determining whether G admits a RAC draw-
ing with at most b bends when parameterized by vcn(G) + b;

Both of the presented algorithms are constructive, meaning that they can also
output a RAC drawing of the graph if one exists. The core underlying technique
used in both proofs is that of kernelization, which relies on defining reduction
rules that can provably reduce the size of the instance until it is upper-bounded
by a function of the parameter alone. While kernelization is a well-established
and generic technique, its use here requires non-trivial insights into the structural
properties of optimal solutions in order to carefully identify parts of the graph
which can be simplified without impacting the final outcome.

We prove that both algorithms in fact hold for the more general case where
each edge is marked with an upper bound on the number of bends it can support,
allowing us to capture the previously studied 1- and 2-bend RAC drawings.
Moreover, we show that the latter algorithm can be lifted to establish fixed-
parameter tractability when parameterized by b plus the neighborhood diversity
(i.e., the number of maximal modules) of G [40,30,39]. In the concluding remarks,
we also discuss possible extensions towards more general parameterizations and
apparent obstacles on the way to such results.

Related Work. Didimo, Eades and Liotta initiated the study of RAC drawings
by analyzing the interplay between the number of bends per edge and the
total number of edges [20]. Follow-up works also considered extensions and
variants of the initial concept, such as upward RAC drawings [3], 2-layer RAC
drawings [16,17] and 1-planar RAC drawings [8]. More recent works investigated
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the existence of RAC drawings for bounded-degree graphs [2], and RAC drawings
with at most one bend per edge [1]. It is known that every graph admits a RAC
drawing with at most three bends per edge [20], and that determining whether a
graph admits a RAC drawing with zero bends per edge is NP-hard [4].

The vertex cover number has been used as a structural graph parameter to
tackle a range of difficult problems in graph drawing as well as other areas. Fixed-
parameter algorithms for drawing problems based on the vertex cover number
are known for, e.g., computing the obstacle number of a graph [5], computing
the stack and queue numbers of graphs [9,10], computing the crossing number
of a graph [35] and 1-planarity testing [6]. Similarly, the feedback edge number
(sometimes called the cyclomatic number) has been used to tackle problems which
are not known to be tractable w.r.t. treewidth, including 1-planarity testing [6]
and the Edge Disjoint Paths problem [32] (see also Table 1 in [31]).

These two parameterizations are incomparable: there are problems which
remain NP-hard on graphs of constant vertex cover number while being FPT
when parameterized by the feedback edge number (such as Edge Disjoint
Paths [26,32]), and vice-versa. That being said, the existence of a fixed-parameter
algorithm parameterized by the feedback edge number is open for a number of
graph drawing problems that are known to be FPT w.r.t. the vertex cover num-
ber; examples include computing the aforementioned stack, queue and obstacle
numbers.

2 Preliminaries

We assume familiarity with standard concepts in graph theory [22]. All graphs
considered in this manuscript are assumed to be simple and undirected.

RAC Drawings. Given a graph G = (V,E) on n vertices with m edges, a
drawing of G is a mapping δ that takes vertices V to points in the Euclidean
plane R2, and assigns to every edge e = uv ∈ E the image of a simple plane
curve [0, 1]→ R2 connecting the points δ(u), δ(v) corresponding to u and v. We
require that δ is injective on V , and furthermore that for all vertices v and edges
e not incident to v, the point δ(v) is not contained in int(δ(e)), where int(δ(e))
is the image of (0, 1) under δ.

A polyline drawing of G is a drawing such that for each edge e ∈ E, δ(e)
can be written as a union δ(e) = λe

1 ∪ · · · ∪ λe
t of closed straight-line segments

λe
1, . . . , λ

e
t such that:

– for each 1 ≤ i ≤ t− 1, the segments λe
i and λe

i+1 intersect in precisely one of
their shared end-points and moreover close an angle different than 180◦, and

– every other pair of segments is disjoint.

The shared intersection points between consecutive segments are called the
bends of e in the drawing δ.

For two edges e and f , their set of crossings in the drawing δ is the set
int(δ(e)) ∩ int(δ(f)). We will assume without loss of generality that any drawing
δ of G has a finite number of crossings.
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The central type of drawing studied in this paper are those that allow only
right-angle crossings between edge drawings (so-called RAC drawings): We say
that the edges e, f ∈ E have a right-angle crossing in a polyline drawing δ of G
if the crossing lies in the relative interiors of the respective line segments defining
δ(e) and δ(f), and most crucially, the intersecting line segments of δ(e) and
δ(f) are orthogonal to each other (i.e., they meet at a right angle). Let δ be a
polyline-drawing of a graph, β : E 7→ {0, 1, 2, 3} a mapping, and b ∈ N a number.
If every crossing of δ is a right-angle crossing, the number of bends counted over
all edges is at most b, and every edge itself has at most β(e) bends, δ is called a
b-bend β-restricted RAC drawing of G. We note that

– 0-bend RAC drawings are straight-line RAC drawings (for any choice of β),
– m and 2m-bend drawings with β(e) = 1 or β(e) = 2 for each edge e gives

the usual notion of 1-bend and 2-bend RAC drawings, respectively, and
– similarly, 3m-bend drawings with β(e) = 3 for each edge e gives rise to the

notion of 3-bend RAC drawings, which exist for every graph [20].

Based on the above, we can now formally define our problem of interest:

Bend-Restricted RAC Drawing (BRAC)
Input: A graph G, an integer b ≥ 0, and an edge-labelling
β : E 7→ {0, 1, 2, 3}.
Question: Does G admit a b-bend β-restricted RAC drawing?

It has been shown that b-bend β-restricted RAC Drawing is ∃R-
complete [44,11] even when restricted to the case where b = 0. Without loss of
generality, we will assume that the input graph G is connected. We remark that
while BRAC is defined as a decision problem, every algorithm provided in this
paper is constructive and can output a drawing as a witness for a yes-instance.

Parameterized Algorithms. We will not need a lot of the machinery of
parameterized algorithms to state our results. However, as it will turn out, our
tractability results all come under the guise of so-called kernelization, which
requires some context.

A parameterized problem is an ordinary decision problem, where each instance
I is additionally endowed with a parameter k. Given such a parameterized problem
Π, we then say that a problem is fixed-parameter tractable (FPT) if there is an
algorithm that, upon the input of an instance (I, k) of Π, decides whether or not
(I, k) is a yes-instance in time f(k) · nO(1), where f is any computable function,
and n = |I| is the encoding length |I| of the (parameter-free) instance I. This
should be contrasted with parameterized problems that require time, say, nk to
solve, which are not fixed-parameter tractable.

For instance, we may ask if a graph has a vertex-cover of size at most k, and
declare k the parameter of the instance. In this case, the problem is solvable
in time 2k · nO(1), and hence FPT; in contrast, asking for a dominating set of
size k (under some complexity assumptions) requires time nk for every k. Closer
to the problems treated in this paper are structural parameterizations in the
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following sense: Suppose we are given a graph G and a number k such that G
has a vertex-cover of size at most k. Can we leverage this information to solve
some (other) graph problem at hand? In this case, we say that we parameterize
the problem by the vertex cover number.

When using such parameterizations in our results, we will crucially rely on the
following notion: A kernelization (or kernel, for short) of Π is a polynomial-time
algorithm (in n, and we may assume k ≤ n holds) that takes an instance (I, k)
as input, and produces as output another instance (I ′, k′) with the following
properties: there is some computable function g such that both k′ and |I ′| are
bounded from above by g(k), and (I, k) is a yes-instance of Π if and only if
(I ′, k′) is.

That is, a kernelization algorithms preprocesses instances of arbitrary size
into instances that are “parameter-sized,” and in particular (assuming Π was
decidable), this implies an algorithm running in time nO(1) + h(g(k)) for some
function h (where h(g(k)) is the running time of any algorithm solving instances
of Π of size g(k)). This means in particular that Π is fixed-parameter tractable
(and, as a standard result in parameterized algorithms, the converse of this claim
holds as well). We refer to the standard textbooks [23,15] for a general treatment
of parameterized algorithms.

The feedback edge number of a graph G, denoted fen(G), is the size of a
minimum edge set F such that G− F is acyclic. It is well-known that such a set
F (and hence also the feedback edge number) can be computed in linear time,
since G − F is a spanning tree of F . The vertex cover number of G, denoted
vcn(G), is the size of a minimum vertex cover of G, i.e., of a minimum set X
such that G−X is edgeless. Such a minimum set X can be computed in time
O(1.2738|X| + |X| · |V (G)|) [13], and a vertex cover of size at most 2|X| can
be computed in linear time by a trivial approximation algorithm. The third
structural parameter considered here is the neighborhood diversity nd(G) of G,
which is the minimum size of a partition P of V (G) such that for each a, b in the
same part of P it holds that N(a) \ {b} = N(b) \ {a}. It is well known that each
part in such a partition P must be either a clique or an independent set, and
such a minimum partition can be computed in polynomial time [40].

3 An Explicit Algorithm for BRAC

As already pointed out above, our results for fixed-parameter tractability come
as kernels. While there is a generic formal equivalence between the existence of a
kernel and a decidable problem being fixed-parameter tractable, this doesn’t by
itself yield explicit bounds on the running time of the algorithm that results from
this generic strategy. In order to derive concrete upper bounds on the running
time of our algorithms, we provide an algorithm that solves b-bend β-restricted
RAC drawing with a specific running time bound. We do so via a combination of
branching and an encoding in the existential theory of the reals.

Theorem 1. An instance (G, b, β) of BRAC can be solved in time mO(m2),
where m is the number of edges of G.
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Proof. Observe that, without loss of generality, we may assume that b ≤ 3m.
We begin by a branching step in which we exhaustively consider all possible
allocations of the bends to edges, resulting in a total number of at most 4m

branches (some of which will be discarded due to exceeding the bound b or
violating β). In each branch, we alter the graph G by subdividing each edge
precisely the number of times it is assumed to be bent in that branch. At this
point, it remains to decide whether this new graph G′ admits a straight-line RAC
drawing, where G′ has O(m) edges and vertices, and we denote these m′ and n′,
respectively.

To do this, one can construct a sentence in the existential theory of the
reals that is true if and only if G′ admits such a drawing. The variables of the
sentence will consist of n′ variable pairs (xv1 , yv1), . . . , (xvn′ , yvn′ ), encoding the
coordinates of the drawing of the vertices in R2. Furthermore, for every pair of
edges with endpoints u, v and u′, v′, we can formulate a condition σ(u, v, u′, v′)⇒
τ(u, v, u′, v′), where σ is a polynomial condition in xu, xv, x

′
u, x

′
v encoding whether

the straight-line segments corresponding to uv and u′v′ intersect, and τ is
a polynomial condition in xu, xv, x

′
u, x

′
v encoding whether these straight-line

segments are perpendicular. Indeed, the former requires an addition of another
m′2 auxiliary variables in the worst case, but both conditions can be expressed by
polynomials of degree two. This encoding is described in full detail by Bieker [11].

To conclude the proof, we note that an existential sentence over the reals in
N variables over M polynomials of maximal degree D can be decided in time
(M ·D)O(N) (see, e.g., [7, Theorem 13.13]). Note that, within essentially the same
running time bound, one can also construct a representation of a solution for
this system [7, Theorem 13.11]. ⊓⊔

4 A Fixed-Parameter Algorithm via fen(G)

We begin our investigation by establishing a kernel for Bend-Restricted RAC
Drawing when parameterized by the feedback edge number. Our kernel is based
on the exhaustive application of two reduction rules.

Let us assume we are given an instance (G, b, β) of BRAC and that we have
already computed a minimum feedback edge set F of G in linear time. The first
reduction rule is trivial: we simply observe that vertices of degree one can always
be safely removed since they never hinder the existence of a RAC drawing.

Observation 2. Let v ∈ V (G) be a vertex with degree one. G − {v} admits a
b-bend β-restricted RAC drawing if and only if G does as well.

Proof. Clearly, if G admits a b-bend β-restricted RAC drawing, then G − {v}
does as well (one may simply remove v and its incident edge from the drawing).
On the other hand, if G− {v} admits a b-bend β-restricted RAC drawing then
we can extend this drawing to one for G by placing v sufficiently close to its only
neighbor in a way which does not induce any additional crossings. ⊓⊔

Iteratively applying the reduction rule provided by Observation 2 results in a
graph of the form G′ = (V ′, E′ ∪ F ), where T := (V ′, E′) is a tree with at most
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(a) Before removing degree-one vertices. (b) After removing degree-one vertices.

Fig. 2: Reduction rule one: Degree-one vertices can be pruned. Orange lines
represent feedback edges, dashed black lines represent long paths and special
vertices are marked in turquoise.

2 · fen(G) leaves and where each leaf of T is incident to at least one edge in F . We
mark a vertex in T as special if it is an endpoint of an edge in F or if it has degree
at least 3 in T (see Figure 2 for an illustration). Note that the total number of
special vertices is upper-bounded by 4 · fen(G): the total number of endpoints
of edges in F is bounded by 2 · fen(G), and since this also upper-bounds the
number of leaves this implies that there can be at most 2 · fen(G) vertices of
degree at least 3 in T .

In order to define the crucial second reduction rule, we will partition the
edges of T into edge-disjoint paths such that each special vertex can only appear
as an endpoint in such paths.

Definition 3. We define the path partition of T in G′ as the unique partition
P1 ∪̇ · · · ∪̇Pℓ = E′ such that all Pi are pairwise edge-disjoint paths in T whose
endpoints are both special vertices, but with no special vertices in their interior.
We call ℓ the size of the path partition.

An illustration is provided in Figure 3. Given the established bound on the
number of special vertices, the size of the path partition is bounded by 4 · fen(G).

At this point, let us assume that we have a path partition P1 ∪̇P2 ∪̇ · · · ∪̇Pℓ

of T in G′, where we index the paths in increasing order of length. Our next task
is to divide these paths into short and long paths by identifying whether there
exists a large gap in the lengths of these paths.

Definition 4. Define pi := |Pi| for i = 1, . . . , ℓ, and moreover define P0 := F
and p0 := |F |. Let i0 be the minimal i = 1, . . . , ℓ such that pi > 9ℓ · pi−1, if one
such i exists, otherwise we set i0 := ℓ. We call all paths Pi with 1 ≤ i ≤ i0 short
and all other paths long. Then we define the subgraph Gshort as the edge-induced
subgraph of

⋃i0
i=0 Pi of G

′ (i.e., Gshort arises by removing all long paths from G′).
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Fig. 3: Path partition of T with feedback edges in orange.

Our aim is now to argue that if δshort is a RAC drawing of Gshort, then we
can always extend δshort to a RAC drawing of G′. Without loss of generality we
assume that all vertices in V (G′) have already been drawn in δshort. First we
create an intermediate drawing δ′ of G′, which will in general not be a RAC
drawing. We define δ′ as an extension of δshort, where each long path P with
endpoints s and t is represented as a simple straight-line segment from δshort(s) to
δshort(t) with all interior vertices distributed arbitrarily along that line segment.
Doing this will in general violate the RAC property of δ′, hence in the next step
we need to alter this straight-line segment in order to ensure that the drawing of
P crosses only at right angles. For this we observe that any vertex on P can be
moved to effectively act as a bend in a polyline drawing of P . We show that these
“additional bends” can be used to turn all crossings into right-angle crossings.

Lemma 5. Let P be a long path with endpoints s and t and consider its straight-
line representation L in δ′. Assume L intersects k straight-line segments in δ′.
Then, there exists a polyline segment L⋆ from δ′(s) to δ′(t) with at most 3k
bends that intersects precisely the line segments intersected by L, where each such
segment is crossed precisely once and at a right angle.

Proof. For the purposes of this proof, it will be useful to treat each bend as an
auxiliary vertex in δ′ and treat straight-line segments as edges. Let e ∈ E(Gshort)
be an edge such that δ′(e) is crossed by L at the point x. We now distinguish
the following cases of how L intersects the straight-line segments in δ′, and deal
with each case separately:

1. x ∈ int(δ′(e)) and no other edge crosses through x.
2. ∃ f ∈ E(Gshort) : f ̸= e ∧ x ∈ int(δ′(e)) ∩ int(δ′(f)).
3. ∃ v ∈ V (Gshort) : x = δ′(v).

We show how to deal with each of these three cases below:
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1. Let ε > 0 such that Bε(x) = {y ∈ R2 : |x − y| < ε} contains no vertices
and intersects no other edges outside of L apart from e. We convert the
intersection at x to a right-angle crossing by introducing three bends on the
boundary ∂Bε(x) as illustrated in Figure 4: Put two vertices v1, v3 on the
intersection of L with ∂Bε(x) to maintain the position of L outside of Bε(x).
Construct the middle vertex v2 by taking the intersection of ∂Bε(x) with
the normal line to e going through v3. Therefore we obtain our new polyline
L⋆ by joining the parts of L outside the ε-neighborhood with the polyline
connecting the three vertices on the boundary of the ε-neighborhood.

L

e

v1 v3

v2

ε

x

Fig. 4: Dealing with a single crossing.

Since we chose ε such that there are no further intersections within this
ε-neighborhood and the polyline remains unchanged outside of this neigh-
borhood, we are guaranteed to not introduce any new crossings nor alter
existing ones.

2. Generalizing the first case, we now consider an intersection point x with
multiple edges crossing it. We denote with C = {e1, . . . , et} the set of edges
intersecting at x. Let ε > 0 such that Bε(x) contains no vertices and intersects
no other edges apart from the edges in C. Again, two entry and exit nodes
v1, vt+1 are added on the boundary of Bε(x) to preserve the original position
of L outside of Bε(x). Assume the edges in C are ordered clockwise with e1
being the closest edge to v1. Now we iteratively construct the next vertex vi+1

by taking the intersection of the angular bisector between ei and ei+1 with
the normal line to ei going through vi. If this point happens to lie outside of
Bε(x) we take the intersection of the normal line with ∂Bε(x) instead. We
refer to Figure 5 for an illustration.
In total, we need at most t+ 1 ≤ 3t vertices.

3. In the third case, the straight-line segment L intersects with a vertex v at
x = δ′(v). If L ∩ δ′(e) = δ′(v), i.e. L does not run parallel to δ′(e), we can
simply take care of this equivalently as if L would cross δ′(e) in the interior.
If otherwise L ∩ δ′(e) ⊋ δ′(v), we observe that L must necessarily contain
both endpoints of δ′(e), since the endpoints δ′(s) and δ′(t) of L cannot lie in
the interior of δ′(e). At the first of these endpoints encountered by L, say w,
we again proceed analogously to the second case (i.e., as if w was a crossing
point), however instead of exiting the circle surrounding w directly opposite
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L

v1

vt+1

e1

e2

et

v2

v3

vt

vt−1

ε

x

Fig. 5: Crossing multiple edges at once.

to the entry point we exit at a distance of ε′ from there (for a sufficiently
small ε′) and from there draw L in parallel to e.

Since these three cases are exhaustive, the lemma follows. ⊓⊔

Lemma 6. Each long path intersects at most 3ℓ · pi0 straight-line edge segments
in δ′.

Proof. Since each long path is represented as a straight-line segment in δ′, it can
cross every other long path at most once. Since every edge e ∈ E(Gshort) can be
bent at most β(e) ≤ 3 times, L can cross e at most three times. Let t be the
number of long paths, then L intersects no more than

t+ 3

i0∑
i=0

pi ≤ t+ 3(ℓ− t) · pi0 ≤ 3ℓ · pi0

straight-line edge segments. ⊓⊔

Theorem 7. b-bend β-restricted RAC Drawing admits a kernel of size at
most (36 · fen(G))4·fen(G). The kernel can be constructed in linear time.

Proof. Consider an input (G = (V,E), b, β) with feedback edge set F . In the
first step according to Observation 2 we iteratively prune all vertices of degree
one and obtain the reduced graph G′ = (V ′, E′ ∪ F ). Next, we construct a path
partition P = (P1, . . . , Pℓ) of the tree T = (V ′, E′) of size at most 4 · fen(G).
Then we split the paths in P into short and long paths. We define the subgraph
Gshort as the graph obtained by removing all long paths from G′ and show that
it is a kernel.

For that consider a RAC drawing δshort of Gshort. We show that we can
construct a RAC drawing δ of G′ that extends δshort (see Figure 6b). To achieve
this, we first define the intermediate drawing δ′, which extends δshort by simply
drawing all long paths as straight-line segments. To obtain δ from δ′ we now
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(a) RAC drawing δshort of Gshort. (b) RAC drawing δ of G′

Fig. 6: Extending the RAC drawing.

iteratively replace the straight-line representations by the polyline constructions
described in Lemma 5. Let Pi0+1 be the first long path with straight-line drawing
Li0+1. According to Lemma 6 it is involved in at most 3ℓ · pi0 crossings in δ′. By
the definition of long paths we have |Pi0+1| > 9ℓ · pi0 and thus we have enough
vertices per crossing to construct L∗

i0+1 via Lemma 5. Define δi0+1 by replacing
Li0+1 with L⋆

i0+1 in δ′. Since L⋆
i0+1 does not introduce any new crossings, we

can repeat this process for all further long paths until we obtain δ := δℓ as
our final RAC drawing of T . Thus, we obtain Gshort as a kernel of our original
instance with b and β unchanged, since we did not use any additional bends in
the construction of δ.

Next, we show that Gshort can be constructed in linear time. We already
observed that a Feedback Edge Set can be constructed in linear time. Pruning
vertices of degree one can be done in linear time as well, while the task of finding
a path partition of T can be achieved by depth-first search in linear time as well.
Finally, the size of Gshort can be bounded by

i0∑
i=0

pi ≤
ℓ∑

i=0

p0(9ℓ · fen(G))i

≤ 2 · fen(G)(9ℓ · fen(G))ℓ

≤ 2(36 · fen(G))4·fen(G). □

Using Theorem 7, the runtime guarantee given by Theorem 1 and the fact
that a feedback edge set of size fen(G) can be computed in linear time, we obtain:

Corollary 8. b-bend β-restricted RAC Drawing is fixed-parameter tractable

parameterized by fen(G), and in particular can be solved in time 2fen(G)O(fen(G))

+
O(|V (G)|).
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Proof. After constructing the kernel in O(|V (G)|) time, we apply the generic
branching algorithm to the kernel with a runtime of

((36 · fen(G))4·fen(G))O((36·fen(G))8·fen(G)) = (36 · fen(G))O((36·fen(G))8·fen(G)+1)

≤ 2(log fen(G))·fen(G)O(fen(G))

= 2fen(G)O(fen(G)),

which concludes the proof. ⊓⊔

5 Fixed-Parameter Tractability via vcn(G)

As in Section 4, the core tool used to establish fixed-parameter tractability for this
parameterization is a kernelization procedure, although the ideas and reduction
rules used here are very different. Let us assume we are given an instance (G, b, β)
of BRAC; as our first step, we compute a vertex cover C of size k ≤ 2 · vcn(G)
using the standard approximation algorithm.

We now partition the vertices of our instance G outside of the vertex cover C
into types, as follows. Two vertices in G \C are of the same type if they have the
same set of neighbors in C; observe that the property of “being in the same type”
is an equivalence relation, and when convenient we also use the term type to refer
to the equivalence classes of this relation. To avoid any confusion, we explicitly
remark that two vertices may have the same type even when their incident edges
are assigned different values by β. The number of types is upper-bounded by 2k.

We distinguish types by the number of neighbors in C; an illustration is
provided in Figure 7. Let a member of a type T be defined as a vertex in T as
well as its incident edges. By an exhaustive application of the first reduction rule
introduced in Section 4 (cf. Observation 2), we may assume that there is no type
with less than 2 neighbors in C.

C

T1 T2 T3 T4

Fig. 7: A graph split into its vertex cover C (in turquoise) and its different types
T1, . . . , T4 (in orange).

Turning to types with at least 3 neighbors in C, we provide a bound on the
size of each such type in a yes-instance of BRAC.
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Lemma 9. If (G, b, β) is a yes-instance of BRAC, then each type T with i ≥ 3
neighbors in C has at most max(2, 7− i) + b members.

Proof. Didimo, Eades and Liotta showed that no complete bipartite graph Kc,d

with c+ d > 7 and min(c, d) > 2 admits a straight-line RAC drawing [19]. Hence,
if vertices in T have 3 neighbors in C then a b-bend β-restricted RAC drawing
of G can contain at most 4 members of T without bends; otherwise, the drawing
of 5 members of T and their 3 neighbors in C would contradict the first sentence.
Similarly, if vertices in T have at least 5 neighbors in C then a b-bend β-restricted
RAC drawing of G cannot contain 3 members of T without bends. ⊓⊔

Lemma 9 implies that we can immediately reject instances containing types
with more than 3 neighbors whose cardinality is greater than 4 + b (or, for the
purposes of kernelization, one may replace these with trivial no-instances). Hence,
it now remains to deal with types with precisely two neighbors in C.

We say that two edges uv and uv′ form a fan anchored at u. It is easy to
observe that if an edge e crosses both uv and uv′ in a b-bend β-restricted RAC
drawing, then at least one of these three edges must have a bend [3].

Lemma 10. Consider a b-bend β-restricted RAC drawing δ of G, and let T be a
type containing vertices with precisely two neighbors in C. Let T ′ be the subset of
T containing all members of T which do not have bends in δ. Then T ′ contains
at most four members involved in crossings with other members of T ′ in δ.

Proof. Let u and v be the neighbors of T ′ in the vertex cover C. Let us consider

the vertices lying on one side of the half plane induced by the line
←−−−−→
δ(u)δ(v) going

through u and v. According to Thales’s theorem, every right-angle crossing formed
by two edges originating in u and v respectively, has to lie on the semicircle with
diameter δ(u)δ(v). Suppose the edges (u, x) and (v, w) cross at a right angle.
Then there cannot be another edge incident to u which crosses the semicircle to
the right of the first crossing .

Indeed, if there was such an edge (u, y), then (v, w) would cross the fan formed
by (u, x) and (u, y) as shown in Figure 8. Analogously, there also cannot be an
edge incident to v, which crosses the semicircle left to the first crossing. Hence,
there can be at most one right-angle crossing between members of T ′ below and

above
←−−−−→
δ(u)δ(v), respectively. ⊓⊔

Next, we use the above statement to obtain a bound on the total number
of crossings that such a type T can be involved in. We do so by showing that
the members of T which themselves do not have bends are only involved in a
bounded number of crossings.

Lemma 11. Consider a b-bend β-restricted RAC drawing δ of G, and let T be a
type containing vertices with precisely two neighbors in C. Then at most 3k+6+b
members of T can be involved in a crossing in δ.

Proof. Let T ′ be the subset of T containing all members of T which do not have
bends in δ, and let γ = |T | − |T ′|. Further, let T0 be the set of members of T ′



Fixed-Parameter Algorithms for Computing RAC Drawings of Graphs 15

u v

w x
y

Fig. 8: Illustration for Lemma 10.

which are pairwise crossing free, but which all cross at least some other edge in
δ. T0 forms a layering structure in δ, as depicted in Figure 9. Moreover, if T0

contains two members that are incident to the same inner face in this layering
structure and whose edges are drawn in parallel in δ, we remove one of these
members from T0; observe that this may only reduce the size of T0 by one. Let α
be the number of members that remain in T0 at this point.

At this point, an edge e without any bends cannot cross more than one
member of T0, as no two edges on the same face in T0 are parallel by assumption.
Without bends, this would imply that there must be a vertex in every layer, and
since each vertex can only be connected to other vertices in the same or in one
of the two adjacent layers there can be at most 3k layers. Introducing bends, an
edge outside T ′ might cross one additional layer per bend; thus increasing the
number of possibly crossed members to 3k + 1 + b. Since γ bends are already
used by edges of T , we obtain α ≤ 3k + 1 + b− γ.

Moving our attention to T ′ ⊇ T0, the difference between the sizes of these two
sets can be caused (1) by up to 4 members that are involved in crossings with
other members of T ′ following Lemma 10 and (2) by one additional member for
the single removed member with parallel edges from T0, i.e. |T ′| ≤ α+ 5. Hence,
at most α + 5 + γ = 3k + 6 + b members of T can be involved in crossings in
δ. ⊓⊔

Fig. 9: Illustration for the proof of Lemma 11 with vertices in the vertex cover
marked in turquoise.

In particular, Lemma 11 implies that in a b-bend β-restricted RAC drawing,
every sufficiently large type T with precisely 2 neighbors in C must contain a
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member that is not involved in any crossings. The next lemma highlights why
this is useful in the context of our kernelization.

Lemma 12. Let T be a type with two neighbors in C and assume that G admits
a b-bend β-restricted RAC drawing δ. If there is a member in T whose edges are
drawn without crossings in δ, then the graph obtained from G by adding a vertex
w′ to T admits a b-bend β-restricted RAC drawing as well.

Proof. Let u, v be the neighbors of T in the vertex cover and let w ∈ T be the
member without crossings. We can draw w′ infinitesimally close to w such that
the emerging layering triangles are drawn without crossings (see Figure 10). ⊓⊔

u

v

w w′w′

Fig. 10: Illustration for the proof of Lemma 12.

At this point, we have all the ingredients for the main result of this section:

Theorem 13. b-bend β-restricted RAC Drawing admits a kernel of size
O(b · 2k), where k is the size of a provided vertex cover of the input graph.

Proof. Consider an input (G, b, β) and let C be the provided vertex cover of G. We
apply the simple reduction rule of deleting vertices of degree 1 from G, resulting
in an instance where each type has either 2 or at least 3 neighbors in C. For each
type of the latter kind, we check if it contains more members than max(3, 7−i)+b;
if yes, we reject (or, equivalently, replace the instance with a trivial constant-size
no-instance), and this is correct by Lemma 9. Moreover, for each type T with
precisely 2 neighbors in C containing more than 3k+6+ b+1 many members, we
delete members from T until its size is precisely 3k + 6 + b+ 1—the correctness
of this step follows from Lemma 11 and 12.

In the resulting graph, each of the at most 2k many types with at least 3
neighbors in C has size at most b+ 4, while each of the at most k2 types with
precisely 2 neighbors has size at most 3k+6+b+1. The kernel bound follows. ⊓⊔

From Theorem 13, the runtime bound given by Theorem 1 and the fact that a
vertex cover of size at most 2 · vcn(G) can be obtained in linear time, we obtain:
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Corollary 14. b-bend β-restricted RAC Drawing is fixed-parameter tractable

parameterized by b+vcn(G) , and in particular can be solved in time 22
O(vcn(G)+log b)

+
O(|V (G)|).

Proof. Applying the runtime result of mO(m2) given in Theorem 1 to the given
kernel yields a final runtime of

O(b · 2vcn(G))O(b24vcn(G)) = 2(log b+vcn(G))·O(b24vcn(G))

≤ 2b
2 log b·2O(vcn(G))

= 22
(log log b)+2 log b·2O(vcn(G))

= 22
O(log b+vcn(G))

,

which concludes the proof. ⊓⊔

6 An Extension to Neighborhood Diversity

We extend the approach used for the vertex cover number to establish fixed-
parameter tractability with respect to neighborhood diversity. Briefly recalling
the definition of neighborhood diversity, let two vertices v, v′ be of the same type
if N(v)\{v′} = N(v′)\{v}.

Definition 15 ([40,39]). The neighborhood diversity nd(G) of a graph G is
the minimum number k, such that there exists a partition into k sets, where all
vertices in each set have the same type.

By the definition of neighborhood diversity, each set in the witnessing parti-
tion is either an independent set or clique in G. Edges can occur either on all
vertices between two sets or on none (see Figure 11). In general, a graph G with
neighborhood diversity nd(G) has a bounded vertex cover number vcn(G). Thus,
Theorem 13 would already imply tractability of b-bend RAC drawings under
a bounded neighborhood diversity. However, vcn(G) might be exponentially
larger [40]. For b-bend RAC drawable graphs, we can show a better, linear bound
on vcn(G).

Lemma 16. Let G be a b-bend RAC drawable graph with a neighborhood diversity
nd(G). Then vcn(G) ≤ 5 · nd(G) + b.

Proof. We begin by showing a linear bound on vcn(G) for b = 0. Let S1, . . . , Snd(G)

be a partition witnessing the neighborhood diversity number nd(G). We build a
vertex cover C as follows. The size of each set Si forming a clique in G is bounded
by 5, as a K6 is not straight-line RAC drawable [20]. Put all vertices of such an
Si in C. Let Si, Sj be a pair of two sets, which are both forming an independent
set in G, and have edges between each other. If there is an edge between a vertex
in Si and a vertex in Sj , there is an edge between all vertices of Si and Sj . Let
|Si| ≤ |Sj |. Recalling that no complete bipartite graph Ka,b with a+ b > 7 and
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Fig. 11: Overview of a graph partitioned into its neighborhood diversity sets.
Orange sets build cliques, turquoise sets are independent sets in G. Each set may
be connected to one ore more other sets.

min(a, b) > 2 admits a straight-line RAC drawing [19], Si ≤ 3. Put Si into C to
cover both sets. In total, we put at most 5 · nd(G) vertices into C.

For arbitrary number of bends b, the total number of vertices in clique
sets might increase by at most b without making G not b-bend RAC drawable.
Similarly, the number of vertices in the smaller set Si of a connected set pair Si, Sj ,
might increase by at most b over all such sets. So in total, vcn(G) ≤ 5 ·nd(G)+b.

⊓⊔

From Theorem 13 and Lemma 16 the following theorem follows directly:

Theorem 17. b-bend β-restricted RAC Drawing admits a kernel of size
O(b2 · nd(G) · 2nd(G)).

Corollary 18. b-bend β-restricted RAC Drawing is fixed-parameter tractable

parameterized by nd(G) + b, and in particular can be solved in time 2b
O(nd(G))

+
O(|V (G)|+ nd(G)).

7 Concluding Remarks

We have established the fixed-parameter tractability of b-bend β-restricted
RAC Drawing when parameterized by the feedback edge number fen(G), or
by the vertex cover number vcn(G) plus an upper bound b on the total number
of bends. We have also shown that the latter result implies the fixed-parameter
tractability of the problem w.r.t. the neighborhood diversity nd(G) plus b.

A next step in the computational study of RAC Drawings would be to
consider whether the problem is fixed-parameter tractable w.r.t. vcn(G) alone.
Interestingly, a reduction rule for degree-2 vertices without a bound on b is the
main obstacle towards obtaining such a fixed-parameter algorithm, and dealing
with this case seems to be required if one wishes to generalize the result towards
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fixed-parameter tractability w.r.t. treedepth [42] plus b. A different question one
may ask is whether the fixed-parameter algorithm w.r.t. fen(G) can be generalized
towards the recently introduced parameter slim tree-cut width [31], which can be
equivalently seen as a local version of the feedback edge number [12]. A natural
long-term goal within this research direction is then to obtain an understanding
of the complexity of BRAC w.r.t. treewidth [43]. Last but not least, it would
be interesting to see whether our fixed-parameter tractability results can be
strengthened by obtaining polynomial kernels for the same parameterizations.
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