
Finding a Second Wind: Speeding Up Graph
Traversal Queries in RDBMSs Using

Column-Oriented Processing

Mikhail Firsov1[0000−0001−6739−7303], Michael Polyntsov1[0000−0001−7356−2504],
Kirill Smirnov1[0000−0003−4727−3455], and George

Chernishev1[0000−0002−4265−9642]

Saint-Petersburg University, Russia
{mikhail.a.firsov, polyntsov.m, kirill.k.smirnov, chernishev}@gmail.com

Abstract. Recursive queries and recursive derived tables constitute an
important part of the SQL standard. Their efficient processing is im-
portant for many real-life applications that rely on graph or hierarchy
traversal. Position-enabled column-stores offer a novel opportunity to im-
prove run times for this type of queries. Such systems allow the engine
to explicitly use data positions (row ids) inside its core and thus, enable
novel efficient implementations of query plan operators.
In this paper, we present an approach that significantly speeds up re-
cursive query processing inside RDBMSes. Its core idea is to employ a
particular aspect of column-store technology (late materialization) which
enables the query engine to manipulate data positions during query ex-
ecution. Based on it, we propose two sets of Volcano-style operators
intended to process different query cases.
In order validate our ideas, we have implemented the proposed approach
in PosDB, an RDBMS column-store with SQL support. We experimen-
tally demonstrate the viability of our approach by providing a compar-
ison with PostgreSQL. Experiments show that for breadth-first search:
1) our position-based approach yields up to 6x better results than Post-
greSQL, 2) our tuple-based one results in only 3x improvement when
using a special rewriting technique, but it can work in a larger num-
ber of cases, and 3) both approaches can’t be emulated in row-stores
efficiently.

Keywords: Query Processing · Column-stores · Recursive Queries ·
Late Materialization · Breadth-First Search · PosDB.

1 Introduction

The ANSI’99 SQL standard introduced the concept of recursion into SQL with
syntactic constructs to define recursive views and recursive derived tables. This
allows users to store graph data in a tabular form and to express some graph
queries using CTEs and recursive syntax. The admissible subset is rather limited
compared to the specialized graph systems, but it is sufficient to solve a num-
ber of common tasks. Such tasks originate from many real-life applications and

ar
X

iv
:2

30
8.

08
70

2v
1

 [
cs

.D
B

]
 1

6
A

ug
 2

02
3

2 M. Firsov et al.

usually concern some hierarchy traversal which comes as a breadth-first search
computation.

In this paper, we present another outlook on RDBMS architecture that sig-
nificantly improves system performance at least for some types of graph queries
expressed by recursive SQL. More specifically, we present a column-oriented ap-
proach that will improve run times for queries that perform breadth-first search.

Having emerged about fifteen years ago, column-stores quickly became ubiq-
uitous in analytic processing of relational data. Their idea is simple: store data
in a columnar form in order to read only necessary columns for evaluating the
query. Such approach also provides better data compression rates [1], improves
CPU cache utilization, facilitates SIMD-enabled data processing, and offers other
benefits. However, some column-stores additionally allow the query engine to ex-
plicitly use data positions during query execution. This made way for a number
of optimizations and techniques that offered various benefits for query process-
ing. Thus, we differentiate the “position-enabled” column-stores from the rest
as the column-stores that are able to reap benefits from explicit position manip-
ulation inside their engine. We believe that such an approach can give RDBMs
a second wind in handling graph queries.

Positions (also called row ids or offsets) are integers that refer to some record
or individual attribute value inside a table. Operating on data positions allows
query engine to achieve savings by deferring switching to data values. This group
of techniques is called late materialization and it was successfully employed for
various query plan operators [18,2,20,12].

We employ this technique to design two sets of Volcano-style [7] operators in-
tended to handle different query cases that involve recursive processing. We have
implemented them inside a position-enabled column-store PosDB [4,3]. Next, in
order to evaluate them we run experiments with queries that perform breadth
first search. We have also performed the comparison of our approach with Post-
greSQL.

The overall contribution of this paper is the following:

1. A survey of existing query processing techniques in RDBMSs that concern
recursive queries.

2. A design of two query operators for position-enabled column store that speed
up recursive query evaluation.

3. An experimental evaluation of proposed techniques and a comparison with
state-of-the-art row-store RDBMS.

This paper is organized as follows. In Section 2 we survey various aspects of
implementation and usage of recursive queries inside relational DBMSs. Then, in
Section 3 we present the main features of PosDB and discuss its query processing
internals. After this, in Section 4 we describe implementation details of the
proposed recursive operators and their use in the existing query plan model of
PosDB. Section 5 contains an evaluation that compares PosDB with PostgreSQL
using a series of experiments on trees of different size, height and additional
payload. Finally, in Section 6 we conclude this paper and discuss future work.

Title Suppressed Due to Excessive Length 3

2 Related Work and Motivation

2.1 Related Work

In this section we review existing papers that address graph query processing in
SQL-supporting systems, paying special attention to recursive evaluation.

One of the earliest papers that addressed the problem of recursive query eval-
uation was the paper [11]. There, author introduces several query optimizations
for recursive queries with graphs, namely: early evaluation of row selection con-
ditions, elimination of duplicate rows in intermediate tables, and using an index
to accelerate join computation.

The authors of the papers [6,5] describe several issues with query optimization
in relational databases when implementing recursive queries. The first approach
they mention is the full feedback approach (FFB), which provides the optimizer
with the demographics of each recursion iteration so that it can generate a new
plan for the subsequent iteration. However, FFB interrupts potential pipelining
and cannot take advantage of global query optimizations, making it unsuitable
for parallel DBMS. The next approach, look ahead with feedback (LAWF), gen-
erates plans for the subsequent k iterations in advance, with k depending on
the query planning cost and propagation of join estimation errors. The authors
present a dynamic feedback mechanism based on passive monitoring to collect
feedback and to determine when re-planning is necessary. The LAWF method
supports both pipelining and global query optimization.

In the paper [14] the authors consider two graph problems: transitive closure
computation and adjacency matrix multiplication. In order to solve them, the
authors study the optimization of queries that involve recursive joins and recur-
sive aggregations in column- and row-oriented DBMS. They evaluate the impact
of several query optimization techniques, such as pushing aggregation through
recursion and using ORDER BY with merge joins in column-store instead of
hash joins. The authors evaluate effects of indexing columns containing vertices
and effects of sorting rows in a row-store to evaluate the iteration of k joins.

In the paper [13] the author evaluates various recursive query optimizations
for the plan generator. The paper considers five techniques: storage and indexing
for efficient join computation, early selection, early evaluation of non-recursive
joins, pushing duplicate row elimination, and pushing aggregation. The author
uses four types of graphs: tree, list, cyclic, and complete graphs. However, simi-
larly to previous work [14] author uses a sequence of SQL commands (including
INSERTs) to implement the proposed optimizations. Such approach may suffer
from various overheads, as opposed to implementing an operator node in the
engine source code. This, in turn, may lead to inaccurate results.

The Recursive-aggregate-SQL (RaSQL) [8] system extends the current SQL
standard to support aggregates in recursion. It can express powerful queries and
declarative algorithms, such as graph and data mining algorithms. The RaSQL
compiler allows mapping declarative queries into one basic fixpoint operator sup-
porting aggregates in recursive queries. The aggregate-in-recursion optimization

4 M. Firsov et al.

brought by the PreM property and other improvements make the RaSQL system
more performant than other similar systems.

In the paper [17] the authors address the problem of storing large property
data graphs inside relational DBMS. They adapt the SQLGraph [19] approach
to reduce the disk volume and increase processing speeds. They evaluate their
schema using the PostgreSQL on LDBC-SNB and show that their schema not
only performs better on read-only queries but also performs better on workloads
that include update operations.

Graph databases are good for storing and querying provenance data. One of
the earliest papers that evaluated this possibility was the study [23]. The authors
compare relational and graph databases on different types of queries. This study
demonstrated that for traversal queries, graph databases were clearly faster,
sometimes by a factor of 10. This result was expected since relational databases
are not designed to perform traversals such as standard breadth-first-search.

Another paper that concerned graph databases in data provenance domain
was the study [16]. The authors propose an improved version of the DPHQ
framework for capturing and querying the provenance data. They conclude that
graph databases offer significant performance gains over relational databases for
executing multi-depth queries on provenance. The performance gains become
much more pronounced with the increase in traversal depth and data volumes.

2.2 Motivation

The related works discussed above demonstrated popularity and relevance of
graph queries and graph database systems. However, they also showed that there
is only a handful of studies that address processing of graph queries (BFS, tran-
sitive closure) using the recursion technique in SQL-supporting systems.

Moreover, despite the existence of studies which touch upon the processing
of recursive SQL queries in column-stores (e.g. [14]), there are no studies that
propose to leverage data positions. On the other hand, in our paper we propose
an in-depth operator redesign, which is based on this idea.

3 Background

PosDB is a disk-based distributed column-store which features explicit position
manipulation, i.e. it is a “position-enabled” system. In this regard it is close to
the ideas of early systems such as the C-Store [18] and the MonetDB [10].

PosDB uses the pull-based Volcano model [7] with block-oriented processing.
Its core idea is to employ two types of intermediate representations: tuple- and
position-based. In the tuple-based representation operators exchange blocks of
value tuples. This type of representation is similar to most existing DBMSs.
On the other hand, position-based representation is a characteristic feature of
PosDB. In the positional form, intermediates are represented by a generalized
join index [22] which is presented in Fig. 1a. Join index stores an array of record
indices, i.e. positions, for each table it covers (top of Fig. 1a). Tuples are encoded

Title Suppressed Due to Excessive Length 5

row1
row2
row3

row1
row2
row3

row1
row2
row3

T1 T2 T3

3
2
1 2

1
3

T1 T2
3
2
3

T3

Join Index

(a) Example of join index

SELECT	sum(lo_revenue),	d_year,	p_brand1
FROM	lineorder,	date,	part,	supplier
WHERE				lo_orderdate	=	d_datekey
					and	lo_partkey	=	p_partkey
					and	lo_suppkey	=	s_suppkey
					and	p_category	=	'MFGR#12'
					and	s_region	=	'AMERICA'
GROUP	BY	d_year,	p_brand1
ORDER	BY	d_year,	p_brand1;

DS(supplier) DS(lineorder) DS(part)

Filter JoinRead(p_partkey) Read(lo_partkey)

JoinRead(s_suppkey) Read(lo_suppkey)

Read(lo_orderdate)Read(d_datekey)

DS(date)

Filter

Aggregate

Sort

To user Operator Reader Operator
internals

Join

remote accesslocal access

... Tuples

Columns

Read(s_region)

Read(p_category)

(b) Query plan example

Fig. 1: PosDB internals

using rows in the join index. Most operators in PosDB are either positional or
tuple-based, with positional ones having specialized Reader entities for reading
values of individual table attributes. The query plan in PosDB is divided into
positional and tuple parts, and the moment of converting positions into tuples
is called materialization. Materialization is to be performed at some moment
of query plan, since user needs not positions, but tuples. It can be performed
by either a special Materialize operator or by some operators, such as an
aggregation operator.

In the query plan presented in Fig. 1b, the materialization point is indicated
by a brown dotted line. Below the line, positional representation is used and
above the line uses tuple representaion. In the latest version of PosDB, a query
plan may contain several materialization points, in such a manner that every
leaf-root path will have one.

Such architecture leads to several different classes of query plans which are
discussed in reference [4]. Operating on positions instead of tuple values allows to
achieve significant cost savings for some queries. For example, in case of filtering
join it is possible to reduce the total amount of data read from disk if join will
be performed on positions first, and then the rest of necessary columns will be
read. This is a general idea of late materialization and it was extensively used
for implementing many [1,9,12,21,15] operators and their combinations. At the
same time, in PosDB it is possible to build plans equivalent to naive [1] column-
stores, i.e. which will read only necessary columns, construct tuples and continue
as it was row-store. In this paper we are going to discuss an application of this
technique for processing recursive queries.

PosDB is a large project and it has many features and implementation details.
However, they are out of the scope of this work and are not necessary for its
understanding. A detailed description of baseline architecture can be found in
paper [3], and the recent additions are described in [4]. Finally, an interactive
demo of PosDB can be seen at the following link1.

1 https://pos-db.com/

6 M. Firsov et al.

4 Proposed Approach

In order to implement recursive queries in the PosDB, we have introduced two
new operator groups into its operator set. These groups share the same use
pattern and differ only in the used data representation (rows or positions). Their
generalized operation flow is presented in Fig. 2, which is as follows:

Recursive

ChildOperator RecursiveChildOperator

RecursiveCTE

Yes

Nofirst iteration?

UpperOperator

Fig. 2: Sample query plan representation using Recursive and RecursiveCTE

– The Recursive operator stores pointers to RecursiveCTE, ChildOperator
and RecursiveChildOperator. ChildOperator is used for the non-recursive
part of the query, with its help PosDB gets initial rows or initial positions.
The RecursiveChildOperator is a regular operator, but internally it either
explicitly or implicitly (via several intermediate operators) receives data from
RecursiveCTE.

– RecursiveCTE stores a pointer to the Recursive, from which it asks for new
records to be passed by the Next method in RecursiveChildOperator.

Recall that there are two types of intermediate data representation in PosDB:
tuple-based and positional. This results in two sets of operators:

– TRecursive and TRecursiveCTE that only work with blocks of tuples.
– PRecursive and PRecursiveCTE that only work with position blocks.

We have designed only these two sets, each focusing on one particular data
representation, either tuple-based or positional. However, the first thing which
comes to mind is to use a combination of tuple-based and positional opera-
tors. For example, consider a case when ChildOperator and RecursiveCTE

return a position block and RecursiveChildOperator returns a tuple block.
In this case, the query engine will have to translate the tuples received from
RecursiveChildOperator back to positions in order to use them for the second
and subsequent steps of the recursion. However, this may be impossible in cer-
tain circumstances, if, for example, a generated attribute (e.g. value ∗ 2 + 1) is
present in the tuple block. In this case, there will be no original column which
may be pointed to by a position.

Title Suppressed Due to Excessive Length 7

For the sake of clarity, we are going to work through an example. Consider
the following recursive query to find all neighbors of a vertex with id = 0 up to
depth 4:

Listing 1.1: Recursive query example

1 WITH RECURSIVE edg e s c t e (id , from , to) AS
2 (SELECT edges . id , edges . from , edges . to
3 FROM edges WHERE edges . from = 0
4 UNION ALL
5 SELECT edges . id , edges . from , edges . to
6 FROM edges JOIN edg e s c t e AS e
7 ON edges . from = e . to v)
8 SELECT edg e s c t e . id , edg e s c t e . from , e dg e s c t e . to
9 FROM edg e s c t e

10 OPTION (MAXRECURSION 4) ;

to user
Operator Reader

Operator
internals

Tuples

Columns

FilterRead(id)

TRecursive

MaterializeRead(id)

Read(from)

Join

TRecursiveCTE

DS(edges)

DS(edges)

Yes

Read(to)

MaterializeRead(id)

Read(from)

Read(to)

Nofirst iteration?

Fig. 3: Query tree using TRecursive and TRecursiveCTE

The plan of this query using the introduced structures can be represented
via the diagram in Fig. 3. In this figure:

– The left Materialize operator is a ChildOperator: it will be executed once
in order to initialize the starting set of tuples.

– The Join is a RecursiveChildOperator.
– The set of tuple blocks of the current recursion step is stored inside TRecursive:

we will call it curLevel. In addition, TRecursive will store the position of
the block in curLevel, which should be passed to TRecursive next time.

8 M. Firsov et al.

The evaluation itself is as follows:

1. TRecursive requests blocks from the left Materialize as long as they are
not empty and stores them in curLevel.

2. TRecursive passes all blocks from curLevel up until it reaches the end of
curLevel.

3. To get the block of the new recursion step, TRecursive requests the block
from Join.

4. Join requests blocks from TRecursiveCTE and from the right Materialize.
5. TRecursiveCTE asks TRecursive for blocks.
6. TRecursive increments the internal counter and passes

TRecursiveCTE in response to its requests for blocks from curLevel.
7. After typing a new block of a certain size, Join gives it to TRecursive. If it is

a non-empty block, then TRecursive will store it in nextLevel temporary
storage and proceed to Step 3. If it is an empty block, then curLevel is
replaced with nextLevel. If now curLevel is an empty set of blocks, then we
say that TRecursive has finished its work, otherwise TRecursive proceeds
to Step 2.

Join Read(from) for edges

Read(to) for edges_cte

to user

Operator Reader
Operator
internals

Tuples

Columns

FilterRead(id)

MaterializeRead(id)

Read(...)

DS(edges)
DS(edges)

PRecursive PRecursiveCTE

first iteration?

Yes
No

Fig. 4: Query tree using PRecursive and PRecursiveCTE

The plan of the same query using PRecursive operator can be represented
via the diagram in Fig. 4. Evaluation of this query tree will proceed in a similar

Title Suppressed Due to Excessive Length 9

way. An important limitation here is that we can only work with positions of the
same table, which means that the Join operator must return the positions of
the same table as the left Filter operator. However, curLevel stores not tuple
blocks, but positions blocks. In all other respects, the logic of the PRecursive

and PRecursiveCTE operators is completely identical to the logic of their tuple-
based counterparts.

5 Evaluation

5.1 Methodology

We evaluate our implementations using hierarchical recursive queries on a tree
graph. We generated the datasets for the experiments with a simple script2. All
evaluated queries solve the task of finding all nodes that lie at a distance of n
hops from the root using the BFS algorithm. A test graph was stored in PosDB
and PostgreSQL as an edge list. Columns are of the following types: id, from,
to are int (4 bytes); name is varchar(15) (32 bytes); each additional column in
the second and third test sets is varchar(20) (42 bytes). The number of table
rows is indicated above the figures with test results.

In order to evaluate our solution, we have selected a baseline of PostgreSQL.
Our choice is based on the following considerations. First of all, we needed a
classic row-store system in order to demonstrate the advantages of our approach.
Second, PostgreSQL meets another important requirement: it is free from the
DeWitt clause3.

PostgreSQL was configured as follows: JIT compilation and parallelism were
disabled since JIT compilation is not implemented in PosDB and enabling paral-
lelism would add unnecessary complexity without contributing anything impor-
tant in the scope of this paper. To ensure that hash join is used in the query plan
as in PosDB, merge and nested loop joins were turned off using planner parame-
ters. The temp buffers and work mem parameters were set to values that ensure
that any table under test fits into memory. To prevent caching from affecting
the results, PostgreSQL internal caches were cleared between runs.

PosDB buffer manager was set to 1GB (32K pages of 32KB size).
Each experiment was repeated 10 times, and the average of the results was

calculated.
We pose the following research questions:

RQ1 Does our position-based approach bring any performance gain in a special
case when all attributes of a table are required in the recursive part of a
query?

RQ2 What performance advantage does our position-based approach offer when
introducing additional payload through auxiliary attributes used in projec-
tion?

2 https://github.com/Firsov62121/tree_generator
3 https://www.brentozar.com/archive/2018/05/the-dewitt-clause-why-you-rarely-see-database-benchmarks/

https://github.com/Firsov62121/tree_generator
https://www.brentozar.com/archive/2018/05/the-dewitt-clause-why-you-rarely-see-database-benchmarks/

10 M. Firsov et al.

RQ3 Is it possible to emulate our approach inside a row-store by rewriting a
query in such a way that it will keep a minimum number of columns inside
the recursive core and then join the rest?

To answer these questions, we have designed the following experiments, cor-
responding to each RQ:

1. For the first experiment, we used a BFS query with the table consisting only
of attributes required for the traversal, giving no benefits to PosDB (see
Listing 1.1 and corresponding plans in Figures 3,4).

2. For the second experiment, we used the query from the first experiment
modified by adding payload attributes to the input table itself and to all
projections. SQL queries of the following type were used for PostgreSQL
and PosDB:

1 WITH RECURSIVE edg e s c t e (id , from , to , column1 ,
2 . . . , columnN , depth) AS
3 (SELECT edges . id , edges . from , edges . to ,
4 edges . column1 , . . . , edges . columnN , 0
5 FROM edges WHERE edges . id = 0
6 UNION ALL
7 SELECT edges . id , edges . from , edges . to ,
8 edges . column1 , . . . , edges . columnN ,
9 e . depth + 1 FROM edges JOIN edg e s c t e AS e

10 ON edges . from = e . to AND e . depth < DEPTH VAL)
11 SELECT edg e s c t e . id , edg e s c t e . from , e dg e s c t e . to ,
12 edge s c t e . column1 , . . . , e dg e s c t e . columnN
13 FROM edg e s c t e ;

3. For the third experiemnt, we have created a special type of query:

1 WITH RECURSIVE edg e s c t e (id , to , depth) AS
2 (SELECT edges . id , edges . to , 0 FROM edges
3 WHERE edges . from = 0
4 UNION ALL
5 SELECT edges . id , edges . to , e . depth + 1
6 FROM edges JOIN edg e s c t e AS e
7 ON edges . from = e . to AND e . depth < DEPTH VAL)
8 SELECT edges . id , edges . to , edges . from ,
9 column1 , . . . , columnN FROM edges JOIN

10 edge s c t e ON edges . id = edge s c t e . id ;

In all plans of all evaluated systems the edges cte was hashed in the hash
join (default PostgreSQL behavior).

5.2 Experimental Setup

Experiments were performed using the following hardware and software config-
uration. Hardware: Intel® Core™ i7-8550U CPU @ 1.80GHz (8 cores), 16 GiB
RAM, 500GB Samsung PSSD T7. Software: Ubuntu 20.04.5 LTS x86 64, Kernel
5.15.0-60-generic, gcc 9.4.0, PostgreSQL 14.2.

Title Suppressed Due to Excessive Length 11

5.3 Experiments & Discussion

1 2 3 4 5 6 7
depth

10

20

30

40

50

tim
e,

 s

6 children, height 11, 72.5M edges
PRecursive
PostgreSQL
PostgreSQL with INDEX
TRecursive

Fig. 5: Experiment 1 results

Experiment 1. The results are presented in Figure 5. The TRecursive

approach exhibits performance that is similar to that of PostgreSQL, as ex-
pected, since the underlying query engines perform identical operations. Mean-
while, PRecursive outperforms TRecursive significantly, because it uses only
two out of the four attributes (from and to) during the search, and materializes
values of the third attribute (id) only when the required table rows are known.
The number of rows scheduled to be materialized is much smaller than the total
number of rows in the table (by roughly 200 times), resulting in operators passing
around intermediate results of much smaller size. The index in PostgreSQL was
built over from, since it is used to find edges in the join in the recursive part of
the query. As we can see, this helps improve PostgreSQL performance, although
it is a small improvement. Moreover, with the increase in depth, TRecursive
demonstrates slightly better results compared to PostgreSQL with Index.

Experiment 2. The queries considered in this experiment were executed
on a dataset with an additional parameter, denoted as N, which corresponds to
the number of additional columns. The query plans for PosDB and PostgreSQL
remain almost identical to those used in the first experiment, with the addition of
ancillary columns to the Materialize operators in PosDB and to the projections
in PostgreSQL, respectively.

Due to space constraints, we did not include PostgreSQL with INDEX in this
and subsequent experiments, as its behavior is equivalent to that of PostgreSQL
when changing the parameter N. Furthermore, results of PRecursive were only
included for the maximum number of additional columns, as the time taken by
PRecursive was predictably found to be almost independent of N.

12 M. Firsov et al.

1 2 3 4 5 6 7
depth

10

20

30

40

50

60

70
tim

e,
 s

6 children, height 11, 72.5M edges
PRecursive 4 extra columns
PostgreSQL 0 extra columns
PostgreSQL 2 extra columns
PostgreSQL 4 extra columns
TRecursive 0 extra columns
TRecursive 2 extra columns
TRecursive 4 extra columns

Fig. 6: Experiment 2 results

The run times of the queries depending on the depth of the traversal are
presented in Fig. 6. As we can see, with increasing depth, the gap in the runtime
on tables of different “widths” grows. PosDB PRecursive outperforms all other
approaches. This happens due to late materialization reducing sizes of interme-
diate results significantly. In this experiment, it matters even more due to the
substantial overhead associated with passing “wide” intermediates (all columns)
between operators, even though only two of them are required for the recursive
part (from and to). It’s important to mention that as the “width” of passed
row grows, PosDB TRecursive falls behind PostgreSQL. This happens because
of columnar nature of PosDB. With TRecursive it requires more disk accesses
(one for each column) to retrieve a single row from a table. In contrast, Post-
greSQL can do this with a single access since all the data for table rows is stored
together.

Experiment 3. This experiment is similar to the previous one, but now we
are trying to conserve space in edges cte by reducing the size of the intermedi-
ates. We only store the data necessary for reconstructing the original table row
and navigating through the tree. This query requires more RAM since a second
copy of the edges table is required by the top-level join. Therefore, we had to
reduce the dataset due to the memory constraints of the employed hardware.

The run times of the queries depending on the depth of the traversal are
presented in Fig. 7. It can be seen that the performance of PRecursive is similar
to its performance in the previous experiment, it has the best performance in this
experiment too among all compared approaches. TRecursive, however, beats
PostgreSQL in this experiment.

As we can see by the performance improvement of TRecursive, this method
helps reduce disk access overhead of row reconstruction inside the TRecursive

operator. In PosDB, unnecessary columns are now only materialized once at

Title Suppressed Due to Excessive Length 13

1 2 3 4 5 6 7 8
depth

0

5

10

15

20
tim

e,
 s

6 children, height 10, 12M edges
PRecursive 4 extra columns
PostgreSQL 0 extra columns
PostgreSQL 2 extra columns
PostgreSQL 4 extra columns
TRecursive 0 extra columns
TRecursive 2 extra columns
TRecursive 4 extra columns

Fig. 7: Experiment 3 results

the very end. Whereas in PostgreSQL, the internal hash join involves inefficient
sequential data reads that discard unnecessary columns. Finally, this experiment
shows that our approach cannot be emulated inside PostgreSQL via join.

6 Conclusion

In this paper, we proposed two approaches to implementing recursive queries in
a position-enabled column-oriented DBMS: TRecursive and PRecursive, with
the latter utilizing positions to implement the late materialization approach. We
implemented two sets of operators: 1) a tuple-based set which is similar to the
operators that can be found in classical row-stores but leveraging columnar data
access, and 2) a positional-based set which is the main contribution of the paper.

We conducted experiments to evaluate the performance of the proposed ap-
proaches and used PostgreSQL as the baseline. Experiments demonstrated that
both approaches offer improvement, with PRecursive offering up to 6 times
performance gain over PostgreSQL and 3 times over TRecursive. However,
TRecursive remains the only option if there are two (or more) distinct tables
in the RECURSIVE part used, due to implementation-related restrictions. Also,
TRecursive yields up to 3x improvement over PostgreSQL when an additional
payload columns which are not required in the RECURSIVE part exist and the
query can be rewritten to project them only in the top-level. Finally, we shown
that it is not possible to emulate our approach inside a row-store efficiently.

References

1. Abadi, D., Boncz, P., Harizopoulos, S.: The Design and Implementation of Modern
Column-Oriented Database Systems. Now Publishers Inc. (2013)

14 M. Firsov et al.

2. Boncz, P.A., Kersten, M.L.: Mil primitives for querying a fragmented world. The
VLDB Journal 8(2), 101–119 (Oct 1999)

3. Chernishev, G.A., Galaktionov, V.A., Grigorev, V.D., Klyuchikov, E.S., Smirnov,
K.K.: PosDB: An Architecture Overview. Programming and Computer Software
44(1), 62–74 (Jan 2018)

4. Chernishev, G.A., Galaktionov, V., Grigorev, V.V., Klyuchikov, E., Smirnov, K.:
A comprehensive study of late materialization strategies for a disk-based column-
store. In: DOLAP@EDBT’22. CEUR, vol. 3130, pp. 21–30 (2022)

5. Ghazal, A., Crolotte, A., Seid, D.: Recursive sql query optimization with k-iteration
lookahead. In: DEXA’06. pp. 348–357. Springer Berlin Heidelberg (2006)

6. Ghazal, A., Seid, D., Crolotte, A., Al-Kateb, M.: Adaptive optimizations of recur-
sive queries in teradata. SIGMOD’12 p. 851–860 (2012)

7. Graefe, G.: Query evaluation techniques for large databases. ACM Comput. Surv.
25(2), 73–169 (Jun 1993)

8. Gu, J., et al.: RaSQL: Greater power and performance for big data analytics with
recursive-aggregate-sql on spark. SIGMOD’19 p. 467–484 (2019)

9. Harizopoulos, S., Abadi, D., Boncz, P.: Column-oriented database sys-
tems, vldb 2009 tutorial. (2009), nms.csail.mit.edu/~stavros/pubs/

tutorial2009-column_stores.pdf

10. Idreos, S., et al.: MonetDB: Two decades of research in column-oriented database
architectures. IEEE Data Eng. Bull. 35(1), 40–45 (2012)

11. Jachiet, L., Genevès, P., Gesbert, N., Layaida, N.: On the optimization of recursive
relational queries: Application to graph queries. SIGMOD’20 p. 681–697 (2020)

12. Mukhaleva, N., Grigorev, V., Chernishev, G.: Implementing window functions in
a column-store with late materialization. In: MEDI’19. pp. 303–313 (2019)

13. Ordonez, C.: Optimization of linear recursive queries in sql. IEEE Transactions on
Knowledge and Data Engineering 22(2), 264–277 (2010)

14. Ordonez, C., Gurram, A., Rai, N.: Recursive query evaluation in a column dbms
to analyze large graphs. DOLAP’14 p. 71–80 (2014)

15. Polyntsov, M., Grigorev, V., Smirnov, K., Chernishev, G.: Implementing the
comparison-based external sort. In: New Trends in Database and Information Sys-
tems. pp. 500–511. Springer International Publishing, Cham (2022)

16. Rani, A., Goyal, N., Gadia, S.K.: Efficient multi-depth querying on provenance of
relational queries using graph database. Proceedings of the 9th Annual ACM India
Conference p. 11–20 (2016)

17. Schmid, M.: On efficiently storing huge property graphs in relational database
management systems. iiWAS’19 p. 344–352 (2019)

18. Stonebraker, M., et al.: C-Store: A Column-Oriented DBMS. p. 553–564. VLDB
’05, VLDB Endowment (2005)

19. Sun, W., et al.: Sqlgraph: An efficient relational-based property graph store. p.
1887–1901. SIGMOD ’15 (2015)

20. Tsirogiannis, D., Harizopoulos, S., Shah, M.A., Wiener, J.L., Graefe, G.: Query
Processing Techniques for Solid State Drives. pp. 59–72. SIGMOD ’09 (2009)

21. Tuchina, A., Grigorev, V., Chernishev, G.: On-the-fly filtering of aggregation re-
sults in column-stores. In: SEIM’18. pp. 53–60. No. 2135 in CEUR (2018)

22. Valduriez, P.: Join Indices. ACM Trans. Database Syst. 12(2), 218–246 (Jun 1987)
23. Vicknair, C., et al.: A comparison of a graph database and a relational database: A

data provenance perspective. Proceedings of the 48th Annual Southeast Regional
Conference (2010)

nms.csail.mit.edu/~stavros/pubs/tutorial2009- column_stores.pdf
nms.csail.mit.edu/~stavros/pubs/tutorial2009- column_stores.pdf

	Finding a Second Wind: Speeding Up Graph Traversal Queries in RDBMSs Using Column-Oriented Processing

